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Supplemental information

Method to Remove the Influence of Depth-dependent Effects of Laser Beam Profiles
In order to extract µext , we proposed to first image a reference phantom of known optical properties before imaging the sample
of interest. In our experiments, the reference phantom was constructed with home-made mono-dispersive silica nanospheres of
180 ± 20 nm and a concentration of 12.5 mg/ml. Our previous study indicated that the attenuation coefficient of the silica
phantom matched very well with predictions by the Mie theory. OCT imaging of both the reference phantom and the sample
were performed under the same experimental conditions, i.e., with the same incident power, focused spot size, and focusing
depth. The corresponding OCT signals for the sample of interest (with a subscript or superscript s) and the reference phantom
(with a subscript or superscript r) can be written as:
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Dividing the sample OCT signal Is(z) in equation (5) by the reference phantom OCT signal Ir(z) in equation (6) and
assuming the point spread function h(z) is almost identical for the sample and reference phantoms, we will get the following
depth-dependent function with a single exponential decay:
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Simple Linear Regression Algorithm in the LF Method
For simplicity, equation (7) can be rewritten as:
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is a constant, µ = µe
s
xt − µe

r
xt is the attenuation coefficient difference, z is the imaging depth and z0 is the

sample surface. When assuming z0 = 0, equation (8) can be further simplified to:

I(z) =C · e−µ·z. (9)

The LF method uses the logarithm of equation (9) to obtain a linear equation:

ln(I(z)) = ln(C)−µ · z, (10)

where −µ is the slope of the linear equation. For discrete A-line data, i.e., I(n ·∆z), equation (10) can be rewritten as:

yn = α +β · zn, (11)

where yn = ln(I(zn)), α = ln(C), β =−µ , zn = n ·∆z, n = 0 to N−1 represents the sequential index of the discrete data for a
given A-line, ∆z is the pixel size along the imaging depth, and N is the total number of data points (i.e., pixels) per A-line.

Then β can be derived using the simple linear regression (least squares) algorithm, i.e.:
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Robustness of the FD Method to Incorrect Surface Detection
To derive µ with the FD method, we can calculate the Fourier transform of equation (8):

F(κ) =
∫
−
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, (13)



where κ is the frequency in space, z is the imaging depth of OCT signal. Please note that for OCT data analysis, the depth by
default cannot be negative. Thus z≥ 0 is assumed for deriving the above equation.

Then the optical attenuation coefficient µ can be derived by comparing the DC component with the modulus of the first
harmonic coefficient of equation (13),which leads to:
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µ
, (14)

where ∆z is the pixel size along depth and N is the total number of data points (i.e., pixels) per A-line.
Clearly, equation (14) is independent of z0, i.e., the sample surface position; thus in theory the FD method is not sensitive to

the accuracy of surface detection.
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