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The cvrPhone Hardwre and Software Implementation 

The cvrPhone is composed of three commercially available parts: an ECG 

module PSL-ECG 12MD (Physiolab) equipped with an ADconverter ADS1298 (Texas 

Instruments), a microcontroller board Due (Arduino) equipped with a microcontroller 

AT91SAM3X8E (Atmel), and a Bluetooth module HC-05 (Guangzhou HC Information 

Technology), as shown in Figure S1. Figure S1 (A) shows pin connections between the 

three parts, and Figure S1 (B) shows the actual ECG acquisition device, assembly of the 

three parts. The microcontroller communicates with the AD converter by the serial 

peripheral interface (SPI), and with the Bluetooth module by the universal asynchronous 

receiver/transmitter (UART). Two parallel connected 9V PP3 batteries were used to 

power the Due board. The microcontroller initializes the AD converter and the Bluetooth 

converter for communication, and transmits digitized ECG data to the Smart-phone 

(Figure S1 (C)). 

There are three threads in the Android application for the smartphone: User 

interface (UI) thread, Bluetooth thread and real-time calculation (RTC) thread (Figure 

S2). The UI thread consists of three panes. The first panel displays ECG signals of three 

selected leads, and the second pane displays real-time estimation values of respiration 

rate (RR), tidal volume (TV) and ischemic index. The third pane is used to record study 

notes. The Bluetooth thread receives ECG signals from the ECG acquisition device,and 

sends the signals to UI thread for display on the first pane and to RTC thread for real-

time calculations. RTC thread also sends calculation results to UI thread for display on 

the second pane.  
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Comparison of ECG Signals between the Smartphone and Prucka Cardiolab 

We have used the Prucka Cardiolab electrophysiology system (General Electric) 

to record body surface ECG signals in our prior studies 1-3. In this study, we compared 

the 12 lead ECG signals acquired simultaneously at the same leads from Prucka 

Cardiolab and the smartphone. Figure S3 shows the same ECG morphologies in all 

leads between the two systems. In Figure S4, the noise levels of the smartphone system 

are statistically significantly lower than the Prucka Cardiolab (Wilcoxon rank sum test, p 

< 0.0001), probably due to the DC power supply of the smartphone system. 

 

Comparison of the Respiratory Rate, Tidal Volume and Ischemic Index Estimated 

by the Android Application and MATLAB  

The three estimated parameters in this study – RR, TV and ischemic index – are 

primarily based on the algorithms which have been developed in MATLAB in our 

previous studies 1-3.  We sought to evaluate whether each of these applications was 

accurately transferred to JAVA for the Android, by comparing the results of the two 

platforms for each application in the same ECG data (Figure S5-S7). 

In Figure S5, we compare the results of the RR analysis using the data 

previously reported by Weiss et al 3. It appears that the results are identical at all 

respiration rates.  The RR difference is negligible with the overall mean ± std difference 

between the two platforms being 9.6×10-5 ± 9.6×10 breaths/min, respectively (p=0.8469 

by Wilcoxon rank sum test of the difference).  

Similarly, in Figure S6, the TV results estimated using the MATLAB and JAVA 

platforms and ECG data presented by Sayadi et al 2, appear identical at 0.1 ml resolution 

(p=1.0; Wilcoxon rank sum test).  

Finally, in Figure S7 we present dynamic changes of ischemic index at baseline 

(t = 0 min) and following myocardial infarction using ECG data presented by Sayadi et al 

1, and the MATLAB and JAVA platforms. The mean ± standard deviation of the 

difference of MATLAB and JAVA values are -1.1101 x 10-10 ± 1.9188 x 10-9  (p=0.9980 

(Wilcoxon rank sum test).    

 

Algorithm for RR Estimation  

Following validation of the MATLAB and JAVA respiration rate estimation 

platforms, we sought to evaluate the effect of the percentage of premature ventricular 

contractions (PVCs) in estimating the respiration rate (RR). 
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In a prior study 3, the RMS amplitude for all abnormal beats was obtained from 

neighboring RMS values using cubic-spline interpolation.  By replacing aberrant beats 

with interpolated points, rather than the RMS values of the average good beats, we 

minimized discontinuities in the RMS ratio sequence prior to spectral analysis.  In the 

present study, we used ECG data during which the RR was quasi static,3 to examine the 

effect of PVCs (in a 32-beat sequence used to estimate the RR) in estimating the RR, 

using two different approaches: (i) interpolation of the RMS signal, or (ii) interpolation of 

the RR.  Figure S8 presents the RR estimation error as a function of PVC percentage 

within a 32-beat sequence: panel (A) presents the number of 32-beat sequences used to 

estimate the error (in log scale), panel (B) presents the RR estimation error as a function 

of PVC percentage within each 32-beat sequence, using interpolation of the RMS signal, 

and panel (C) presents the RR estimation error as a function of PVC percentage within 

each 32-beat sequence, using interpolation of the RR.  One observes that, in the 

presence of PVCs, interpolation of the RR exhibits a smaller rate increase of the error.   

Therefore, under quasi-static conditions during which the RR remains relatively 

constant, we have modified the algorithm so that if there are more than 10% abnormal 

beats in the 32-beat window then the corresponding RR is interpolated using the cubic 

spline method. 

 

 

Algorithm for TV Estimation  

Following validation of the MATLAB and JAVA TV estimating platforms, we 

sought to examine whether we could further improve the accuracy of the TV estimation 2. 

Given that the TV estimation from ECG signals relies on respiration-induced 

modulation of the QRS complex amplitude, we first estimated the respiratory envelope 

by calculating the beat-to-beat root-mean-square of the QRS complex of each lead, as 

previously described 2, and estimated the percent modulation (PM) that  normalized 

peak-to-peak amplitude of respiratory envelope, as a surrogate for TV, where PM is 

defined as 100 (%) × (max envelope – min envelope)/(max envelope + min envelope)/2 

of each cycle of the respiratory envelope. In our prior study, we used the maximum PM 

value among all leads to estimate the TV at each cycle of respiratory envelope and 

developed a model that provides the TV from PM, as follows: TV = a × PM + b, where 

coefficients a and b were derived from a least square regression analysis based on our 

swine studies 2.  
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In the present study, we applied the least square regression analysis using six 

different methods (including the previously used maximum PM method), aiming to 

improve the accuracy of TV estimation from body surface ECG signals. The six different 

methods can be classified with respect to the optimization parameter:  

(i) the percent modulation, PM or 

(ii) the peak difference (max envelope – min envelope), PD  

The first method selects the lead with the median PM, and uses the PM for TV 

estimation. The second method selects the lead with the maximum PM, and uses the 

PM for TV estimation (as previously described 2). The third and fourth methods are 

identical to the first and second ones respectively, but this time the PD is used instead of 

the PM. The fifth method selects the lead with maximum PD, but uses the PM for TV 

estimation. And, the sixth method selects the lead with maximum PM, but uses the PD 

for TV estimation. 

We employed previously reported 2 ECG data (n=10) to obtain the slope and the 

intercept for each of the six different methods respectively, and estimated the TV (TV = a 

× PM(PD) + b), using the least square analysis 2. We then compared the error between 

the estimated and the true TV for each of the six methods.  Figure S9 shows the 

normalized (by the true TV) mean squared error (MSE) and the coefficient of variation 

(CV), defined as / where, andare the standard deviation and the mean 

respectively of the estimated TV across animals. Although for the TV estimation, ECG 

signals were acquired at 0, 250, 500 and 750 ml TVs, 0 ml was excluded in Figure S9, 

because MSE cannot be normalized by 0 ml and CV cannot be defined at 0 ml. On 

average, over the three TVs, the first method (median PM) exhibits the smallest NMSE 

and CV values (Figure S9, panels (B) and (D)), and this is the method that we used for 

the TV estimation in this study. 

 

Changes of the Ischemic Index After Coronary Artery Occlusion 

Figure S10 shows additional ischemic index estimation results, similar to those 

presented in Figure 4 of the manuscript: (i) Beat-by-beat ischemic index estimation 

before and after coronary artery occlusion (t>0 min), of leads II (A) and aVF (C), as well 

as one-minute, running median ischemic index estimation, of leads II (B) and aVF (D). 
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Figure S1. The cvrPhone. The cvrPhone is composed of three commercially available 

parts: an ECG module PSL-ECG 12MD (Physiolab), a microcontroller board Due 

(Arduino) and a Bluetooth module HC-05 (Guangzhou HC Information Technology). The 

ECG module includes an AD converter ADS1298 (Texas Instruments), and the 

microcontroller board which includes a microcontroller AT91SAM3X8E (Atmel). (A) Pin 

connections between the three parts. (B) Picture of the hardware.  (C) Block-diagram of 

the microcontroller embedded software. The microcontroller sends ECG data to the 

smartphone according to user’s request. 

(C) 
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Figure S2. Block-diagram of the threads in the Android application. There are three 

threads in the Android application: user interface (UI) thread, Bluetooth thread and real-

time calculation (RTC) thread. UI thread provides users with operation options, and 

displays ECG signals and real-time calculation results. Bluetooth thread receives ECG 

signal from the ECG acquisition device and sends it to UI thread for display and to RTC 

thread for real-time calculations. RTC thread estimates ischemic index, respiration rate 

and tidal volume in real-time, and sends the estimated values to UI thread for display. 
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Figure S3. ECG signals acquired by the smart-phone based system (solid line) and the 

Prucka Cardiolab electrophysiology system (dashed line) that has been used in our 

animal studies before. ECG signals were acquired by both systems simultaneously from 

the same electrodes. The ECG module for the smart-phone system is ‘PSL-ECG 12MD’ 

(Physiolab) equipped with an AD converter ‘ADS1298’ (Texas Instruments).  
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Figure S4. Noise level comparison of ECG signals acquired by the smart-phone system 

(light gray bars) and the Prucka system (dark gray bars). The noise level of each beat 

was calculated as the standard deviation in a 20 ms period between the end of the T-

wave and the beginning of following P-wave or in the middle of the PR interval. Each bar 

graph was calculated from 2,500 beats recorded from 5 swine, 500 beats per swine. The 

five nodes at each bar correspond to the values of 10%, 25%, 50%, 75% and 90%. For 

all 12 leads, the smart-phone system exhibited significantly lower noise levels compared 

with the Prucka system (p<0.0001; Wilcoxon rank sum test). 
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Figure S5. Comparison of the respiration rate calculated by the Android application (light 

gray bars) and the MATLAB code (dark gray bars). The same ECG data were used for 

both calculations 3. The five nodes at each bar correspond to the values of 10%, 25%, 

50%, 75% and 90%. The mean and standard deviation of the difference between 

Android and MATLAB values are 9.6449 x 10-5 ± 9.6175 x 10-4 breaths/min); (p=0.8469; 

Wilcoxon rank sum test). 
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Figure S6. Comparison of the tidal volume calculated by the Android application (light 

gray bars) and the MATLAB code (dark gray bars). The same ECG data were used for 

both calculations 2. There are 10 estimation values at each bar plot. The five nodes at 

each bar correspond to the values of 10%, 25%, 50%, 75% and 90%. The values from 

Android and MATLAB are identical at 0.1 ml resolution (p=1.0; Wilcoxon rank sum test). 
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Figure S7. Comparison of two ischemic indices calculated by the Android application 

(left side light gray bars) and the corresponding MATLAB code (right side dark gray 

bars). The ECG signal was obtained from 14 swine, and the same ECG data was used 

for both calculations 1. The graph shows dynamic changes of the ischemic index at 

baseline (t = 0 min) and following myocardial infarction. For each time bin, the 

distribution of ischemic index is averaged for all study subjects. The time bin width is 1 

minute for baseline, 30 seconds for the first 5 minutes following balloon occlusion, and 1 

minute for 6 to 18 minutes after occlusion. The five nodes at each bar correspond to the 

values of 10%, 25%, 50%, 75% and 90%. The mean ± standard deviation of the 

difference of Android and MATLAB values are -1.1101 x 10-10 ± 1.9188 x 10-9  (p=0.9980 

(Wilcoxon rank sum test). 
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Figure S8. The respiration rate estimation error as a function of PVC percentage within 

a 32-beat sequence.  (A) The number of 32-beat sequences used to estimate the error is 

shown on the top (in log scale). (B) the respiration rate estimation error as a function of 

PVC percentage within each 32-beat sequence, using interpolation of the RMS signal.  

(C)  the respiration rate estimation error as a function of PVC percentage within each 32-

beat sequence, using interpolation of the respiration rate.  One observes that, in the 

presence of PVCs, interpolation of the RR exhibits a smaller error increase rate.  

(A) 

(B) 

(C) 
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Figure S9. Normalized (by the true TV value) mean squared error (NMSE) in panels (A-

B) and coefficient of variation (CV) in panels (C-D) of six different TV estimation methods. 

NMSE (A) and CV (C) values of the six methods are displayed at three different TV 

values, while average NMSE (B) and CV (D) values at the three different TVs are 

average at each method on the left panels. There are two parameters used for TV 

estimation: percent modulation (PM) and peak difference (PD). The six different TV 

estimation methods can be classified by the lead and the parameter that is selected for 

TV estimation, as: (i) the lead with median PM is selected and the PM is used for TV 

estimation; (ii) the lead with maximum PM is selected and the PM is used for TV 

estimation; (iii) the lead with median PD is selected and the PD is used for TV estimation. 

Max PD; (iv) the lead with maximum PD is selected and the PD is used for TV 

estimation; (v) the lead with maximum PD is selected and PM of the lead is used for TV 

estimation; (vi) the lead with maximum PM is selected and PD of the lead is used for TV 

estimation.  

(A) (B) 

(C) 
(D) 

(D) (C) 

(B) (A) 
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Figure S10. Changes of ischemic index after coronary artery occlusion, as described in 

Figure 4 of the manuscript. Beat-by-beat ischemic index estimation before and after 

coronary artery occlusion (t>0 min), of lead II (A) and aVF (C). One-minute, running 

median ischemic index estimation, of lead II (B) and aVF (D). 

(D) 

(C) 


