
SUPPLEMENTARY MATERIAL for
Entropic Origin of Pseudogap Physics and a Mott-Slater Transition in Cuprates

R.S. Markiewicz, I.G. Buda, P. Mistark, C. Lane, and A. Bansil

PACS numbers:

SI. ORDER PARAMETER CLASSIFICATION
SCHEME

A. Classifying order parameters

Our order parameter classification scheme is based on
the existence of a generalized Stoner criterion for phase
instability,

Vqχ0(q, ω = 0) = 1 + λ. (S1)

The restriction to zero frequency means that we cannot
discuss quantum critical phenomena; we shall see that
the formulation works best at higher T s. In analyzing
Eq. S1, we assume that the q dependence of Vq is weak.
This is certainly true in the Hubbard model. For the
bare Coulomb interaction Vq behaves like a power law,
e.g., Vq ∼ 4πe2/q2 in 3D, and the only special q values
are 0 and ∞. We can then calculate fluctuation maps
that divide the T −x or the ω−x phase space into basins
of attraction, where the q-vector corresponding to the
maximum χ0(q, 0) value changes character. Examples
of fluctuation maps are shown in Figs. 3 and 4 of the
Main text. Phase transitions have a different character
depending on whether they arise within a basin or are
due to transitions across the boundary between different
domains. In spectrum generating algebras, this boundary
is referred to as a separatrix.1,2

For phase transitions within a single basin, the tran-
sition is controlled by the net electron degeneracy, and
hence typically by an SO(N) point group, and by the cor-
responding Us that break the degeneracy. For example,
if we consider density wave fluctuations at a particular
Q, the 1 on the right hand side of Eq. S1 is appropriate
for a SDW, but shoud be -1 for a CDW. The difference is
an issue of charge neutrality. The Coulomb energy is so
large that if electrons bunch up into a CDW it will cost
an energy comparable to the plasma energy, unless V is
attractive. On the other hand, in an SDW the up and
down spins bunch up out of phase, so the magnetization
oscillates in space while the charge density is constant,
and hence condensation is easier. The same effect holds
if there is an orbital or valley degeneracy. Moreover, in
a Peierls-like scenario, the electron bunching is accompa-
nied by a lattice distortion controlled by a Stoner con-
dition equivalent to Eq. S1, with an effective interaction
Ueff . For the cuprates, the two VHSs at (π, 0) and (0, π)
act as a form of valley degeneracy, and the theory with
q = (π, π) is controlled by an SO(8) group. Similarly, for
antinodal nesting the (δ, δ) density wave can be either
SDW or CDW.

A new result of our investigation is the possibility of
supertransitions, where doping or temperature causes the
system to cross a separatrix between different basins of
attraction. In the theory of spectrum generating algebras
these are known as finite energy quantum critical points,
and it is found that an order-parameter DOS diverges
at the transition. We find that we can reproduce simi-
lar behavior by defining the order-parameter DOS as the
SDOS at threshold, which controls the singular behavior
of ξ [Results Section (Beyond RVB) of the Main text].

Finally, we discuss how the fluctuation maps can be
used to generate phase diagrams. At mean field level, a
phase transition occurs when the generalized Stoner cri-
terion of Eq. S1 is satisfied, so that if Vq is a constant,
the transition would fall along one of the contour lines
(black dots) in Fig. 2 of the Main text, and even if Vq
varies with x and/or T , these lines can be used to find the
transition. For a 3D system, this will simply mean that
mode coupling depresses the transition temperature to
a lower T where the Stoner criterion is satisfied, leaving
behind an extended pseudogap regime. Once the system
develops long-range order, the Fermi surface and suscep-
tibility change, and the fluctuation map at lower T must
be recalculated. Does this mean that transitions pre-
dicted from the fluctuation maps are inaccessible? If the
lower-T phase actually has the lower free energy, a transi-
tion might occur spontaneously, or the system might get
trapped in a metastable state. In this case, there are two
possible ways of observing these states. First, since there
is an equivalence class of materials with the same fluc-
tuation map, it is possible that different members of the
class have smaller values of Vq, for which the Stoner crite-
rion is only satisfied in the lower-T phase. Alternatively,
one might try to quench or photoexcite the system.

For a 2D system, the issue is more subtle as the
Mermin-Wagner theorem holds and an ordered phase can
only arise at T = 0 unless the system transitions to 3D or
its spin dimension decreases due to spin-orbit coupling.
Thus, when the correlations of one phase start to grow,
one will need to account for the evolution of the Fermi
surface and susceptibility at lower T . This can be com-
plicated as each competing density wave corresponds to
a different Fermi surface reconstruction. Here we note
one point in particular. In the Main text, Fig. 15(c), we
see the development of an ANN phase out of a short-
range order (π, π − δ) SDW in good agreement with the
CDW phase found in many cuprates. Since the SDW
correlation length is only ξSDW ∼ 5a, this is perhaps not
too surprising, but for lower x ξSDW should grow, and
the developing small Fermi surface should be taken into
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account. One issue is whether the CDW develops homo-
geneously or on the SDW domain walls. In this connec-
tion we note some experimental evidence of a possible
relevant phase found in another cuprate. In LSCO, the
low-temperature tetragonal (LTT) phase is believed to
be highly relevant to stripe physics, anchoring the direc-
tion of the stripe to the lattice and producing the unusual
criss-cross stripe pattern along the c-axis. Yet the LTT
phase is almost never the stable phase, existing as fluc-
tuations or as a minority phase, although it can be sta-
bilized via rare-earth substitution. Electron microscopy
studies find that the LTT phase tends to form as in-
clusions or on twin-boundaries of the low-temperature
orthorhombic phase3,4, suggesting that quenching these
materials into the low-T phase might prove interesting.

Lastly, one can apply tuning parameters to selectively
turn an order on or off. We have seen that disorder can
be used to quench the ANN phase. Moreover, magnetic
fields are regularly used to turn off superconductivity to
reveal the competing phases. A magnetic field has an in-
ordinately strong effect in destroying spin-singlet Cooper
pairs. For instance, at high fields, superconductivity is
often restricted by the Clogston-Chandrasekhar limit5,6,
µBH = ∆(0)/

√
(2) ∼ 1.76kBTc/

√
(2) ∼ 2.6meV, as-

suming Tc = 30K, superconducting gap ∆(T ), and the
BCS ratio for 2∆(T = 0)/kBTc. Since the Bohr mag-
neton is µB = 0.057meV/T, this gives a critical field
46T, in good agreement with experiment in LSCO7. In
contrast, magnetic fields have relatively weak effects on
antiferromagnetism8. Typically, one expects a spin-flop
transition at fairly low fields, where the AF moment
aligns perpendicular to H, followed by a gradual rotation
of the moments until they are parallel to B and the AF
order is destroyed. While a weak spin-flop transition is
often observed in the undoped cuprates, associated with
Dzyaloshinskii-Moriya induced canting of the moments,
the main effect of the field is only expected near the sat-
uration field, µBH ∼ J ∼ 100meV ∼1800T.

B. x− ω-scaling

It is important to note that for a Fermi liquid, the
scaling in the x−T space found in the Main text (Fig. 9)
implies a similar scaling in the x− ω space. In fermionic
systems there is a similar scaling in T and ω, with scale-
factor

~ω ∼ akBT, (S2)

a ∼ π. Here we compare the x− T map of Fig. M9 with
the corresponding x−ω maps, which can be more readily
compared with the SGA results. First, in Figs. S1 and S2
we compare plots of susceptibility curves varying x at ei-
ther T = 0 and fixed ω (Fig. S1), or at ω = 0 for several
values of T (Fig. S2). The latter were used to calculate
the light-blue dot-dashed line in the Main text, Fig. 9.
For each ω, starting at electron doping (x < 0), there is a
peak at (π, π) which grows with x, reaches a maximum,
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FIG. S1: Doping dependence of χ0 at fixed ω and T = 0.
Left hand frames are for x < xpeak and right hand frames for
x > xpeak. Value of x is color coded according to legends in
frames (a) and (b), and xpeak is plotted in Fig. S3. Frequency
ω = 0 (a,b), 100 meV (c,d), and 500 meV (e,f). Calculations
are based on full LDA-based dispersion for LSCO.

then starts to broaden and decrease, ultimately splitting
into two peaks with the stronger peak at (π, π− δ). Fig-
ure S3 plots the evolution of the peak (red solid line) and
the onset of the split bands (blue line). The blue squares
are the data of Fig. 9 of the Main text, scaled by a factor
a = 5, showing that Eq. S3 is approximately satisfied.
The thin red lines represent constant-χ contours, labeled
by the Stoner U value. Once again, as U decreases, the
unstable region converges onto the VHS doping. We note
that the onset of splitting (blue line in Fig. S3) is some-
what uncertain, as the peaks are quite broad and it is
unclear just where they start to split.

C. Relation to spectrum-generating algebras

Spectrum-generating algebras (SGAs)1,2 were devel-
oped in the context of nuclear physics to elucidate the
underlying group structure of order parameters, taken
as bilinears of creation and annihilation operators. The
primary concern of SGAs is not with interactions, but
with the underlying topology of the order parameters,
defined by the group structure of bilinears. The Lie al-
gebra contains chains of subalgebras, which define do-
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FIG. S2: Doping dependence of χ0 for fixed T at ω = 0.
Setup and doping color scheme is the same as for Fig. S1,
except temperature T = 100K (a,b), 300K (c,d), and 500K
(e,f).
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FIG. S3: Commensurate-incommensurate crossover in
the x − ω space. Plot of xpeak as a function of ω, taken
from Fig. S1 and related calculations (red solid line), com-
pared to the scaled results from the Main text, Fig. 9 [blue
squares], and of the commensurate-incommensurate transi-
tion (blue solid line). Thin red lines indicate contours of con-
stant χ0, labeled by their equivalent values of Uc = 1/χ0. All
curves are plotted vs frequency ω, except the blue squares,
which are plotted vs 5kBT .

mains of attraction for the order parameters. Within
each subalgebra, more conventional QCPs are driven by
symmetry-breaking interactions which couple to individ-
ual elements of the subalgebra. SGAs are less concerned
with the ordinary quantum critical points (QCPs) than
with ‘supertransitions’ across the separatrix between do-
mains, brought about by external perturbations. At
this crossover, states of both subalgebras are degenerate,
leading to divergent ‘order-parameter-DOSs’ and possi-
ble emergent behavior. While phase transitions occur in
SGAs at zero frequency, the domains and separatrices
persist at all energies, leading to the concept of excited-
state quantum critical points (ESQCPs). One introduces
a perturbation ξ that switches the ground state from one
subgroup to another, then plots the eigenvalue spectrum
from one sector of the ground state (say, the states with
angular momentum quantum number l = 0) as ξ is var-
ied. One thus finds a separatrix line in the E − ξ-space
where the eigenvalues pile up, leading to a peak in the
corresponding density-of-states. As the eigenvalues cross
this line, degenerate eigenvalues on one side split on the
other side, signaling a change in the ground state. As
E → 0, the separatrix extrapolates to the conventional
QCP, but at finite E it becomes an ESQCP.

Attempts to extend the ideas of SGAs into condensed
phases have run into difficulties. A key difference between
the SGAs in nuclear and condensed matter physics is that
the former are designed with nearly-spherical nuclei in
mind, and the associated groups are generally related to
SO(N) and SU(N), whereas in solids, the pairs are first
sorted by a q-vector, which is then superposed with the
group of the star of each q.

In Section SI.A we showed that the DFT-Lindhard su-
ceptibility can be used to extend these ideas into the con-
densed matter domain. Since the susceptibility χq can

be identified with the order parameter
∑
k < c†k+qck >,

the fluctuation fingerprints bear a close resemblance to
the domains of attraction in SGAs, with doping x act-
ing as a symmetry-changing parameter similar to ξ. In
this case, it is natural to identify the threshold value
of the SDOS [corresponding to the largest susceptibil-
ity or the smallest inverse susceptibility] as the equiva-
lent of the order-parameter DOS of SGA. The Main text
Figs. 14(c-e) show that the threshold SDOS diverges at
the Mott-Slater crossover. This divergence persists at fi-
nite T , suggestive of an ESQPT. The emergent behavior
we find at the transition is thus a form of deconfined
QCPs (DQCPs), with a non-Landau-Ginzburg-Wilson
transition between two types of competing order, where a
new form of excitation emerges exactly at the DQCP.9,10

We show in the Main Results Section (Beyond RVB) that
the SDOS also diverges at the separatrix between (π, π)-
order and the ‘ring’ phase.

If we interpret the pseudogap as condensation into
the coherent (π, π)-domain, then the low-temperature
physics will be controlled by the SO(8) algebra of the
VHS.11 This algebra contains two SO(6) subalgebras
of high interest to cuprate physics, one that combines
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Zhang’s SO(5)12 [SDW plus d-wave superconductivity]
with a flux phase operator, and a second with CDWs,
spin-flux phase, and s-wave superconductors. These two
SO(6) vectors are coupled by a nematicity operator. We
see that this Lie algebra contains all of the low-T phases
found in the cuprate pseudogap.

In summary, we have constructed the condensed-
matter analog of the spectrum-generating algebra, and
shown that the characteristic frequency dependencies are
echoed in the T -dependence, and hence experimentally
accessible. In particular, pseudogap physics in LSCO is
dominated by the VHS domain of attraction, and the low-
T ordered phases are associated with the corresponding
SO(8)-algebra.

SII. INTERPRETATION OF
SELF-CONSISTENCY

A. Relation to Entropy

In Landau theory, fluctuations above the ground state
are typically calculated in Gaussian approximation13,
yielding an entropy in the paramagnetic phase

S = S0(E)− 1

2T

∑
q,i

χ−1q |φq,i|2, (S3)

yielding a free energy

F = F0 +
1

2

∑
q,i

χ−1q |φq,i|2, (S4)

where φq,i (i = x, y, z) is the amplitude of the magnetic
fluctuation. Then if each degree of freedom of F has an
average energy of T/2, then < |φq,i|2 >= Tχq, so the
total fluctuation intensity is∑

q,i

< |φq,i|2 >= 3T
∑
q

χq ∝ λ. (S5)

This clearly demonstrates that our calculation is a direct
generalization of McMillan’s phononic entropy14 to the
situation of electronic bosons.

B. Relation to Bose-Einstein Condensation

In the conventional picture of Bose-Einstein conden-
sation (BEC), the total number of bosonic modes must
satisfy

N =

∫
dωnBE(ω)DB(ω), (S6)

where nBE is the BE distribution function and DB is the
bosonic density of states. As T decreases, the bosonic
chemical potential µ must adjust to maintain the equal-
ity. However, the largest µ can be is zero, for which

nBE → nP , the Planck distribution, and the RHS of
Eq. S6 takes on a fixed value. For lower T , the equation
can only be satisfied by putting a macroscopic number of
bosons into the lowest energy mode.

In the present situation, DB =
∑
q χ
′′, and nP can be

approximated as ∼ T/ω, in which case Eq. S6 becomes

N ' T
∑
q

∫
dω
χ′′(q, ω)

ω
= πT

∑
q

χ′(q, ω = 0). (S7)

Comparing this to Eq. 5 in the Main text, self-consistency
has produced a number Neff = Nπλ/A0 of ‘excitons’
which can subsequently Bose condense. Whereas for 3D
BEC the macroscopic occupation of the lowest bosonic
mode must be added by hand, in 2D the self-consistent
condition automatically causes the occupation of that
mode to diverge as T → 0.

C. Entropy and Dissipation

As originally noted by McMillan14, anomalously large
ratios of 2∆/kBTc for any phase transition are generically
associated with a dominance of bosonic entropy at finite
T due to low-lying bosonic fluctuations. But, from the
fluctuation-dissipation theorem, the net fluctuations at a
given frequency ω are equal to the dissipation D(ω) at
that frequency,

D(ω) =
∑
q

χ′′(q, ω)(nBE(ω) + 1/2)

→ T
∑
q

χ′′(q, ω)

ω
, (S8)

so that the right-hand side of Eq. S7 is the total dissipa-
tion at temperature T . In an ordered phase near T = 0,
the dominant fluctuations will be associated with Gold-
stone modes, but to show this in a calculation requires
extending the present results to full self-consistency be-
tween the self-energy and vertex corrections as in a par-
quet calculation.

SIII. SAMPLE MODE COUPLING
CALCULATION

Simple numerical integration of the Main text Eq. 14
cannot easily handle the logarithmic singularity near
X− = Uc. Hence, we rewrite N− = N1 + N2, where
N1 has a simple analytical form and captures N− near
the threshold, N2 << N1 for small (X− − Uc). Then
the integral I =

∫
N−dX−/(δ + (X− − Uc)) is split

into I1 + I2, corresponding to the two Ni, and I1 is
evaluated analytically, while I2 (which is nonsingular)
is evaluated numerically. For example, at higher T , N1

varies approximately linearly with X− near the thresh-
old, N1 = Na − Nb(X− − Uc) for 0 < (X− − Uc) < Xc.
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In this case,

I1 = (Na −Nbδ)ln(
Xc

δ
+ 1) +NbXc. (S9)

For small δ this reduces to the OZ form I1 ∼ Naln(Xc

δ ),
thereby describing Region I of the Main text Fig. 13(b).

For the small-t′ materials, the susceptibility on the
plateau remains parabolic, but with a small curvature
and a sharp cutoff. This leads to an additional contribu-
tion to the SDOS of the formN− = Np if (X−−Uc) ≤ Xp.
Then the integral of Eq. S9 contains an extra contribu-
tion

Ip = Npln(
Xp

δ
+ 1). (S10)

This term has two distinct limits. At low T , δ << Xp,
in which case Ip = Npln(Xp/δ). Combining this with I1
leads to an OZ-like result of the same form but with a
larger step height, Na → Na +Np, describing Region III
of the Main text Fig. 13(b). However, as T increases, δ
grows rapidly, leading to a possible reversal of the in-
equality. If Xp << δ, then Ip → NpXp/δ. This is
equivalent to assuming that the plateau has a flat top,
in which case N− can be represented as a δ-function,
N− = NpXpδ(X− −Uc), with NpXp the excess height of
N at threshold, which is proportional to the area of the
plateau at T = 0. From the Main text Eq. 14, Ip ∼ 1/δ

translates into ξth ∼ 1/T 1/2, dotted line in the Main text
Fig. 13(b), which approximately describes region II.

SIV. RELATION TO OTHER CALCULATIONS

A comparison between our QPGW model and other
‘DFT+’ calculations was given in Ref. 15; here we dis-
cuss this comparison specifically in regard to pseudogap
physics. A number of groups are working on MBPT-
type extensions of DFT calculations. However, DMFT
and its cluster extensions are limited by a very low res-
olution in momentum q. In particular, this means that
even if one captures Mermin-Wagner physics, one will be
typically limited to ξ < 7a16 [Fig. 50 of Ref. 15]. Fur-
thermore, in averaging over large patches in momentum
space, one loses the ability to resolve ordinary nesting
instabilities, such as the ANN instability responsible for
the cuprate CDWs [Fig. 49 of Ref. 15]. On the other
hand, the fact that one can see the pseudogap, even when
averaging over a quarter of the Brillouin zone is consis-
tent with our finding that the pseudogap is spread over
many separate modes in q. Notably, whereas we find that
the pseudogap is related to a peak in γ, recent cluster-
DMFT calculations find that the pseudogap transition

is associated with a line of peaks in the compressibility
(Ref. 17 and references therein). Since the Fermi liq-
uid compressibility is proportional to the DOS, this line
would also be expected to terminate at a VHS, consistent
with our results. However, since the cluster-DMFT cal-
culation assumed t′ = 0, the (paramagnetic) VHS would
be at x = 0, whereas the T = 0 compressibility peak lies
at a finite doping. We suspect that it is related to the
VHS of the bonding AF band. The cluster-DMFT cal-
culation reveals an additional complication: within the
superconducting state the compressibility diverges, lead-
ing to a regime of phase separation (see also Ref. 18).

Some DMFT extensions [dynamic vertex
approximation19–21, dual fermion22,23, and one-particle
irreducible approaches24] seek to calculate the two-
particle vertex, and hence the momentum-dependent
self energy, and are able to reproduce Mermin-Wagner
physics and vertex corrections. In particular, a recent
dynamical cluster approximation (DCA)25 calculation
sorted out the contribution of various channels of
two-particle scattering to the self-energy (‘fluctuation
diagnostics’), and found that spin fluctuations are
the origin of the pseudogap, while charge and pairing
fluctuations play a marginal role, consistent with our
results. This has also been found experimentally26.

We further note that the parquet equations27,28 could
be quite useful, if the recently discovered divergences25

can be overcome. Mutual self-consistency between the
self-energy and vertex corrections will be necessary to
extend the current results to low temperatures.

After our paper was posted [arXiv:1505.04770], we be-
came aware of several related calculations. In particu-
lar, Ref. 29 confirms the existence of an electronic bot-
tleneck near the metal-insulator transition of the Hub-
bard model. An exact comparison is difficult, since their
bottleneck arises in the midgap band of the dynamic
mean-field theory doped Hubbard model, whereas in
our quasiparticle-GW calculation this band arises due to
nanoscale phase separation30. Nevertheless, they found
that the bottleneck occurs well inside the pseudogap
phase, where the near-FS band starts to become co-
herent. This is consistent with the transition in the
Main text Fig. 13(b); note in particular that the bot-
tleneck (red dot in the Main text Fig. 9) falls close to
the coherent-incoherent transition (pink shaded region
in Fig. 9 of the Main text). Ref. 31 also finds that strong
bosonic fluctuations over a ‘quasidegenerate distribution
of 2pF ordering wave vectors’ drives the pseudogap, al-
though they find it to be predominantly in the charge
sector, forming a ‘resonant Peierls excitonic state’.
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