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Supplemental methods 
 

Detecting gene signature activation in breast cancer in an absolute, 

single patient manner 

Paquet ER1,2,3*, Lesurf R1,2,3*, Tofigh A1-4, Dumeaux V1, and Hallett MT1-4 

 
Linear ordering of patients  
 
Our approach is to map samples to a linear ordering based on expression of 

the selected features within a given signature. This is in contrast to more 

generalized approaches that map samples to tree metrics such as hierarchical 

clustering. The intuition for this restriction to a linear ordering is that the 

activity of many individual processes is well modeled by a simple continuous 

score (eg. activity ranging from 0 to 1). Several distinct algorithmic and 

statistical approaches to linear orders are possible but we use here a simple 

ranked-based method described as follows.  

 

For a given gene expression  with  genes and  samples, let  be 

the observed expression of gene  in sample . For a signature , let  be 

the subset of genes in  that belong to the positive (overexpressed) partition, 

and let  be those that belong to the negative partition. For a signature  and 

dataset , we define the corresponding rank matrix  as  

 

 

For a sample  in , we define the rank statistic  as the sum of the ranks 

in :  
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The linear order  of the samples based on the genes in  is the order 

induced by . We use  to denote the rank of a patient in this ordering:  

 

When necessary, we will use subscripts to make explicit the dataset  and 

signature  and will refer to the above entities as: , , , .  

Region of Independence  

For a signature  and dataset , we are interested in identifying those 

patients that have either notably low or high activity of the process 

represented by the signature . The samples with the lowest ranks represent 

samples that exhibit the least activity, while those with the highest ranks 

represent samples with the highest activity. Our goal is to identify values for  

and ,  so that samples with rank ≤  represent patients with a 

significant decrease in the activity represented by the signature  and patients 

with rank ≥  represent a significant increase in activity. We do this by means 

of a random sampling procedure, described below, that examines the strength 

of correlation between pairs of genes in  along the patient ordering induced 

by . 

 

With respect to a signature , we can distinguish three extreme types of 

samples:  
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1. Samples whose expression of genes in  are positively correlated and 

greater than average, while the reverse is true for the expression of 

genes in . These samples will have high rank values .  

2. Samples whose expression of genes in  are independent and do not 

exhibit the correlation structure indicated by the partition of  into  

and .  

3. Samples whose expression of genes in S+ are positively correlated 

and lower than average, while the reverse is true for the expression of 

genes in . These samples will have low rank values in .  

 

We propose the following random sampling procedure for partitioning the 

samples into three parts corresponding to the above three types. We first 

extend the rank matrix  with a new column n + 1 with values drawn 

independently from a uniform distribution:  

 

R(g, n + 1) ∼ U (0, n + 1), g ∈ S. 

 

Let  be the rank matrix obtained by reranking the rows in the extended  

and let ρ′ and r′ be defined as before, but computed based on  instead of : 
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where p = 1...n + 1. The rank r′(n + 1) corresponds to the rank of a new 

sample with independent gene expression values. We perform the above 

random sampling procedure many times to obtain a distribution of ranks from 

r′(n+1) and define L and H as L = a − 1 and H = b, where a and b are the α/2 

and 1 − α/2 percentiles of the distribution of the ranks. Together, L and H 

define what we call the (1 − α)-region of independence, or ROI1−α. Unless 

stated otherwise, we use a sample size of 10000 and α = 0.05.  

 

Missing values  

A recurring feature of gene expression experiments is missing values. If only 

a relatively small number of genes in a signature have missing values, one 

solution is to simply remove such genes from the analysis. When this is 

infeasible or otherwise undesirable, we use an alternative version of our rank 

statistic based on normalized ranks as follows. We define the rank matrix for a 

signature  as  

 

where Pg is the set of samples for which D(p, g) is not missing. The rank 

statistic ρ will now be the average of the normalized ranks in :  
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Finally, the rank of each patient in D with respect to  is defined just as 

before: 

 

 

Synthetic dataset generation 

The generation of a synthetic dataset to test the performance of the ROI can 

be defined as a function of five parameters: 1) k : the number of genes in a 

gene signature 2) n : the number of samples in the dataset 3) the fraction of 

low (fl) and high (fh) patients 4) ι : the fraction of informative genes in 

signature, and 5) µ: the gene signature effective signal. The first step consists 

in defining a matrix M[gi,pj] where gi corresponds to gene i and pj corresponds 

to sample j. The size of this matrix is controlled by the parameters n and k. 

We initialize this matrix by sampling values from a normal N(0,1) distribution. 

The second step necessitate the definition of two subgroups of patients Slow 

and Shigh that will correspond to indices of patients assigned to the low and 

high activation: 

Slow = [1 ... (fl*n)] 

Shigh = [(n - fh*n) ... n]. 

We also need to define a list of indices for the informative genes Gcons: 

Gcons = [1 ... (k*)]. 

Once we have the informative list of genes Gcons and the list of low (Slow) and 

high (Shigh) samples we can impute the final gene signature signal to matrix M 

like this: 

M[Gcons,Slow] ~ N(-µ,1) 

M[Gcons,Shigh] ~ N(µ,1) 
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The matrix M is now ready to be utilized to test the ROI95 approach by testing 

every combinations of the five pairs of parameters and generating 20 different 

random dataset per combinations of parameters to get precise estimate of the 

ROI95 performance using a given set of parameters. When a parameter is not 

one of the two that are varied in a particular experiment, the default values 

listed in Supplementary Table S2 are used. We measure the agreement 

between the ROI95 and the ground truth low, independent and high 

assignments in the synthetic dataset using the average agreements for the 

low, independent and high assignments obtained from the ROI95. Briefly, 

suppose Al corresponds to the percentage of patients assigned low by the 

ROI95 that are also assigned low in the synthetic dataset, Ah and AI 

correspond to the same definition except for the ROI95 assigned high and 

independent patients. The metric we used to assess the overall agreement of 

the ROI approach is: 

(Al + AI + Ah)/3 

This metric has the advantage of giving equal weights to the three classes of 

patients. We also tested the significance of the agreement and marked it 

using asterisks in Additional file 2: Figure S2 and S3 using the Cohen’s kappa 

statistics implemented in the “fmsb” R package. 

 

The ROIq method is able to identify samples with either low or high 

activation 

To test the robustness of this new approach for constructing a suitable 

learning set, we used a large panel of synthetic datasets (~N=40,000) that 

covered the range of parameter values that the ROIq would be confronted 
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when presented with real experimental data. For example, in our synthetic 

datasets we can control the percentages and identity of the low, independent 

and high patients, allow us to mimic the percentages observed in the real 

experimental data used in the ROIq approach (Additional file 2: Figure S2A). 

 

Repeated permutation testing was used with six central parameters. 

The number of samples in the dataset (n) was varied in our simulations to 

mimic the fact that the range in size of breast cancer datasets varies (see for 

example Table 1 in the main text). Since signatures come from many different 

sources and cover a diverse range of biologies, we varied the number of 

genes of the signature (k). In any given dataset, we would expect that there is 

a natural variation in the number of samples that have high activation, low 

activation or independence with respect to any given biological process. To 

investigate this, differences in the size of the low, high and independent 

regions f=(fl, fi, fh) were explored (Supplementary Table S2 in this document). 

We and others have observed that some genes in almost any given signature, 

and in any given dataset, appear uninformative(1,2). This may be expected 

given that such signatures were likely learnt on a different platform, perhaps 

via different experimental systems (eg. mouse models, cell lines), and within a 

range of dataset sizes with varied clinico-pathological attributes. To 

investigate this, we considered a parameter (ι) that controls the fraction of 

genes in a signature that are informative; that is, the genes show consistent 

differential expression in either the low, independent or high partitions. 

(Additional file 2: Figure S2A and Supplementary Table S2 in this document). 

We assume that the expression of informative genes in the signature are 
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distributed according to N(µ, 1) and N(-µ,1) for samples in the high and low 

class respectively. The variable allows us a simple way to adjust the effect 

size (Additional file 2: Figure S2A; Supplementary Table S2 in this document). 

The distribution of expression for all genes in the signature for samples within 

the ROI are distributed according to N(0,1). This distribution is also used for 

all non-informative genes from samples within the low and high classes. In 

total, the system is defined by five parameters: n, k, f, ι, µ. 

 

Multiple synthetic datasets (n=20) were generated after varying exactly two 

(of five) parameters simultaneously (Supplementary Table S2 in this 

document). The ROI95 method was then applied to each dataset, and the 

resultant low, independent and high partition was compared to the artificially 

synthesized ground truth (Additional file 2: Figure S2B-E and S3A-F). For a 

large number of configurations, we observed significant agreements between 

the estimated ROI95 and the synthetic ground truth. In Additional file 2: Figure 

S2B, when the fraction of informative genes was at least 0.7 and the mean of 

the effect at only 0.7 (variance 1), 95% of the low, independent, high partitions 

are retrieved. In Additional file 2: Figure S2C, focusing again on samples that 

were greater than 0.7 as the fraction of informative genes, the ROI95 method 

recuperates over 90% of the sample partition when the overall size of the 

signature is greater than 70 genes. We note that 3946 of the signatures in our 

compendium used here have > 70 genes. We observe a large range of 

behaviors when the frequencies f = (fl, fi, fr) are varied (Additional file 2: Figure 

S2D). If we focus on trials that were at least 0.7 informative (ι), we observe 

that the performance of the method decreases as the size of the 
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independence region (fi) decreases (ie. the samples are more evenly spread 

across all three partitions). This is likely due to the fact that the ROI95 method 

requires a dataset with enough samples in the low and high partitions. When 

there are too few, the permutation testing fails to accurately define the left and 

right boundaries of the independent region. The bottom of Additional file 2: 

Figure S2D, highlighted in blue, presents configurations with different 

percentages of low and high patients. We observe that the ROI has slightly 

better agreements when the fraction of low and high samples are 

approximately equal (bottom Additional file 2: Figure S2D). Surprisingly, the 

number of samples n in the dataset does not have a substantial effect on 

performance, and this is especially true for dataset sizes observed in the 

literature where n most exceeds 100 (Additional file 2: Figure S2E and Table 

1 in the main text). Overall, these analyses suggest that the ROI95 approach 

can faithfully recapitulate the low, independent and high partitions over a large 

range of biologically plausible parameters (see also Additional file 2: Figure 

S3A-F). 
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Supplementary Table S2. Parameters used in the evaluation of the region of 

independence (ROI95) approach. In any experiment, at most two parameters 

are perturbed simultaneously. Default values for non-perturbed parameters 

are denoted in brackets. 

(1) Number of 
genes in 
signature (k) 
[50] 

(2) Number of 
samples n 
[200] 

(3) Fraction 
(low,independ
ent,high) fl 
fh[0.1,0.8,0.1] 

(4) Fraction 
informative ι 
[.8] 

(5) µ 
[.5] 

10 10 0.05,0.9,0.05 0.1 0.05 

20 20 0.1,0.8,0.1 0.2 0.1 

30 30 0.2,0.6,0.2 0.3 0.2 

40 40 0.3,0.4,0.3 0.4 0.3 

50 50 0.4,0.2,0.4 0.5 0.4 

60 60 0.45,0.1,0.45 0.6 0.5 

70 70 0.05,0.45,0.5 0.7 0.6 

80 80 0.1,0.45,0.45 0.8 0.7 

90 90 0.2,0.4,0.4 0.9 0.8 

100 100 0.3,0.35,0.35 1 0.9 

200 150 0.4,0.3,0.3  1 

300 200 0.5,0.25,0.25  1.5 

500 250 0.6,0.2,0.2  2 

1000 300 0.7,0.15,0.15   

 350 0.8,0.1,0.1   

 400 0.9,0.05,0.05   

 450    

 500    
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