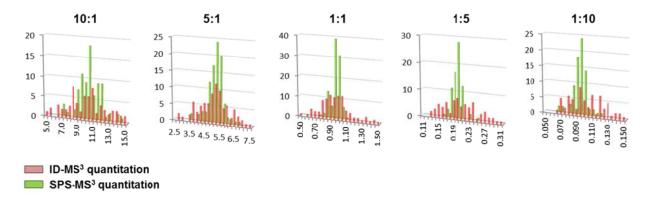
Supporting Information for Publication:

Developing a Multiplexed Quantitative Cross-linking Mass Spectrometry Platform for Comparative Structural Analysis of Protein Complexes

Clinton Yu¹, Alexander Huszagh¹, Rosa Viner², Eric J. Novitsky³, Scott D. Rychnovsky³, Lan Huang¹

¹Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
²Thermo Fisher, 355 River Oaks Parkway, San Jose, CA 95134
³Department of Chemistry, University of California, Irvine, Irvine, CA 92697


*Correspondence should be addressed to:

Dr. Lan Huang (lanhuang@uci.edu) Medical Science I, D233 University of California, Irvine Irvine, CA 92697-4560 Phone: (949) 824-8548 Fax: (949) 824-8540

TABLE OF CONTENTS

- 1. Supplemental Figure 1
- 2. Supplemental Table 1

SUPPLEMENTAL FIGURES

Figure S-1. Distribution of raw cross-link quantitative ratios across five input mixings using ID-SPS-MS3. Reporter ion ratios for TMT2-126:TMT2-127 as determined by ID-MS³ (red) and SPS-MS³ (green). For each mixing, quantitative ratios derived from SPS-MS³ acquisitions clustered more tightly around average values than those derived from ID-MS³ acquisitions. As a result, there was a corresponding decrease in standard deviation observed from MultiNotch acquisitions.

XL Residue 1	XL Residue 2	ID-MS ³	$ID-MS^3 + SPS-MS^3$
К6	K28	Х	Х
K6	K40	Х	Х
K6	K54	Х	
K6	K87	Х	Х
K6	K88	Х	Х
K6	K89	Х	Х
K6	K100	Х	Х
K6	K101	Х	Х
K8	K14	Х	
K8	K26	Х	Х
K8	K28	Х	Х
K8	K40	Х	Х
K8	K54	Х	
K8	K73	Х	
K8	K88	Х	
K8	K89	Х	
K8	K100	Х	Х
K8	K101	Х	Х
К9	K26		Х
К9	K28	Х	Х
К9	K40	Х	Х
К9	K54	Х	
K9	K73	Х	
K9	K87	Х	Х
K9	K88	Х	Х
К9	K89	Х	Х
К9	K100	Х	Х
К9	K101		Х
K14	K40	Х	
K26	K26	Х	Х
K26	K28	Х	Х
K26	K40	Х	Х
K26	K54	Х	Х
K26	K73	Х	Х
K26	K80	Х	
K26	K88	Х	Х
K26	K89	Х	Х

Table S-1. List of the Unique Cytochrome c K-K linkages Identified Using Different Acquisition Methods.

K26	K100	X	Х
K28	K26	Х	Х
K28	K40	Х	Х
K28	K54	Х	Х
K28	K88		Х
K28	K89	Х	Х
K28	K100	Х	Х
K40	K40	Х	Х
K40	K54	Х	Х
K40	K56	Х	Х
K40	K73	Х	Х
K40	K74	Х	Х
K40	K80	X	Х
K40	K87	Х	Х
K40	K88	Х	Х
K40	K89	X	Х
K40	K100	X	Х
K40	K101	Х	Х
K54	K54	Х	Х
K54	K73	Х	Х
K54	K74	Х	Х
K54	K80	Х	Х
K54	K87	Х	Х
K54	K88	Х	Х
K54	K89	Х	Х
K54	K100	Х	Х
K56	K74	Х	Х
K56	K88	Х	
K73	K74	Х	Х
K73	K80	Х	Х
K73	K87	Х	Х
K73	K88	Х	Х
K73	K89	Х	Х
K73	K100	Х	
K74	K80		Х
K74	K87	Х	Х
K74	K88	Х	Х
K74	K89	Х	Х
K74	K100	Х	Х
K80	K89	Х	Х
K80	K100	Х	
K87	K89	Х	Х
K87	K100	Х	Х

K88	K100	Х	Х
K89	K100	Х	Х
K100	K100	Х	Х