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method S1. Additional details for geospatial analyses. 

 

Data sources  

 

Catchment and lake delineation 

We obtained digital elevation models (DEMs) from two sources that allowed us to delineate 

catchments.  For each lake, DEMs were obtained as 1 arc-second × 1 arc-second pixel 

resolution (approximately 30 m) tiles from NASA's Shuttle Radar Topography Mission 

(SRTM) (65, 66).  These SRTM tiles were retrieved from USGS EarthExplorer, courtesy of 

the NASA EOSDIS Land Processes Distributed Active Archive Center, USGS/Earth 

Resources Observation and Science Center, Sioux Falls, South Dakota, 

earthexplorer.usgs.com.  For the 9 Swedish lakes, no SRTM tiles were available so we 

obtained tiles from EU-DEM, a 1 arc-second × 1 arc-second fusion of SRTM and the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM, 

produced using Copernicus data (67).   

 

Several data sources were used for obtaining lake boundaries. Most boundaries (n = 103) 

were obtained by selecting polygons from OpenStreetMap data in QGIS 2.8.2 (68).  Due to 

poor quality OpenStreetMap data for lakes within Sudbury and Dorset, Ontario (n = 11), we 

extracted those boundaries from The North American Atlas Lakes and Rivers (69).  Similarly, 

we used lake boundaries delineated courtesy of the Malcolm Knapp Research Forest for 

British Columbia, Canada lakes (n = 7).  An additional lack of OpenStreetMap data for 26 

lakes, led us to digitize lake boundaries manually using the OpenLayers plugin 

implementation of Google Maps/Bing Aerial satellite imagery in QGIS.  

 

Catchment characteristics 

We obtained estimates of land cover from two sources both at a 250 m pixel resolution.  For 

North America, we obtained the ‘2005 North American Land Cover at 250 m spatial 

resolution’ product of the North American Land Change Monitoring System (70).  For 

Europe, we obtained the Corine Land Cover 2006 image version 17 (71).  Land cover 

classification schemes differed slightly so we aggregated categories to the lowest taxonomy 

possible (tables S3 and S4).  

 

We obtained estimates of vegetation density at a 250 m resolution by extracting the 

Normalized Difference Vegetation Index (NDVI) from Moderate-Resolution Imaging 

Spectroradiometer MOD13Q1 tiles (72).  All tiles were accessed for a given sampling year, 

generally two tiles per month, when possible (dataset date ranges: 2001 – 2014).  Tiles were 

retrieved using the packages MODIS v0.10-23/r490 and rgdal v0.9-2 in R v3.1. 

 



We averaged estimates of soil organic carbon (fine earth fraction <2mm) at 0-5 and 5-15 cm 

depths for 1,000 m resolution pixels generated by the ISRIC – World Soil ‘SoilGrids1km’ 

database (73, 74).  The reported cross-validation explanatory power of the predictions was 

29% (73). 

 

Finally, we extracted climatic data at a 1,000 m resolution from the WorldClim database (75). 

Values are averages between 1950 and 2000 based on spatial interpolation amongst 24,542 

weather stations (for mean temperatures). 

 

Catchment delineation 

We defined a catchment as the area that drained into a focal lake.  This first required 

estimating flow direction using the D8 algorithm and accumulation grids on each DEM from 

the SRTM or EU-DEM using the 'Breached Depressions' algorithm in WhiteBox Geospatial 

Analysis Tools v3.2.2 (76).  We then used the ‘Watershed’ algorithm to determine pixels that 

contributed to each lake based on the flow direction grid.  The entire lake shape was treated 

as a ‘pour point’ by converting polygons to gridded representations fit to the DEMs.  A pour 

point is a pixel, or in this case, a set of pixels into which all pixels accumulate based on the 

flow direction algorithm.  By treating an entire lake as the pour point, we allowed for 

multiple inlets.  This also accounted for the fact that SRTM 1 arc-second data comes pre-

conditioned such that vertical height is flattened across the extent of waterbodies.  

Sometimes, this meant that the extent of a waterbody in SRTM 1 arc-second data was over- 

or under-estimated compared to our lake boundaries causing drainage to be localized and 

unrepresentative of known catchment boundaries.  We found that applying a buffer of 

0.00025° (ca. 28 m at equator) to each lake was necessary to reduce this effect. 

 

Landscape characterization 

We summarized lake and catchment areas using an equal area world projection that ensured 

these were comparable across the entire dataset (Eckert IV, EPSG: 54012). 

 

For all landscape characterizations, we separated grids and polygons into North America and 

European datasets, and re-projected them to North America Albers Equal Area Conic (EPSG: 

102008) and Europe Albers Equal Area Conic (EPSG: 102008) projections.  For a given lake, 

we then summarized land cover as proportions of different categories within the catchment 

(tables S3 and S4).  We summarized vegetation density as the weighted mean of NDVI values 

within the catchment from a maximum composite of all tiles available for a given year (i.e., 

for a given pixel, the maximum value across all tiles was retained).  The weighted mean 

allowed an individual pixel’s contribution to the mean value to be proportional to the area it 

occupied within a focal catchment, thereby minimizing the effects of pixel size on summary 

statistics at polygon edges.  We similarly derived the weighted mean of soil C within 

catchments.  Using slopes and flow accumulation from each DEM, we also calculated the 



Compound Topographic Index in Whitebox (CTI = ln[accumulation / tan slope]).  CTI 

estimates the tendency for a pixel to accumulate water, i.e. soil wetness (77), and we 

summarized values across pixels with a weighted mean within the catchment.  

 

Do alternative methods for catchment delineation influence geospatial characteristics? 

We tested whether differences in methodology and DEM resolution influenced our catchment 

delineations and their extracted characteristics.  We first compared our catchment delineation 

(hereafter ‘aggregate catchments’) with one where we placed focal lakes in the context of 

other lakes within the region (hereafter ‘context catchments’).  To derive context catchments, 

we obtained waterbodies ≥ 496 m2 (the smallest waterbody in the dataset) from the 

OpenStreetMap multi-polygon data described above and delineated their catchments.  All 

land contributing to a given lake that did not first meet a waterbody ≥ 496 m2 was 

subsequently included in the catchment, resulting in smaller catchments than estimated from 

the aggregate approach.  By contrast, the aggregate catchments included all land contributing 

to a given lake based on the D8 algorithm in WhiteBox.  Based on flow accumulation, a 

given lake’s catchment could therefore be the accumulation of several catchments upstream. 

 

We also considered catchments delineated by the different research groups that contributed 

stable isotope data (hereafter ‘investigator catchments’).  These were delineated at various 

resolutions (2-10 m).  In total, catchments were compiled for 46 sites across British 

Columbia, Michigan, Sweden and Wisconsin, and we characterized their landscapes using 

aforementioned methods. 

 

The different approaches for delineating catchments were all relatively consistent with each 

other.  First, we found that both the aggregate (AG) and context (CO) catchments produced 

similar geospatial characteristics, except for in large flat catchments common in Sweden and 

Wisconsin.  In these regions, focal catchments were often connected upstream to other lakes 

≥ 496 m2 in size, leading to much larger estimates of catchment area using the aggregate than 

context approach (fig. S11).  Vegetation was also very similar between the two approaches to 

catchment delineation (figs. S12, S13).   

 

Second, we found that catchment area derived from individual investigators, often at higher 

spatial resolution, corresponded well with both of our aggregate (AG) and context (CO) 

delineations (fig. S14).  Both the AG and CO catchments were similarly correlated with the 

investigator values (Pearson’s correlation r = 0.76 and r = 0.80, respectively; 95% confidence 

interval for difference between correlation coefficients overlapped zero).  However, the AG 

and investigator (IN) catchments overlapped by <1 to 15% more (95% confidence intervals) 

than the IN did with the CO (paired t-test comparing mean proportion of overlapping 

polygons between AG and IN catchments with CO and IN: t45 = -2.07, p = 0.044).  In general, 

the AG-IN catchments overlapped across 55% ± 30% (mean ± SD) of pixels, as compared 



with the 47% ± 23% overlap of the CO-IN catchments (fig. S15). 

 

 

method S2. Additional details for statistical analysis. 

Isotopic mixing model 

We let the ratios of δ13C, δ15N, and δ2H in observation i of consumer j from site k measured 

by research group g in season s be described by a linear mixture of terrestrial tgks and pelagic 

pgks resources, each being a vector of length m with elements respectively corresponding to 

mean values for each of the l = 3 isotopes that were measured.  We could then sample 

isotopic ratios from a multivariate normal distribution with a mean vector μgijks and l × l 

matrix Σgijks to estimate the relative contributions of terrestrial (ϕTgijks) and pelagic (ϕPgijks) 

resources to each consumer observation 

 

μgijks = ϕTgijkstgks + ϕPgijkspgks     (S1) 

ϕTgijks + ϕPgijks = 1 

 

We propagated the uncertainty associated with tgks and pgks into Σgijks by summing the 

product of each of ϕTgijks and ϕPgijks and their respective observed variances, and adding this to 

an estimated l length vector of residual errors ε, wherein each element was sampled from a 

uniform distribution between 0 and 20.  This generated a vector of standard deviations σgijks 

that we multiplied with an estimated l × l correlation matrix Ω to derive Σgijks. 

 

For estimating δ15N ratios, we modified eqn S1 to account for progressive enrichment of δ15N 

as trophic levels increase (79) 

 

μ2[gijks] = ϕTgijkst2[gks] + ϕPgijksp2[gks] + Δj   (S2) 

 

This first required estimating the number of trophic levels that each consumer j was above 

primary producers from a normal distribution with a consumer-specific mean and universal 

SD of 0.1 (table S5).  We then estimated trophic enrichment Δj in consumer j from a normal 

distribution with mean equal to the product of τj and the mean per-trophic-level isotopic 

enrichment of N, which was 2.52 (SD = 1.46) based on data for 40 taxa (80).  The SD for the 

prior distribution of Δj propagated error in both of its coefficients and was equal to [(2.52 × 

0.1) + (τj × 1.46)]1/2. 

 

We also modified eqn S1 to account for the fact that each consumer j obtains a proportion ωj 

of δ2H from water consumed in their diet (55), which has a δ2H ratio of wgks 



μ3[gijks] = ωjwgks + (1 – ωj)(ϕTgijkst3[gks] + ϕPgijksp3[gks])   (S3) 

 

ωj was estimated from a Beta distribution to constrain values between 0 and 1 and had a 

mean equal to 1 – (1 – ωPj)
τj to allow for trophic compounding of dietary water (79).  ωPj was 

the per-trophic-level contribution of environmental water to consumer j and was derived from 

relatively controlled studies of consumer diets (table S5).  We incorporated uncertainty in 

both ωPj and τj into the prior variance of ωj using generalised equations for propagating 

normally-distributed errors (81).   

 

Structural equation model of allochthonous support 

We tested our five hypothesised drivers of allochthonous support by estimating a series of 

equations S4-S11 that described a network of presumed cause-and-effect associations (82, 

83).  The statistical basis of this network involved sampling ϕTgijks from a Beta distribution to 

constrain values between 0 and 1 and simplify to only one unknown variable in eqn S1 in 

instances where only one isotope (δ2H) was observed; as ϕPgijks = 1 – ϕTgijks.  The Beta 

distribution was given a mean λgjks and estimated SD σT that was then related to our study 

hypotheses.   

 

(i) Consumer preference hypothesis 

We tested whether consumers differed in their estimated mean levels of allochthonous 

resource use α1[j] and/or estimated response β1[j] to an increasing availability of allochthonous 

resources ξgk by allowing terrestrial resource use λgjks to vary with each consumer j 

 

logit(λgjks) = α1[j] + β1[j]ξgk + β2[j]CHLAgk + β3[j]ξgkCHLAgk + ηg + α2[s] (S4) 

 

accounting for the fact that λgjks also depends on the amount of autochthonous resources 

CHLAgk in each site k across the time period observed by research group g and measured as 

lake water chlorophyll a concentration, and the contribution of allochthonous resources 

towards terrestrial resource use may attenuate as more favourable autochthonous resources 

become available (i.e. ξgk × CHLAgk interaction).  We also accounted for variation in λgjks 

outside of the summer season by allowing the intercept to vary with strength α2[s] and simply 

due to the slightly different field methods of each research group by randomly sampling a 

value of ηg from a zero-centered normal distribution with estimated SD, analogous to treating 

research group as a ‘blocking factor’.  The logit constraint in eqn S4 ensured that the mean 

proportional use of terrestrial resources laid between 0 and 1.  Any two consumers therefore 

differed in their terrestrial resource use if the absolute 95% credible interval (CI) for their 

difference in either α1 or β1 values was >0.   



For 150 of the 559 consumer observations that lacked associated water quality data, we 

estimated a term υgk that accounted for the variation around consumer means associated with 

the summed effect of allochthonous and autochthonous resources 

 

logit(λgjks) = α1[j] + υgk + ηg + α2[s]     (S5) 

 

As all our covariates were centered to a mean of zero (see Model estimation section), we 

could impute missing values of β1[j]ξgk + β2[j]CHLAgk + β3[j]ξgkCHLAgk by sampling υgk from a 

normal distribution with estimated mean and SD.  This did however mean we could not use 

these 150 observations to test our other hypotheses, though we could estimate ϕTgijk. 

 

(ii) Seasonality hypothesis 

We tested whether terrestrial resource use increased outside of summer, which contained 

most of our observations (n = 429), by estimating α2[s] in eqns S4-S5 for each non-summer 

season.  We could not reject our hypothesis if 95% CIs were positive and excluded zero. 

 

(iii) Catchment deposition hypothesis 

We tested whether the use of allochthonous resources averaged across all consumers 

increased with the availability of those resources, and whether those resources themselves 

increased with vegetation and soil carbon and/or the delivery potential of the surrounding 

catchment.  In the first instance, each value of β1[j] in eqn S4 was estimated from a normal 

distribution with mean Β and estimated SD σΒ.  A 95% CI for Β that was positive and 

excluded zero suggested ϕTgijks increased with ξgk on average across all consumers.   

 

To test the second part of the catchment deposition hypothesis, we related ξgk to vegetation, 

soil, and geomorphological characteristics through organic carbon inputs.  Allochthonous 

resources in lake water are a sum of the proportions of dissolved (DOC) and particulate 

(POC) organic carbon that are terrestrially derived and so the expected value of ξgk was equal 

to the sum of log-transformed values of these two pools 

 

ξgk = β4DOCgk + β5POCgk     (S6) 

 

DOCgk was then related to vegetation and soils by modelling it from a lognormal distribution 

with estimated mean κgk and SD σκ.  κgk was equal to the sum of an estimated mean DOC 

concentration across lakes α3, which accounts for a consistent autochthonous contribution 

towards measured DOC, and the estimated effects of the mean vegetation density in the 

surrounding catchment NDVIgk, measured by the normalised difference vegetation index, 

mean catchment soil carbon density at a 0-15 cm depth SOILk, and log-transformed wetness 



in the surrounding catchment, measured as the mean compound topographic wetness index 

WETSk.  We also accounted for variation among sites in DOC simply due to geomorphology 

and temperature-dependent terrestrial primary production and microbial decomposition that 

stimulates DOC release (51, 84) 

 

κgk = α3 + β6NDVIgk + β7SOILk + β8WETSk + β9LPLAk + β10TEMPk (S7) 

 

where LPLAk was the log-transformed ratio of lake perimeter to area, indicating exposure to 

the surrounding catchment, and TEMPk was the long-term (1950-2000) mean daily air 

temperature during the warmest quarter of the year (75).  Previous global-scale analyses have 

shown that lake water DOC increases with both soil carbon concentrations and wetland 

coverage (51, 43), but we used WETSk in our analysis rather than wetland cover because it 

can better detect closed-canopy wetlands that are omitted from traditional vegetation 

classifications (85).  As for POCgk, it was not directly observed and so we let β5POCgk – the 

total terrestrially derived POC – equal the sum of an estimated mean value across lakes α4 

that varied with NDVI, the cube-rooted area of woody vegetation in the surrounding 

catchment (sum of broadleaf, coniferous, mixed forest, and shrubland vegetation; tables S3 

and S4) per metre shoreline WOODk, WETSk, and LPLAk.  We also let β5POCgk vary with 

TEMPk to account for less POC availability where mineralisation of larger particles is 

promoted by warmer ice-free temperatures (86) 

 

β5POCgk = α4 + β11NDVIgk + β12WOODk + β13WETSk + β14LPLAk + β15TEMPk + ζgk    (S8) 

 

α4 (i.e. the mean value) reduced to zero where all the covariates were scaled to a mean of zero 

and ζgk was normally distributed error that was sampled from an estimated SD σξ.  Positive 

95% CIs that then excluded zero for Β as well as β11, β12, β13, β14 or β4 and any of β6, β7, β8, β9 

did not allow us to reject the catchment deposition hypothesis. 

 

As the availability of allochthonous resources was a latent (i.e. unmeasured) variable, due to 

its inclusion of β5POCgk, we further defined ξgk on the scale of our observed data by letting it 

be proportional to lake water colour and total nitrogen (TN).  Both water colour and TN were 

explicitly modelled as correlated variables from a multivariate lognormal distribution with 

estimated correlation matrix, vector of SD, and vector of means γgk with respectively 

corresponding elements 

 

γ1[gk] = α5 + ξgk      (S9) 

γ2[gk] = α6[k] + β16ξgk      (S10) 



where α5 was mean water colour across lakes, α6[k] was mean TN that varied depending on 

the presence of urban land use in the surrounding catchment, and β15 was the estimated 

scaling of TN with ξgk. 

 

(iv) Favourable resources hypothesis 

Allochthonous resource use in lakes can decline as autochthonous resources that have higher 

nutritional value become more available.  We could not reject this hypothesis if the 95% CI 

for β2 or β3 in eqn S4 was negative and excluded zero. 

 

(v) Algal subtraction hypothesis 

Terrestrially derived organic matter can fertilize algal growth by supplying limiting nutrients, 

especially nitrogen, and thus strengthen the favourable resources hypothesis.  However, this 

depends on whether these terrestrial resources shade the water column and dampen algal 

growth.  We tested the strength of these two mechanisms by modelling lake water 

chlorophyll a concentrations from a lognormal distribution with an estimated SD and mean 

θgk that varied with lake water colour CLgk and total nitrogen concentrations TNgk.  The 

benefit of TNgk for algal growth will also depend on whether total phosphorus TPgk is non-

limiting and may be stronger in such cases (i.e. TNgk × TPgk interaction).  TPgk on its own 

should also account for variation in algal productivity.  We then estimated a mean 

chlorophyll a concentration across lakes α7 and let this vary with log-transformed values of 

the covariates 

 

θgk = α7 + β17CLgk + β18TNgk + β19TPgk + β20TNgkTPgk   (S11) 

 

We did not reject the subsidy hypothesis if the 95% CI for β18 was positive and excluded 

zero, whilst we did not reject the shading hypothesis if the 95% CI for β17 was negative and 

excluded zero.   

 

Model estimation 

We simultaneously fitted eqns S1-S11 to our empirical dataset by simulating four Markov 

Chains of 5,000 iterations with a burn-in of 4,000 runs.  All regression coefficients (i.e. α, β, 

Β) and SDs (i.e. σ) were assigned uninformative and weakly informative normal priors on the 

scale of our observations, either ~N(0,10) or ~N(0,1) respectively (87).  Priors for correlation 

matrices were sampled from LKJ distributions that placed almost uniform support over the 

estimated correlations (shape parameter η = 2), with the density slightly more concentrated 

around the identity matrix (88).  Model code is given in supplementary data file S2. 

 



Convergence of MCMC chains was assessed by visually inspecting chain traces and 

calculating the potential scale reduction factor psrf for the posterior distribution of each 

parameter.  psrf predicts the relative change in a parameter’s CIs if models are run infinitely 

longer.  All values were <1.1, which is considered acceptable (87).  We also ensured that the 

effective number of simulation draws neff, a measure of independence amongst the subset of 

simulations, always exceeded 800 (87).   

 

We used a graphical modelling approach to evaluate the SEM (89).  This was relatively 

straightforward given that we had only one theoretical construct in our model and so there 

was no need to ensure that different latent variables measured different processes.  There was 

also only one potentially missing linkage from the latent variable to a modelled observed 

variable (chlorophyll a), but this had no real support (Spearman’s rank correlation between 

residuals for chlorophyll a and ξgk: ρ = 0.05; p = 0.633).  Finally, we graphically inspected 

associations between observed and predicted values, and between model predictions and 

residuals, for each modelled variable to ensure consistency between our causal mechanism 

and measured data.  Overall, the graphical modelling approach showed strong data-model 

consistency, supporting the use of our SEM for inference of causal pathways. 

 

 

method S3. Validation and sensitivity of the Bayesian mixing model. 

 

Data simulation 

We generated new observations of φTijkl for each observation i of consumer j from site k at 

time l given known effects of water chemistry and catchment characteristics.  This involved 

parametrising the Beta described in methods S2 with the effective sample size and consumer-

specific values of mean φTijkl and effects of water chemistry and catchment characteristics 

estimated in the main text.  Given that the availability of allochthonous resources ξkl was also 

unmeasured, we generated new values for this parameter by sampling from a normal 

distribution that assumed a 1:1 scaling with the mean association between water colour and 

predictors of organic carbon, as described by eqns S6 and S9 in methods S2.  Altering this 

1:1 assumption in data generation but not the modelling by introducing random noise into the 

true effects did not influence parameter recovery (fig. S16).  Finally, we also simulated new 

trophic positions (τ), contributions of environmental water to consumer isotope ratios (ω), 

and trophic enrichment of N (Δj) from the distributions described in table S5.  Critically, 

exact values for all the parameters are unimportant as we later vary them and test how this 

changes the ability of the Bayesian mixing model (BMM) to recover known values.    

 

 

 



How much does uncertainty in each variance parameter influence model fit?   

We tested how well the BMM recovered ‘true’ values of φT and focal effects with 95% CIs 

that excluded zero in the main text as each of the following sources of variation changed: 

 residual error associated with φT (σres) 

 residual error in trophic position of each consumer (στ) 

 residual error in per-trophic-level contribution of dietary water to δ2H (σω) 

 residual error associated with individual consumer isotope observations (σO) 

 residual error associated with environmental water samples (σW) 

 residual error associated with terrestrial end member observations (σT) 

 residual error associated with pelagic end member observations (σP) 

For each source, we varied the associated SD along 10 equally-spaced intervals from 0–300% 

of its original value.  We then simulated 10 datasets at each interval by randomly sampling 

new values for φT, ξkl, Δj, τ, and ω and used these to sample new isotope values for each 

consumer observation in our empirical dataset from the distributions described by eqns S1-S3 

in methods S2.  The distributions were parameterised with empirically-observed means and 

variances of environmental water and end members, propagating their associated uncertainty.  

Across the 10 simulations in each interval, we fitted the BMM with the original means and 

variances of environmental water and end members and calculated relative bias between 

predicted and observed values of φT and all of the following effects in the structural equation 

model: allochthonous resources on φT, DOC on ξkl, and NDVI and ratio of lake perimeter to 

lake area on POC.  We did not test how variation in the residual error associated with Δj 

influenced our predictions as this estimate was already reasonably large (58% of mean) and 

derived from a large dataset for which there was little reason to expect that it was estimated 

with error (see methods S2).   

 

We found that bias in model predictors and φT were relatively invariant to increasing 

uncertainty in the seven variance parameters (fig. S2).  All simulations were within the range 

of values observed when empirical variances were set at 100% of their original σ’s (i.e. 

overlap between bars and grey polygon).  The primary exception was that we found greater 

variability in bias as residual error in individual consumer observations increased to relatively 

high levels (>200%; pink lines in figs. S2b,d). 

 

How much does bias in prior means influence model fit?   

φT may be estimated biasedly if the relatively informative prior distributions that we set for 

the dietary parameters of trophic position (τ) and per-trophic-level contribution of 

environmental water to consumer isotope ratios (ωP) in table S5 differed from the ‘true’ 

values of these parameters that generated the empirical data.  We therefore tested the 

sensitivity of φT to this potential source of error by varying each of τ and ωP along 10 equally-

spaced intervals from 20–200% of their original values and simulating 10 datasets at each 

interval as described in the preceding section.  Prior SDs remained unchanged (i.e. equal to 

table S5). 



We found that prior expectations for τ or ωP that considerably deviated from the ‘true’ values 

used to generate isotopic ratios of consumers estimated both the effects of covariates on φT 

and φT itself as well as when the priors were accurate (i.e. 100% of μ, fig. S3).  These results 

clearly show that misinformed priors for τ or ωP make little difference in the empirical dataset 

even where the misinformation is large, and this is unlikely given our data sources.  

 

Do missing end members bias allochthony estimates?   

We simulated data as in previous analyses but allowed methane oxidizing bacteria (MOB) to 

contribute towards isotopic ratios.  We considered scenarios in which consumer use of MOB 

(φB) was either 10, 20, or 40%.  For the remaining proportion of diet, we retained the mean 

ratio of terrestrial to phytoplankton resource use observed empirically in the main text (see 

fig. 2), i.e. φT = (1 – φB) × 37%, allowing for consumer-specific variation (fig. 5 in main text).  

MOB had mean (SD) values for δ2H, δ13C, and δ15N of -200 (15), -60 (10), and 0 (1), 

respectively (after refs. 16, 26, 90), and we randomly sampled site × time observations from 

these distributions for each empirical observation.  We then tested how φT and its associated 

predictors responded to omitting MOB from the BMM despite MOB contributing to the data 

generating process. 

 

We found that end members that were unaccounted for in the BMM did not strongly bias 

estimation of the associations between φT and its predictor variables, though φT itself was 

biased when the omitted end members contributed substantially to consumer biomass (fig. 

S4).  The strongest bias in a predictor variable was for the effect of allochthonous resources 

on φT (pink lines in figs. S4b,f,j).  However, this was still relatively minor, i.e. median values 

underestimated by 11-21%.  As this bias was negative, it also suggested that the significant 

effect detected for this parameter in the empirical dataset (i.e. 95% CIs positive and excluding 

zero in figs. 1b, 3 in the main text) could even be stronger where MOB were utilised as a 

resource.  We also recovered the φT used to simulate the data with bias >30% only where φB 

≥20% (fig. S4).  φT was increasingly overestimated as φB increased (figs. S4c,g,k), leading to 

greater bias between predicted and ‘true’ observations, especially where φT < 0.40 (figs. 

S4d,h,l).  Overall, the fact that simulations with φMOB = 0% resembled those when φMOB = 

10% much more than when φMOB = 20 or 40% (fig. 1 in main text vs fig. S4) suggests that our 

empirical dataset had a minimal MOB contribution.   

 

Are conclusions robust to alternative indicators of terrestrial organic matter 

deposition?   

We reached similar conclusions to the main text when we considered different ways to 

estimate terrestrial organic matter (t-OM) deposition.  We repeated the analyses described in 

the main text and methods S2, but replaced the ratio of lake perimeter (LP) to lake area (LA) 

with the ratio of catchment area (CA) to LA.  Larger CA:LA ratios have been positively 

associated with organic carbon loading in regional studies (37, 91-92), though not across 

different bioclimatic zones where variation in topography, climate, and hydrology may be 



more important (43, 51).  CA:LA ratios may also have little influence over t-OM export 

where values are greater than between 6 to 10 (91), corresponding with 71 and 57% of our 

study lakes, respectively. Consistent with this past work, we found that the availability of 

allochthonous resources influenced φT and that we could not reject the catchment deposition 

hypothesis when terrestrially derived POC considered shoreline influence rather than CA (fig. 

S17a).  We also rejected support for the catchment deposition hypothesis when woody 

vegetation in surrounding catchments was expressed in absolute area and not per unit 

shoreline and when NDVI was expressed per CA (figs. S17b-d).  We expressly avoided 

selecting the model reported in the main text from these alternative parameterisations simply 

on the basis of goodness of fit because we did not want to dredge the data for patterns without 

strong causal hypotheses.  Collectively, our findings suggested that the promotion of 

allochthony by terrestrial resources depended upon POC and that processes in the immediate 

vicinity of the shoreline were more important than across the whole of the catchment in 

enhancing this carbon pool, consistent with past work (43, 93–94). 

  



 

fig. S1. End members used in mixing model and corresponding with each of the 559 

consumer observations. Isotopes were measured either for terrestrial resources (green 

symbols) or pelagic phytoplankton (dark blue symbols), and not all isotopes were measured 

for each observation.  For n = 226 observations of δ2H, pelagic phytoplankton values were 

estimated using the discrimination between 2H and 1H during photosynthesis (light blue 

points).  For n = 152 observations of δ13C and δ15N, pelagic phytoplankton values were 

estimated from isotopic measurements of lake POM (light blue points).  This approach first 

involved finding the proportion of POM derived from terrestrial and pelagic resources given 

known δ2H, itself estimated for phytoplankton from the difference between measured 

environmental water and dietary discrimination of the heavier isotope.  δ13C and δ15N of 

phytoplankton were then solved algebraically in a two-resource mixing model given known 

proportions and isotope values of POM and the terrestrial resource.   

  



 

fig. S2. Sensitivity of Bayesian mixing model to changes in 7 SDs. For each of 10 potential 

changes in a given SD, we fitted the BMM to 10 simulated datasets and calculated the mean 

percent bias (±95% CI) between observed and predicted (a,b) effects of covariates in our 

structural equation model and (c,d) φT.  For (a,b), error in each simulation was calculated 

across all of the following effects of interest: allochthonous resources on φT, DOC on ξkl, and 

NDVI and ratio of lake perimeter to lake area on POC.  We classified parameters as those 

associated with (a,c) σres (blue), dietary water σω (dark green) and trophic position στ (light 

green); and (b,d) source and consumer isotope values: σO (pink); σW (blue); σT (light green); 

σP (dark green).  Grey box is 95% CI for 100 simulations where no changes were made to the 

parameters (100% of original σ from fig. 1 in main text).  Zero values could not be used for 

σres, σω and στ because the associated Beta distributions would have shape parameters equal 

to ∞; for σO some error was necessary for convergence.  Points are jittered along the x-axis 

for clarity. 

  



 

fig. S3. Sensitivity of Bayesian mixing model to misinformed dietary priors. For each of 

10 potential changes in the prior mean (μ) of τ (dark green) and ωP (light green), we fitted the 

BMM to 10 simulated datasets and calculated the mean percent bias (±95% CI) between 

observed and predicted (a) effect of a catchment characteristic on levels of terrestrial resource 

use φT and (b) φT. Grey box is 95% CI for 100 simulations where no changes were made 

(100% of original μ from fig. 5 in main text).  Points are jittered along the x-axis for clarity. 

  



 

fig. S4. Model recovers known parameters despite not accounting for data sets with 

consumer use of MOB. Consumer use of MOB was set to (a-d) 10%, (e-h) 20%, or (i-l) 

40%.  Mean posterior distributions across 10 simulations of the effects of (a, e, i) DOC 

(gray), NDVI (pink), ratio of lake perimeter to area (blue), and area of woody vegetation per 

meter shoreline (green) on availability of allochthonous resources; (b, f, j) allochthonous 

resources (purple), lake chlorophyll a (red), and their interaction (orange) on terrestrial 

resource use (φT); dashed lines are known prior distributions.  (c, g, k)  Mean predicted versus 

observed (i.e. known) φT for 559 consumer observations in each of 10 simulations.  Warmer 

colours indicate greater concentration of points (total n = 5,590).  (d, h, l)  Percent bias in 

mean predicted φT values.  Darker shading indicates greater concentration of points.  Lines 

are splines fitted through observations upon one (δ2H-only, pink), two (δ13C-δ15N, green), or 

three (δ13C-δ15N-δ2H, blue) isotopes. 

  



 

fig. S5. Predicted isotope ratios versus observed isotope ratios for 559 consumer 

observations. Blue symbols are observations for which (a) δ13C, (b) δ15N, and (c) δ2H were 

all measured, while green symbols are those where only (a,b) δ13C and δ15N or (c) δ2H were 

measured.  Bayesian R2 values for δ13C, δ15N, and δ2H were 0.23, 0.54, 0.35 respectively in 

the three-isotope model, 0.18 and 0.71 for δ13C and δ15N respectively in the two-isotope 

model and 0.64 in the δ2H model.  Bayesian R2 values for all consumer × isotope 

observations in the three- and two-isotope models were 0.99 and 0.98, respectively.  

  



 

fig. S6. Prior (light gray curves) and posterior (dark gray curves) of T for each of the 

559 observations organized by consumer type. Histogram is the coefficient of variation 

(CV) calculated across all posterior distributions. 

  



 

fig. S7. Lake area distributions globally (black lines) and within our data set (blue lines). 

Global distributions were calculated either (a) from eqn 7 in ref. (50) for lakes worldwide 

>0.001 km2 or (b) from ref. (78) for lakes >0.1 km2 within the same latitudinal range as our 

study sites, i.e. 37.9-64.3°N.  We plotted the total number of lakes in log10 intervals at their 

corresponding midpoints. 

 

 

 

fig. S8. DOC distributions from 7514 worldwide lakes. Data from ref. (51) (black line) and 

113 site × date observations in our dataset (blue line).  The probability density for our dataset 

was estimated from a log-normal distribution, which was better supported than a Gamma 

distribution (ΔAIC = -10), which was used to derive the density function of Sobek et al. (51, 

eqn 1). 

 



 

fig. S9. Chlorophyll a distribution from 80,012 worldwide lakes. Data from ref. (52) 

(black line) and 113 site × date observations in our dataset (blue line).  We plotted the total 

number of lakes in 5 mg/L intervals at their corresponding midpoints. 

  



 

fig. S10. Model recovers known parameters across 100 simulated data sets that span the 

range of T (that is, 0 to 1). Mean posterior distributions of the effects of: (a) DOC (gray), 

NDVI (pink), ratio of lake perimeter to area (blue), and area of woody vegetation per meter 

shoreline (green) on availability of allochthonous resources; (b) allochthonous resources 

(pink), lake chlorophyll a (gray), and their interaction (blue) on terrestrial resource use (φT); 

dashed lines are known prior distributions.  (c)  Mean predicted versus observed (i.e. known) 

φT for 559 consumer observations in each of 100 simulations.  Warmer colours indicate 

greater concentration of points (total n = 55,900).  (d)  Percent bias in mean predicted φT 

values.  Darker shading indicates greater concentration of points.  Lines are splines fitted 

through observations upon one (δ2H-only, pink), two (δ13C-δ15N, green), or three (δ13C-δ15N-

δ2H, blue) isotopes.  



 

fig. S11. Catchment area estimated for 147 lakes in our isotope data set. Areas were 

estimated using either the aggregate (AG) or context (CO) catchment approach. 

 

 

 

fig. S12. Proportion of each catchment covered with one of four woody vegetation types. 

Values estimated using either the aggregate (AG) or context (CO) approach.  n = 147 lakes. 
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fig. S13. Vegetation, geomorphology, and soil characteristics. Catchments delineated with 

either the aggregate (AG) or context (CO) approach.  n = 147 lakes. 

 

 

 

 

fig. S14. Catchment area for 46 lakes. Areas estimated using data provided by different 

investigators contributing stable isotope data.  We compared the investigator estimates (IN) to 

those from the (a) aggregate (AG) and (b) context (CO) catchment approach.  
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fig. S15. Percent overlap in catchments of each of the 46 lakes delineated with three 

different approaches. Catchments that we compared were the (a) aggregate (AG) and 

investigator (IN), (b) context (CO) and IN, and (c) AG and CO approaches. 

  



 

fig. S16. Model recovers known parameters despite random noise around the mean 

effects of covariates predicting the availability of allochthonous resources ξkl. Mean 

posterior distributions across 100 simulations of the effects of (a) DOC (gray), NDVI (pink), 

ratio of lake perimeter to area (blue), and area of woody vegetation per meter shoreline 

(green) on availability of allochthonous resources; (b) allochthonous resources (purple), lake 

chlorophyll a (red), and their interaction (orange) on terrestrial resource use (φT); dashed 

lines are known prior distributions.  (c)  Mean predicted versus observed (i.e. known) φT for 

559 consumer observations in each of 100 simulations.  Warmer colours indicate greater 

concentration of points (total n = 55,900).  (d)  Percent bias in mean predicted φT values.  

Darker shading indicates greater concentration of points and lines are splines fitted through 

observations upon one (δ2H-only, pink), two (δ13C-δ15N, green), or three (δ13C-δ15N-δ2H, 

blue) isotopes. 

  



 

fig. S17. Alternate ways of modeling t-OM deposition. Points are mean ± 95% CIs for 

estimated effects of allochthonous resources (AR), chlorophyll a (Chl), geomorphology 

(Geo), woody vegetation in the surrounding catchment per meter shoreline (Wood), soil 

carbon (Soil), and NDVI on terrestrial resource support (ϕT), terrestrially derived POC, or 

DOC; arrows indicate effect direction.  Geo was expressed as either the ratio of lake 

perimeter (LP) to lake area (LA), ratio of catchment area (CA) to LA, or simply as LA.  

Models were fitted as in the main text but replaced: (a) LP:LA with CA:LA, and (b) Wood 

with a measure that was not expressed relative to LP.  We also expressed (c) Soil and (d) 

NDVI per LA and/or CA.  To avoid multicollinearity with variables that already accounted 

for LA and CA, such as Wood and Geo, we included LA on its own in the model described 

by eqns S7 and S8 in methods S2 and allowed its effect to vary with either Soil or NDVI (i.e. 

statistical interaction).  This parameterisation was analogous with expressing Soil and NDVI 

per unit lake area.  The statistical interaction implied, for example in (c), that larger lakes had 

less DOC but that this was attenuated as the surrounding catchment had more soil carbon. 

  



table S1. Mean and 95% CIs for model parameter estimates associated with eqs. S1 to 

S11. Bolded effects have 95% CIs that exclude zero. 

Parameter Mean 2.5% 97.5% 

Mean ϕT α1 -0.56 -1.36 0.12 

Mean DOC α3 2.03 1.92 2.12 

Mean water colour α5 0.69 0.56 0.82 

Mean TN α6 5.94 5.83 6.02 

Mean chlorophyll a α7 1.46 1.30 1.61 

Effect of spring on ϕT α2[s=1] 1.19 -0.30 3.48 

Effect of autumn on ϕT α2[s=2] 0.57 0.35 0.77 

Effect of winter on ϕT α2[s=3] 1.29 0.19 3.10 

Effect of urban land on TN α6[k=1] 0.82 0.60 1.01 

Effect of allochthonous resources on ϕT β1 0.24 0.01 0.46 

Effect of chlorophyll a on ϕT β2 -0.10 -0.25 0.02 

Effect of chlorophyll a × allochthonous resources interaction on ϕT β3 -0.10 -0.23 0.05 

Effect of DOC on allochthonous resources β4 0.69 0.53 0.83 

Effect of NDVI on DOC β6 0.13 0.02 0.25 

Effect of soil C on DOC β7 0.22 0.08 0.36 

Effect of soil wetness on DOC β8 0.22 0.09 0.34 

Effect of LP:LA on DOC β9 0.22 0.10 0.33 

Effect of air temperature on DOC β10 0.14 <0.01 0.27 

Effect of NDVI on β5POC β11 -0.02 -0.17 0.13 

Effect of woody vegetation cover on β5POC β12 0.18 0.03 0.33 

Effect of soil wetness on β5POC β13 -0.01 -0.15 0.15 

Effect of LP:LA on β5POC β14 0.50 0.36 0.66 

Effect of air temperature on β5POC β15 -0.34 -0.49 -0.19 

Effect of allochthonous resources on TN β16 0.28 0.20 0.36 

Effect of colour on chlorophyll a β17 -0.15 -0.28 -0.01 

Effect of TN on chlorophyll a β18 0.62 0.45 0.76 

Effect of TP on chlorophyll a β19 0.27 0.12 0.43 

Effect of TN × TP interaction on chlorophyll a β20 0.24 0.12 0.39 

Mean of missing water chemistry values υgk 0.23 -0.09 0.54 



SD in ϕT σT 0.04 0.02 0.06 

SD of DOC 0.55 0.48 0.64 

SD of POC 0.45 0.17 0.66 

SD of water colour 0.55 0.28 0.72 

SD of TN 0.44 0.38 0.51 

SD of chlorophyll a 0.60 0.53 0.70 

Consumer variation in mean ϕT 0.39 0.18 0.80 

Consumer variation in effect of allochthonous resources on ϕT 0.18 0.02 0.44 

Consumer variation in effect of chlorophyll a on ϕT 0.06 <0.01 0.24 

Consumer variation in effect of chlorophyll a × allochthonous 

resources interaction on ϕT 0.10 0.01 0.32 

SD of effect of research group variation on ϕT 0.85 0.49 1.56 

SD of missing water chemistry values υgk 0.09 <0.01 0.34 

SD of δ13C in three-isotope model 2.40 2.12 2.72 

SD of δ15N in three-isotope model 1.28 1.13 1.46 

SD of δ2H in three-isotope model 9.30 7.30 11.3 

SD of δ13C in two-isotope model 4.32 3.80 4.92 

SD of δ15N in two-isotope model 2.21 1.96 2.56 

SD of δ2H in one-isotope model 4.50 1.00 7.00 

Trophic position of Bosmina 0.98 0.81 1.16 

Trophic position of bulk zooplankton 1.04 0.85 1.23 

Trophic position of calanoids 1.26 1.07 1.44 

Trophic position of Chaoborus 1.98 1.80 2.19 

Trophic position of cladocera 0.87 0.70 1.06 

Trophic position of copepods 1.29 1.11 1.48 

Trophic position of cyclopoids 1.47 1.30 1.67 

Trophic position of Daphnia 0.87 0.69 1.04 

Trophic position of Eudiaptomous 1.28 1.11 1.49 

Trophic position of Holopedium 0.89 0.71 1.07 

Per-trophic-level fractionation of Bosmina 2.91 1.01 4.66 

Per-trophic-level fractionation of bulk zooplankton 4.25 3.69 4.79 

Per-trophic-level fractionation of calanoids 6.14 5.52 6.78 

Per-trophic-level fractionation of Chaoborus 7.71 7.22 8.20 



Per-trophic-level fractionation of cladocera 3.30 2.76 3.86 

Per-trophic-level fractionation of copepods 5.94 5.15 6.81 

Per-trophic-level fractionation of cyclopoids 5.98 5.31 6.75 

Per-trophic-level fractionation of Daphnia 2.86 2.17 3.47 

Per-trophic-level fractionation of Eudiaptomous 6.35 5.28 7.41 

Per-trophic-level fractionation of Holopedium 2.87 1.91 3.95 

Contribution of dietary water towards δ2H of Bosmina 0.27 0.19 0.35 

Contribution of dietary water towards δ2H of bulk zooplankton 0.13 0.09 0.17 

Contribution of dietary water towards δ2H of calanoids 0.10 0.06 0.15 

Contribution of dietary water towards δ2H of Chaoborus 0.08 0.05 0.12 

Contribution of dietary water towards δ2H of cladocera 0.16 0.11 0.21 

Contribution of dietary water towards δ2H of copepods 0.14 0.09 0.18 

Contribution of dietary water towards δ2H of cyclopoids 0.18 0.13 0.23 

Contribution of dietary water towards δ2H of Daphnia 0.16 0.11 0.21 

Contribution of dietary water towards δ2H of Eudiaptomous 0.20 0.09 0.35 

Contribution of dietary water towards δ2H of Holopedium 0.17 0.12 0.23 

Correlation between colour and TN 0.46 0.15 0.67 

Correlation between δ13C and δ15N in three-isotope model -0.26 -0.39 -0.10 

Correlation between δ13C and δ2H in three-isotope model 0.30 0.13 0.43 

Correlation between δ15N and δ2H in three-isotope model -0.02 -0.19 0.15 

Correlation between δ13C and δ15N in two-isotope model 0.19 -0.01 0.37 

  



table S2. Key symbols and abbreviations used in the text and the Supplementary 

Materials and Methods. 

Abbreviation Definition 

CA Catchment area 

CTI  Compound Topographic Index that approximates soil wetness 

g Index for research group 

i Index for individual observations 

j Index for consumer type 

k Index for study site  

LA Lake area 

LP Lake perimeter 

LPLA Ratio of LP to LA 

MOB Methane oxidising bacteria 

NDVI Normalized Difference Vegetation Index that approximates vegetation density 

s Index for season 

Soil Mean catchment soil carbon 

Temp Mean daily air temperature during warmest quarter from 1950 to 2000 

t-OM Terrestrial organic matter 

Wetness/WETS Catchment wetness measured as mean CTI 

Wood Woody vegetation in surrounding catchment per meter shoreline 

β5POC Total terrestrially derived POC 

Δ Trophic enrichment of δ15N 

ξ Availability of allochthonous resources 

σO Residual error associated with individual consumer isotope observations 

σP Residual error associated with pelagic end member observations 

σres Residual error associated with ϕT 

σT Residual error associated with terrestrial end member observations 

σW Residual error associated with environmental water samples 



στ Residual error in trophic position of each consumer 

σω Residual error in per-trophic-level contribution of dietary water to δ2H 

τ Trophic levels above primary producers 

ϕP Proportional use of pelagic resources  

ϕT Proportional use of terrestrial resources  

ω Proportion of δ2H obtained from environmental water  

ωP Per-trophic-level contribution of environmental water to consumer isotope 

ratios 



table S3. Reclassification of 2005 North America Land Cover. Classes were provided by 

the Commission for Environmental Cooperation (70), to which we then assigned a new 

classification.   

Value Class New classification 

1 Temperate or sub-polar needleleaf forest Coniferous Forest 

2 Sub-polar taiga needleleaf forest Coniferous Forest 

3 Tropical or sub-tropical broadleaf evergreen forest  Coniferous Forest 

4 Tropical or sub-tropical broadleaf deciduous forest  Deciduous Forest 

5 Temperate or sub-polar broadleaf deciduous forest  Deciduous Forest 

6 Mixed forest Mixed Forest 

7 Tropical or sub-tropical shrubland  Shrubland 

8 Temperate or sub-polar shrubland  Shrubland 

9 Tropical or sub-tropical grassland Grassland 

10 Temperate or sub-polar grassland Grassland 

11 Sub-polar or polar shrubland-lichen-moss Sparse Vegetation 

12 Sub-polar or polar grassland-lichen-moss  Sparse Vegetation 

13 Sub-polar or polar barren-lichen-moss Sparse Vegetation 

14 Wetland Wetland 

15 Cropland Cropland 

16 Barren lands Barren 

17 Urban  Urban 

18 Water  Water 

19 Snow  Snow 



table S4. Reclassification of 2006 European Land Cover. Classes (denoted by LABEL1, LABEL2, and LABEL 3, which correspond with 

increasing specificity) were provided by the European Environment Agency (71), to which we then assigned a new classification.  

Value (Original EEA  

table: GRD_CODE) 

LABEL1 LABEL2 LABEL3 New classification 

1 Artificial surfaces Urban fabric Continuous urban fabric Urban 

2 Artificial surfaces Urban fabric Discontinuous urban fabric Urban 

3 Artificial surfaces Industrial, commercial and transport units Industrial or commercial units Urban 

4 Artificial surfaces Industrial, commercial and transport units Road and rail networks and 

associated land 

Urban 

5 Artificial surfaces Industrial, commercial and transport units Port areas Urban 

6 Artificial surfaces Industrial, commercial and transport units Airports Urban 

7 Artificial surfaces Mine, dump and construction sites Mineral extraction sites Urban 

8 Artificial surfaces Mine, dump and construction sites Dump sites Urban 

9 Artificial surfaces Mine, dump and construction sites Construction sites Urban 

10 Artificial surfaces Artificial, non-agricultural vegetated 

areas 

Green urban areas Urban 

11 Artificial surfaces Artificial, non-agricultural vegetated 

areas 

Sport and leisure facilities Urban 

12 Agricultural areas Arable land Non-irrigated arable land Cropland 

13 Agricultural areas Arable land Permanently irrigated land Cropland 

14 Agricultural areas Arable land Rice fields Cropland 



15 Agricultural areas Permanent crops Vineyards Cropland 

16 Agricultural areas Permanent crops Fruit trees and berry plantations Cropland 

17 Agricultural areas Permanent crops Olive groves Cropland 

18 Agricultural areas Pastures Pastures Grassland 

19 Agricultural areas Heterogeneous agricultural areas Annual crops associated with 

permanent crops 

Cropland 

20 Agricultural areas Heterogeneous agricultural areas Complex cultivation patterns Cropland 

21 Agricultural areas Heterogeneous agricultural areas Land principally occupied by 

agriculture, with significant areas 

of natural vegetation 

Cropland 

22 Agricultural areas Heterogeneous agricultural areas Agro-forestry areas Cropland 

23 Forest and semi natural areas Forests Broad-leaved forest Deciduous Forest 

24 Forest and semi natural areas Forests Coniferous forest Coniferous Forest 

25 Forest and semi natural areas Forests Mixed forest Mixed Forest 

26 Forest and semi natural areas Scrub and/or herbaceous vegetation 

associations 

Natural grasslands Grassland 

27 Forest and semi natural areas Scrub and/or herbaceous vegetation 

associations 

Moors and heathland Shrubland 

28 Forest and semi natural areas Scrub and/or herbaceous vegetation 

associations 

Sclerophyllous vegetation Shrubland 

29 Forest and semi natural areas Scrub and/or herbaceous vegetation 

associations 

Transitional woodland-shrub Shrubland 



30 Forest and semi natural areas Open spaces with little or no vegetation Beaches, dunes, sands Barren 

31 Forest and semi natural areas Open spaces with little or no vegetation Bare rocks Barren 

32 Forest and semi natural areas Open spaces with little or no vegetation Sparsely vegetated areas Sparse Vegetation 

33 Forest and semi natural areas Open spaces with little or no vegetation Burnt areas Barren 

34 Forest and semi natural areas Open spaces with little or no vegetation Glaciers and perpetual snow Snow 

35 Wetlands Inland wetlands Inland marshes Wetland 

36 Wetlands Inland wetlands Peat bogs Wetland 

37 Wetlands Maritime wetlands Salt marshes Wetland 

38 Wetlands Maritime wetlands Salines Wetland 

39 Wetlands Maritime wetlands Intertidal flats Wetland 

40 Water bodies Inland waters Water courses Water 

41 Water bodies Inland waters Water bodies Water 

42 Water bodies Marine waters Coastal lagoons Water 

43 Water bodies Marine waters Estuaries Water 

44 Water bodies Marine waters Sea and ocean Water 

 



table S5. Consumer-specific dietary parameters. Mean trophic levels above primary 

production τ varied among consumers with a SD of 0.1 for all (7, 28).  Mean and SD of per-

trophic-level contribution of water to consumer isotope ratios ωP was derived from averaging 

multiple values in ref. (42); we used values from higher taxonomic levels where data were 

missing for specific consumers. 

Consumer Mean τ Mean ωP SD ωP 

Bosmina 1.00 0.290 0.040 

Bulk zooplankton 1.15 0.245 0.040 

Calanoida 1.25 0.160 0.050 

Chaoborus 2.00 0.135 0.045 

Cladocera 1.00 0.290 0.040 

Copepoda 1.30 0.160 0.040 

Cyclopoida 1.50 0.160 0.030 

Daphnia 1.00 0.290 0.040 

Eudiaptomus 1.25 0.160 0.050 

Holopedium 1.00 0.290 0.040 

 




