Genome-wide DNA copy number analysis in clonally expanded human ovarian cancer cells with distinct invasive/migratory capacities

Supplementary Materials

Supplementary Figure 1: Validation of the CNV data. Relative gene copy numbers in the selected regions were determined by RT-PCR with DNA from (**A**, **B**) A-H and A-L or (**C**, **D**) S-H and S-L cells. The data shown are the average values from three independent experiments \pm SEM. For (A,C), the relative gene copy numbers of A-L/S-L cells were set as 1 and those of A-H/S-H cells were normalized to these values, whereas for (B,D), the relative gene copy numbers of A-H/S-H cells were set as 1 and those of A-L/S-L cells were normalized to these values (For each relative copy number of each selected region, P < 0.05; data not shown.)

Altered in 90 (15%) of 591 cases/patients							
KLRC4	•	9%					
CLEC1A	:	9%					
KLRC2	:	9%					
ABCC9	•	10%					
KLRC3	:	9%					
OLR1	:	9%					
KCNJ8	:	10%					
MS4A2	:	1%					
CLEC7A	:	9%					
CLEC1B	:	9%					

Amplification Deep Deletion

Supplementary Figure 2: Clinical outcomes associated with the functional gene groups amplified in both A-H- and S-H-specific gains from the TCGA database. For each gene group, copy number alterations of the member genes are listed. Kaplan-Meier analysis of OS and PFS was performed with the copy number of the gene group as a categorical variable, so that the groups with unaltered and altered copy numbers could be compared. The results of a Cox proportional hazards test, with residual disease as a copredictor, are shown as *P* values. The diagram depicts the detailed number of patients and survival months with unaltered and altered copy numbers.

Genetic Alteration

Amplification Deep Deletion

Supplementary Figure 3: Clinical outcomes associated with the functional gene groups amplified in both A-H- and S-H-specific gains from the TCGA database. For each gene group, copy number alterations of the member genes are listed. Kaplan-Meier analysis of OS and PFS was performed with the copy number of the gene group as a categorical variable, so that the groups with unaltered and altered copy numbers could be compared. The results of a Cox proportional hazards test, with residual disease as a copredictor, are shown as *P* values. The diagram depicts the detailed number of patients and survival months with unaltered and altered copy numbers.

Altered in 99 (17%) of 591 cases/patients								
PLCZ1	000	9%						
BLOC1S3	••••	2.5%						
MS4A1	0.00	1.4%						
KLRK1	•	9%						
CLEC7A	••••	9%						
ERCC1	:	2.9%						

Supplementary Figure 4: Clinical outcomes associated with the functional gene groups amplified in both A-H- and S-H-specific gains from the TCGA database. For each gene group, copy number alterations of the member genes are listed. Kaplan-Meier analysis of OS and PFS was performed with the copy number of the gene group as a categorical variable, so that the groups with unaltered and altered copy numbers could be compared. The results of a Cox proportional hazards test, with residual disease as a copredictor, are shown as *P* values. The diagram depicts the detailed number of patients and survival months with unaltered and altered copy numbers.

Altered in 27 (5%) of 591 cases/patients								
DDB1	000	1.9%						
ERCC1	:	2.9%						
ERCC2	000	2.7%						

Supplementary Figure 5: Clinical outcomes associated with the functional gene groups amplified in both A-H- and S-H-specific gains from the TCGA database. For each gene group, copy number alterations of the member genes are listed. Kaplan-Meier analysis of OS and PFS was performed with the copy number of the gene group as a categorical variable, so that the groups with unaltered and altered copy numbers could be compared. The results of a Cox proportional hazards test, with residual disease as a copredictor, are shown as *P* values. The diagram depicts the detailed number of patients and survival months with unaltered and altered copy numbers.

Supplementary Figure 6: Clinical outcomes associated with the functional gene groups amplified in both A-H- and S-H-specific gains from the TCGA database. For each gene group, copy number alterations of the member genes are listed. Kaplan-Meier analysis of OS and PFS was performed with the copy number of the gene group as a categorical variable, so that the groups with unaltered and altered copy numbers could be compared. The results of a Cox proportional hazards test, with residual disease as a copredictor, are shown as *P* values. The diagram depicts the detailed number of patients and survival months with unaltered and altered copy numbers.

Altered in 118 (20%) of 591 cases/patients								
BCAT1	*	13%						
CDKN1B	000	9%						
MARK4	***	4%						

Supplementary Figure 7: Clinical outcomes associated with the functional gene groups amplified in both A-H- and S-H-specific gains from the TCGA database. For each gene group, copy number alterations of the member genes are listed. Kaplan-Meier analysis of OS and PFS was performed with the copy number of the gene group as a categorical variable, so that the groups with unaltered and altered copy numbers could be compared. The results of a Cox proportional hazards test, with residual disease as a copredictor, are shown as *P* values. The diagram depicts the detailed number of patients and survival months with unaltered and altered copy numbers.

6	Differentia	l expression	P value			
Genes	A-H VS A-L	S-H VS S-L	A-H VS A-L	S-H VS S-L		
MS4A2			ns	ns		
CD5			ns	ns		
ERCC1	1	1	**	*		
DDB1	1	1	**	*		
ERCC2	1	1	*	**		
BCAT1	1	1	*	**		
PRPF19	1	1	*	*		
IFLTD1			ns	ns		
CDKN1B	1	1	**	*		
MARK4	1	1	**	*		
TRAPPC6A	1		**	ns		
EXOC3L2	1		***	ns		
СКМ	1	1	*	*		
KLC3	7	1	ns	ns		
PPP1R13L	1	1	*	*		
CD3EAP	1	1	**	**		
FOSB	1	7	*	*		
RTN2	1	1	*	*		
PPM1N	<u>``</u>	7	*	ns		
VASP	1		*	ns		
OPA3	1	1	*	*		
BCL2L14	``		ns	ns		
LRP6	1	1	*	*		
MANSC1	1		ns	ns		
DUSP16	1	1	**	ns		
CREBL2		1	ns	*		
GPR19	1	7	*	**		
ST8SIA1	1		*	ns		
PPP1R37	7		*	ns		
MS4A8			ns	ns		
MS4A15			ns	ns		

Note: \nearrow : increase; \searrow : decrease; --: no change; *: P < 0.05; **: P < 0.01; ***: P < 0.001; ns: not significant.

S-H

S-H

S-H

S-L

S-L

Supplementary Figure S8: Expression levels of all the selected genes in the distinct invasive/migratory subclones. (A) RT-PCR analysis of the mRNA expression of the selected genes. (B) Western blot analysis displayed the protein levels of all the selected genes in A-H vs. A-L and S-H vs. S-L. (C) The data in the bar graphs were normalized to β -actin. Error bars represent the SEM, n = 3 (*P < 0.05. **P < 0.01. ***P < 0.001).

Supplementary Figure 9: Validation of the CNV data of the candidate genes. Relative gene copy numbers of the 7 candidate genes were determined by RT-PCR with DNA from (A) A-H and A-L or (B) S-H and S-L cells. The data shown are the average values from three independent experiments \pm SEM. The relative gene copy numbers of A-L/S-L cells were set as 1 and those of A-H/S-H cells were normalized to these values (For each relative copy number of each gene, P < 0.05; data not shown).

Supplementary Figure 10: Reproduction of data from the TCGA database with the cBioPortal tool. The graphs indicated the association of amplifications of candidate genes *DDB1*, *PFPR19* and *BCAT1* with gene expression and patient outcomes.

Su	pplementary	Table 1:	Primers	used for	qPCR	validation	of CNVs
----	-------------	----------	----------------	----------	------	------------	---------

Primer name	Forward	Reverse	Amplicon/bp
RNase P-2	TTTTACTCCCACAGCACCTCC	GGAATTTGGAGTGACCAAAGG	105
A-H-specific gain			- • •
11q12.2	AAAAGCGCTCCATCTCCCAA	CTGGGTTGGGACAGAGTCAA	140
12p13.1	CAGCTTGCCCGAGTTCTACT	TGTCCTCAGAGTTAGCCGGA	137
12p12.1	CACAAAGAAAGCCCTCCCCA	CTGTGTTTCTCCCTTCTCAGGAT	150
19g13.32	GTCGCCAGAAATGGATGTGC	CTCTTCTTGGTGGTGGACGG	147
A-H-specific loss			
4g25	TATGGAACCTTCGCCTTCCTC	ATCAGCTTGTCCTGGGAATCA	150
5g21.3	GAACATGTATCGATTCGAGGGC	AAGCACCTACCTTAGGAATAGGATT	134
5g22.2	TCCCTGGAGTAAAACTGCGG	ACCCATAGGAACAGGACTGC	104
5q31.2	GAGGAATGCTGGCAATGAACA	TCCCCAAATCATGACTGTACCTG	117
5q33.3	GGAATTGGGGCAGAAATGAGC	TCACCATGGGAAAACGTCACT	117
9q34.12	GGAGATCTGCCTGAAGCTGG	CTACTCAGCCCAACCCGTG	107
9q34.3	AGTGCCTCTGACCACACTTC	TTCCCCAAGGGACCCTAGAA	145
9g22 33	TGGCTGTTAGGCTATTGGCTT	TGGCACACTACACAGCAT	131
A-L-specific gain			101
2a32 3	TGCCTTCCCACAGAGTTAAAAGA	TTATGTTTCACCCACCTGAGCC	147
2q32 2	ACACCATTGGTCTCGTGTTCT	ACCTGTCACTAGGCAGCATT	129
15g25 1	TGTTCTGGCAGTGTCTACGG	AGGTCCAAGCAAAACGTCCA	124
S-H-specific gain			
11a12.1	GCGAATACCATGTGACTC	ATCGGGCTTCTATCTACC	165
17p13 1	CAGCTTGCCCGAGTTCTACT	TGTCCTCAGAGTTAGCCGGA	105
12p13.1 12p12.1			150
12p12.1 19a13 32	GTCTCCAGAGTATCCCTGTCA		130
S-H-specific loss	UTETECKOAGIATECETUTEA	AGAGEAAGAETEEGTTEE	179
S-11-specific 1055	ACCTTTCTGCTGCGTGAC	GGACCTGACTTTGATTTG	158
op23.5	ATCTTATACTTCCCTCTCCCC		100
S-I-Specific gain	AICHAIAOTIOCCIOTOOO		199
2n14	GTATCCCTTCTCCTCGTTTG	TCAGGACTGCTGTCACCC	155
2p14 3p21 31			116
10a24.32		GAGTCAGCGAAGCCGATA	110
10q24.32	CCCTGATGCTTCCTGTTC		117
15q11 2		TATACTTCCCACCTTTCT	182
15q11.2 15q15.2		TTCCCTCTTCACAACAATCC	216
15q15.2 15a22.21	CACTCCCCCCCCACTCTT	TGGTGCTGCACTTCGTTC	168
S I Specific loss	UAUTOUCOUCTUATION	IOOIOCIOOACIICOIIC	108
S-L-Specific loss	GCGGTGCGGTAAGTTCCT		212
8p11 23	CTCGCCTGCCATCCTCCT	CACCACCACCTTCCACA	212
Candidate games	CICOUCIOCCATCCICCI	CEACEACEACETTECACA	242
	ACAGGGACAGCAGGTGGT	CTGCCTCTTCAGGATACACC	246
FRCCI		GGAGGGTAGCAGCAGATT	102
ERCC2	GETTELAGAGTEGETTEG		102
PRDE10		GAGACGGGCAATGACACG	1//
RCAT1			103
CDKNIR			204 100
MADKA			122
WI/1N/1X4	CLAUAAUUILAAUULALI	AAUUUIUAUAAUAAUAAA	17/

Gene	Forward	Reverse	Amplicon/bp
MS4A2	GGCCTATATCCACATCCACAGT	TACCAAGTCCCAGAATGGTGA	116
CD5	TGACCTGCTTAGAACCCCAGA	GCTGCCGCTGTAGAACTCC	152
ERCC1	CTACGCCGAATATGCCATCTC	GTACGGGATTGCCCCTCTG	161
DDB1	ACCGGACACTTTACTTCGGC	TCGGCGGTGACCACATAGA	83
ERCC2	AGAAGGTGATTGAAGAGCTTCG	ACCTCAGGGTGAATACACAAGT	121
BCAT1	AGCCCTGCTCTTTGTACTCTT	CCAGGCTCTTACATACTTGGGA	103
PRPF19	CGAGAAGTACATTGCGGAGAAT	GCTGGTACAGAGCGTGTGAC	239
IFLTD1	TCCGAAAGCGTGTGTTTCAGT	CTTGAGCTTGTTCCACCTGAT	108
CDKN1B	TAATTGGGGGCTCCGGCTAACT	TGCAGGTCGCTTCCTTATTCC	116
MARK4	TGAAGGGCCTAAACCACCC	CCAGCACTTGCGTACTCCA	94
TRAPPC6A	CTGGAGGGTATGGGGTTCC	TTGTCTTGCAGGACGTAGGTC	185
EXOC3L2	CGTGTGGAGCGATTCCATGA	GGCGATGGTCTTGCTGATATAG	75
СКМ	ATGCCATTCGGTAACACCCAC	GCTTCTTGTAGAGTTCAAGGGTC	124
KLC3	GCCACGCTCAACAACTTGG	CGCTCCACGTCCTCAAACTT	188
PPP1R13L	TGCAACGACACAGTCATCTG	GCCCCATACTCTGCTCGAC	163
CD3EAP	AGATACGGAGCTGTGGCTTAT	CCCATTGAAGCATTCTGGGG	61
FOSB	GCTGCAAGATCCCCTACGAAG	ACGAAGAAGTGTACGAAGGGTT	249
RTN2	TCAGGGTTTACCGCAAAGTG	CTTGAGGGAATCCACGAGGTC	200
PPM1N	CGAGCGTTGGGCGACTTTA	CAGGAGCATGAACTCGTCCTC	123
VASP	ATGGCAACAAGCGATGGCT	CGATGGCACAGTTGATGACCA	147
OPA3	CCTATGGCGAAGCTGCTATAC	GGCGGCCTCCTTAATACGG	75
BCL2L14	CAAAATCCTCGCCTACTACACC	GACTCATTTGCTGAACAATTCCC	126
LRP6	TGTCAGCGAAGAAGCCATTAAA	TCTAAGGCAATAGCTCTGGGT	231
MANSC1	CACTAAGGCTGTCTGCTAGTCA	TCGAGTGTCGAAGATCATCAAGT	203
DUSP16	CCTGACTTTATCCCCGAGTCT	GAGATCCCAGCTAAACAGTGC	155
CREBL2	AGTAAAGAAGCCCGGTAAACG	CGACTGGATACCAACTCTTCCAA	144
GPR19	ATCTTCGGCAATTCCCTGGTT	GCAACGCTGATGAGAAGGTC	113
ST8SIA1	GTCCTCTGTTGGCTCTACATCT	CCCCGTCATACCACATGCTC	214
PPP1R37	CTCGACTGTCTGGACCTGAAA	GCCGAGGCACCATCTTCATC	134
MS4A8	GGCTTGAACATCGTCAGT	GCGTAAGGATAATAGTCG	107
MS4A15	TGTGGACAGGGGCTATCTGG	GAAGTGCATGGCAATGACCG	79
GAPDH	TGTTGCCATCAATGACCCCTT	CTCCACGACGTACTCAGCG	102

Supplementary Table 2: Primers used for mRNA expression of the selected genes

Genes	Antibodies	Catalog No.	Supplier
MS4A2	Rabbit polyclonal to MS4A2	ab203747	ABCAM, Inc. UK
CD5	Anti-CD5 (26-40) antibody produced in rabbit	SAB1104201	Sigma-Aldrich, USA
ERCC1	Anti-ERCC1 antibody produced in rabbit	SAB4500795	Sigma-Aldrich, USA
DDB1	Anti-DDB1 antibody produced in mouse	SAB1405702	Sigma-Aldrich, USA
ERCC2	Monoclonal Anti-ERCC2 antibody produced in mouse	WH0002068M1	Sigma-Aldrich, USA
BCAT1	rabbit BCAT1 Antibody	12822	CST, USA
PRPF19	Anti-PRPF19 antibody produced in rabbit	SAB4501215	Sigma-Aldrich, USA
IFLTD1	ANTI-IFLTD1 (C-TERM) antibody produced in rabbit	SAB1303298	Sigma-Aldrich, USA
CDKN1B	p27 Kip1 (D69C12) XP® Rabbit mAb	3686	CST, USA
MARK4	rabbit MARK4 Antibody	4834	CST, USA
TRAPPC6A	Anti-TRAPPC6A antibody produced in rabbit	HPA043043	Sigma-Aldrich, USA
EXOC3L2	ANTI-EXOC3L2 (N-TERM) antibody produced in rabbit	SAB1302947	Sigma-Aldrich, USA
СКМ	Anti-CKM (166-180) antibody produced in rabbit	C1869	Sigma-Aldrich, USA
KLC3	Anti-KLC3 antibody	ab168242	ABCAM, Inc. UK
PPP1R13L	Anti-iASPP antibody	ab34898	ABCAM, Inc. UK
CD3EAP	Anti-PAF49 antibody	ab76933	ABCAM, Inc. UK
FOSB	FosB (5G4) Rabbit mAb	2251	CST, USA
RTN2	Anti-Reticulon 2 antibody	ab103170	ABCAM, Inc. UK
PPM1N	Anti-PPM1N antibody	ab168300	ABCAM, Inc. UK
VASP	VASP (9A2) Rabbit mAb	3132	CST, USA
OPA3	Anti-OPA3 antibody	ab69163	ABCAM, Inc. UK
BCL2L14	Anti-Bcl G antibody	ab115467	ABCAM, Inc. UK
LRP6	LRP6 (C5C7) Rabbit mAb	2560	CST, USA
MANSC1	Anti-MANSC1 antibody produced in rabbit	HPA007955	Sigma-Aldrich, USA
DUSP16	Anti-DUSP16, C-Terminal antibody produced in rabbit	SAB4503215	Sigma-Aldrich, USA
CREBL2	Anti-CREBL2 (N-term K27) antibody produced in rabbit	SAB1300866	Sigma-Aldrich, USA
GPR19	Anti-GPR19 antibody produced in rabbit	SAB2900709	Sigma-Aldrich, USA
ST8SIA1	Anti-ST8SIA1 antibody	ab37806	ABCAM, Inc. UK
PPP1R37	Anti-PPP1R37 antibody produced in rabbit	HPA041500	Sigma-Aldrich, USA
MS4A8	Anti-MS4A8 antibody produced in rabbit	HPA007318	Sigma-Aldrich, USA
MS4A15	Mouse polyclonal to MS4A15	ab72697	ABCAM, Inc. UK

Sui	nn	lementary	7 Table 3	3: Details	about	primary	antibodies	used for	Western	blotting
~ ~		i cili cil cui i	100100			PI IIII y	ten en o ares			NICCOLLINE,

Supplementary Table 4: Shared and specific CNV regions for A-H and A-L. See Supplementary_Table_4

Supplementary Table 5: Functional enrichment of genes in A-H- or A-L-specific CNV regions. See Supplementary_Table_5

Supplementary Table 6: Shared and specific CNV regions for S-H and S-L. See Supplementary_Table_6

Supplementary Table 7: Functional enrichment of genes in S-H- or S-L-specific CNV regions. See Supplementary_Table_7

Supplementary Table 8: Analysis of genes identified in CNV regions shared by both highly and minimally invasive/migratory subclones and further amplified in one subclone. See Supplementary_Table_8

Supplementary Table 9: Functional enrichment of genes identified in CNV regions in both highly or both minimally invasive/migratory subclones. See Supplementary_Table_9

Supplementary Table 10: Analysis of genes amplified in both highly invasive/migratory subclones in the TCGA ovarian cancer database (TCGA, Provisional) with the cBioPortal tool. See Supplementary_Table_10