Understanding the complexity of porous graphitic carbon (PGC) chromatography: Modulation of mobile-stationary phase interactions overcomes loss of retention and reduces variability

Tashinga E. Bapiro*, Frances M. Richards and Duncan I. Jodrell

Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Box 278, Robinson Way, Cambridge, CB2 0RE, UK.

* Current address: Oncology iMED DMPK, AstraZeneca UK Ltd, Cambridge Science Park, Milton Road, Cambridge CB4 0WG.

Supporting Information

Contents:

Figure S1. Gradient elution program from our previously published method¹.

Figure S2. Effect on retention and peak shape of changing from an isocratic mobile phase of 95% methanol to 10mM ammonium acetate pH 10 in 95% methanol.

Figure S3. Effect on retention and peak shape of reducing methanol concentration.

Figure S4. Typical chromatogram and average retention from a C18 column.

Table S1. Average retention times and number of runs on PGC as reported by others.

Table S2. Average retention times on different PGC columns (age/usage) and the same column after regeneration, as reported by others.

Table S3. Average retention times of gemcitabine and metabolites on PGC when water replaces 95% methanol in the column maintenance step.

Supporting references.

Binding of analytes to column A&B	Elution t gives excellen shape A&	:hat t peak B	Maintenance of the Hypercarb
Time (min)	А	В	
0	95	5	
2	95	5	
2.2	80	20	
7.8	80	20	
8.0	95	5	
15	95	5	

Figure S-1. Our previously published¹ gradient elution program on Hypercarb[™], A: 10 mM ammonium acetate pH10 in water, B: 100% acetonitrile. Showing the absence of a column maintenance step.

Figure S-3. Effect on retention and peak shape of changing from (A) 10 mM ammonium acetate pH 10 in methanol:water (70:30) to (B)10 mM ammonium acetate pH 10 in methanol:water (1:1). Analytes were detected following heated electrospray ionisation using a triple stage quadrupole mass spectrometer.

Figure S-4. Typical chromatogram on the Acquity T3 (C18) column, of dFdC and dFdU, 200 ng/ml spiked in water, detected following heated electrospray ionisation using a triple stage quadrupole mass spectrometer. The average retention ime (t_R (min)) and standard deviation are shown for 95 injections of dFdC and dFdU.

Compound	t _R (min)	Reference
Cytidine-5'-monophospho-N-acetylneuraminic acid	1.9 <u>+</u> 0.06 (N = 10)	2
Uridine 5'-diphosphoglucose	2.3 <u>+</u> 0.08 (N = 10)	2
Uridine 5'-diphosphogalactose	2.6 <u>+</u> 0.09 (N = 10)	2
Guanosine 5'-diphospho-β-L-fucose	5.9 <u>+</u> 0.15 (N = 10)	2
Guanosine 5'-diphospho-D-mannose	4.8 <u>+</u> 0.15 (N = 10)	2
Uridine 5'-diphospho- <i>N</i> -acetylneuraminic acid	2.3 <u>+</u> 0.09 (N = 10)	2

Table S-1 Average retention times (t_R) and standard deviation (N= number of runs) on PGC reported by others.

Compound	t _R (min)			Reference
	Column 1	Column 2	Column 3	
Uridine 5'-diphosphoglucose	11.76	10.40	8.20	3
gemcitabine	7.75	5.02*		4,5
Gemcitabine triphosphate	6.89	8.32*		4,5

Table S-2 Average retention times (t_R) on different (age/usage) or the same (after regeneration) PGC columns, as reported by others.

*- not clear whether this was the same or different column but these are the retention times after treating the column with hydrogen peroxide^{4,6}

Column number: 10170107

dFdC	dFdU	GdPC	dFdCTP
5.23 <u>+</u> 0.02	5.04 + 0.02	4.11 + 0.02	3.93 + 0.03

Column number: 0610524V6

dFdC	dFdU	GdPC	dFdCTP
5.16 <u>+</u> 0.02	5.02 <u>+</u> 0.02	4.07 <u>+</u> 0.02	3.89 <u>+</u> 0.02

Column number: 10065922

dFdC	dFdU	GdPC	dFdCTP
5.30 <u>+</u> 0.01	5.21 <u>+</u> 0.01	4.13 <u>+</u> 0.02	3.93 <u>+</u> 0.01

Table S-3. Average retention times (t_R (min)) and standard deviation of 18 injections of dFdC and metabolites extracted from tumour homogenate on 3 different PGC columns using the gradient shown in Figure 1 but with 100% water instead of methanol:water (95:5) used as solution "C" for flushing in the column maintenance step.

References

(1) Bapiro, T. E.; Richards, F. M.; Goldgraben, M. A.; Olive, K. P.; Madhu, B.; Frese, K. K.; Cook, N.; Jacobetz, M. A.; Smith, D. M.; Tuveson, D. A.; Griffiths, J. R.; Jodrell, D. I. *Cancer Chemother Pharmacol* **2011**, *68*, 1243-1253.

(2) Garcia, A. D.; Chavez, J. L.; Mechref, Y. *Rapid communications in mass spectrometry : RCM* **2013**, *27*, 1794-1800.

(3) Pabst, M.; Grass, J.; Fischl, R.; Leonard, R.; Jin, C.; Hinterkorner, G.; Borth, N.; Altmann, F. Anal Chem **2010**, *82*, 9782-9788.

(4) Jansen, R. S.; Rosing, H.; Schellens, J. H.; Beijnen, J. H. *J Chromatogr A* **2009**, *1216*, 3168-3174.
(5) Jansen, R. S.; Rosing, H.; Schellens, J. H.; Beijnen, J. H. *Rapid Commun Mass Spectrom* **2009**, *23*, 3040-3050.

(6) Jansen, R. S.; Rosing, H.; Schellens, J. H.; Beijnen, J. H. *Mass spectrometry reviews* **2011**, *30*, 321-343.