Supplementary Information # Reactivity of a Cobalt(III)-Hydroperoxo Complex in Electrophilic Reactions† Bongki Shin,¹ Kyle D. Sutherlin,² Takehiro Ohta,³ Takashi Ogura,³ Edward I. Solomon,*^{2,4} and Jaeheung Cho*¹ ¹Department of Emerging Materials Science, DGIST, Daegu 42988, Korea ²Department of Chemistry, Stanford University, Stanford, California 94305, USA ³Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center, Hyogo 679-5148, Japan ⁴Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, Menlo Park, California 94025, USA *To whom correspondence should be addressed. E-mail: jaeheung@dgist.ac.kr, edward.solomon@stanford.edu #### **Experimental Section** #### **Synthesis of Ligands** 3,6,9,15-tetraazabicyclo[9,3,1]pentadeca-1(15),11,13-triene (pyclen). pyclen was synthesized by a modification of a previously reported procedure. To a stirred DMF solution of 2,6-bis(chloromethyl)pyridine (2.2 g, 12.3 mmol) and K_2CO_3 (5.1 g, 37.1 mmol) was slowly added 1,4,7-tris(p-tosylsulfonyl)-1,4,7-triazaheptane (7.0 g, 12.3 mmol). Upon stirring for 12 hours, excess of ice water was added to the mixture until white precipitate formed. The precipitate was collected by filteration. This white powder in H_2SO_4 were heated at reflux (80 ~ 100 °C). An ordinary work-up treatment of the reaction mixture with NaOH followed by extraction with CHCl₃ and evaporation gave an organic product, as a yellow oil. Yield: 0.79 g (31%), H NMR (CDCl₃, 400 MHz): δ 2.21(4H, s, CH₂), 2.65 (4H, t, CH₂), 3.92 (4H, s, CH₂), 6.96 (2H, d, PyH), 7.48 (1H, t, PyH). ESI-MS (in CH₃CN): m/z 207.2 [M + H]⁺. 3,6,9-trimethyl-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane (Me₃-TPADP). Formaldehyde 37% (3.1 ml, 40.3 mmol) and formic acid (3.1 ml, 40.3 mmol) was slowly added to pyclen (0.79 g, 3.83 mmol) in an ice bath over 30 mins, and stirring over 1 hour in an ice bath. The mixture solvent was then heated at reflux (100 ~ 120 °C). An ordinary work-up treatment of the reaction mixture with NaOH followed by extraction with CH_2Cl_2 and evaporation gave an organic product, as a yellow oil. Yield: 0.88 g (93%), H NMR (CDCl₃, 400 MHz): δ 2.15 (3H, s, CH₃), 2.46-2.62 (14H, m, CH₃NCH₂CH₂), 3.77 (4H, s, PyCH₂), 7.11 (2H, m, PyH), 7.57 (1H, t, PyH). The NMR (CDCl₃, 400 MHz): δ 157.8, 136.8, 62.7, 67.9, 53.2, 52.4, 45.2, 44.7. ESI-MS (in CH₃CN): m/z 249.2 [M + H]⁺. #### **Preparation of a Precursor Complex** [Co(Me₃-TPADP)(CH₃CN)₂](ClO₄)₂. Me₃-TPADP (0.18 g, 0.5 mmol) was added to a CH₃CN solution of Co(ClO₄)₂·6H₂O (0.12 g, 0.5 mmol). The mixture was stirred for 12 hours, giving a purple solution. Diethyl ether (40 mL) was added to the tresulting solution to yield a violet powder, which was collected by filtration, washed with diethyl ether, and dried in vacuo. Yield: 0.15 g (87%). UV-vis (CH₃CN): λ_{max} (ε) = 498 nm (80 M⁻¹ cm⁻¹). ESI-MS (CH₃CN): m/z 174.2 for [Co(Me₃-TPADP)(CH₃CN)]²⁺, m/z 194.7 for [Co(Me₃-TPADP)(CH₃CN)₂]²⁺, and m/z 406.2 for [Co(Me₃-TPADP)(ClO₄)]⁺. Anal. Calcd for C₁₈H₃₀Cl₂CoN₆O₈: C, 36.75; H, 5.14; N, 14.29. Found: C, 37.03; H, 5.103; N, 14.29. μ_{eff} = 4.5 BM. X-ray crystallographically suitable crystals were obtained by slow diffusion of Et₂O into a solution of the complex in CH₃CN. Crystalline yield: 0.23 g (44%). $\textbf{Table S1}. \ Crystal \ Data \ and \ Structure \ Refinements \ for \ [Co(Me_3-TPADP)(CH_3CN)_2](ClO_4)_2 \ (\textbf{1-}(ClO_4)_2).$ | | 1-(ClO ₄) ₂ | | | |---|------------------------------------|--|--| | Empirical formula | $C_{18}H_{30}Cl_2CoN_6O_8$ | | | | Formula weight | 588.31 | | | | Temperature (K) | 100(2) | | | | Wavelength (Å) | 0.71073 | | | | Crystal system/space group | monoclinic, $P2_1/n$ | | | | Unit cell dimensions | | | | | a (Å) | 15.7400(3) | | | | b (Å) | 19.7237(4) | | | | c (Å) | 16.3257(3) | | | | α (°) | 90.00 | | | | $eta(^{ m o})$ | 97.6290(10) | | | | γ(°) | 90.00 | | | | Volume (Å ³) | 5023.47(17) | | | | Z | 8 | | | | Calculated density (g/cm ⁻³) | 1.556 | | | | Absorption coefficient (mm ⁻¹) | 0.951 | | | | Reflections collected | 12456 | | | | Independent reflections $[R(int)]$ | 641 [0.0155] | | | | Refinement method | Full-matrix | | | | | least-squares on F^2 | | | | Data/restraints/parameters | 12456/0/641 | | | | Goodness-of-fit on F^2 | 1.019 | | | | Final R indices $[I > 2 \text{sigma}(I)]$ | $R_1 = 0.0345, wR_2 = 0.0890$ | | | | R indices (all data) | $R_1 = 0.0384, wR_2 = 0.0926$ | | | **Table S2**. Selected bond distances (Å) and angles (°) for $[Co(Me_3-TPADP)(CH_3CN)_2](ClO_4)_2$ (1A- $(ClO_4)_2$ and 1B- $(ClO_4)_2$). | | Bond I | Distances (Å) | | |---|------------|---|------------| | 1A- (ClO ₄) ₂ | | 1B- (ClO ₄) ₂ | | | Co1-N1 | 2.0574(14) | Co2-N7 | 2.0485(14) | | Co1-N2 | 2.1999(14) | Co2-N8 | 2.1997(14) | | Co1-N3 | 2.2108(14) | Co2-N9 | 2.2227(14) | | Co1-N4 | 2.2050(14) | Co2-N10 | 2.1951(14) | | Co1-N5 | 2.0514(15) | Co2-N11 | 2.0570(15) | | Co1-N6 | 2.1151(15) | Co2-N12 | 2.1329(15) | | | Bono | d Angles (°) | | | 1A- (ClO ₄) ₂ | | 1B- (ClO ₄) ₂ | | | N1-Co1-N2 | 78.56(5) | N7-Co2-N8 | 78.79(6) | | N1-Co1-N3 | 90.66(5) | N7-Co2-N9 | 90.86(5) | | N1-Co1-N4 | 78.82(5) | N7-Co2-N10 | 79.01(5) | | N1-Co1-N5 | 177.17(6) | N7-Co2-N11 | 176.06(6) | | N1-Co1-N6 | 87.70(5) | N7-Co2-N12 | 87.30(6) | | N2-Co1-N3 | 81.91(5) | N8-Co2-N9 | 82.59(5) | | N2-Co1-N4 | 152.06(5) | N8-Co2-N10 | 152.23(5) | | N2-Co1-N5 | 101.96(6) | N8-Co2-N11 | 100.38(6) | | N2-Co1-N6 | 95.15(6) | N8-Co2-N12 | 100.66(6) | | N3-Co1-N4 | 82.19(5) | N9-Co2-N10 | 81.28(5) | | N3-Co1-N5 | 92.16(6) | N9-Co2-N11 | 92.85(6) | | N3-Co1-N6 | 176.87(5) | N9-Co2-N12 | 175.88(6) | | N4-Co1-N5 | 101.45(6) | N10-Co2-N11 | 102.85(6) | | N4-Co1-N6 | 100.10(6) | N10-Co2-N12 | 94.74(6) | | N5-Co1-N6 | 89.48(6) | N11-Co2-N12 | 89.08(6) | | | | | | **Table S3**. Geometric parameters and Mayer bond orders for S = 1 Fe^{IV}=O, S = 1/2 Co^{IV}=O, and S = 3/2 Co^{IV}=O complexes. | | $S = 1/2 \text{ Co}^{\text{IV}} = \text{O}$ | $S = 3/2 \text{ Co}^{\text{IV}} = \text{O}$ | $S = 1 \text{ Fe}^{\text{IV}} = 0$ | |--|---|---|------------------------------------| | M-O length (Å) | 1.79 | 1.62 | 1.64 | | M-O Mayer bond order | 1.14 | 1.85 | 1.39 | | M-L _{equatorial} length (average) | 2.03 | 2.17 | 2.07 | | M-L _{equatorial} Mayer bond order (total) | 2.29 | 1.74 | 2.16 | **Figure S1**. ESI-MS of **1** in CH₃CN at 25 °C. Mass peaks at 174.2, 194.7 and 406.2 are assigned to $[Co(Me_3-TPADP)(CH_3CN)]^{2+}$, $[Co(Me_3-TPADP)(CH_3CN)_2]^{2+}$ and $[Co(Me_3-TPADP)(ClO_4)]^{+}$, respectively. **Figure S2**. Cyclic voltammogram of **1** in CH_3CN (1 mM) containing 0.1 M Bu_4NClO_4 at room temperature (working electrode, Pt; counter electrode, Pt; reference electrode, Ag/Ag^+ ; scan rate = 100 mV). **Figure S3**. (a) Experimental and (b) calculated ESI-MS of $[Co^{III}(Me_3-TPADP)(O_2)]^+$ (2). **Figure S4**. Resonance Raman spectra of **2** prepared with $H_2^{16}O_2$ (red line) and $H_2^{18}O_2$ (blue line) obtained upon excitation at 355 nm in CH₃CN at -30 °C. Black line shows subtraction of the spectra prepared with $H_2^{16}O_2$ and $H_2^{18}O_2$. **Figure S5**. Plot of first-order rate constants against 1/T to determine activation parameters for the decay of **3** (0.5 mM). **Figure S6**. (a) Experimental and (b) calculated ESI-MS of [Co(Me₃-TPADP)(O₂H)(CH₃CN)]²⁺ (3). **Figure S7**. ESI-MS of **3** in CH₃CN at -40 °C. Asterisks are some unidentified species due to the thermal instability. Insets show the observed isotope distribution patterns for [Co(Me₃-TPADP)($^{16}O_2H$)(CH₃CN)]²⁺ (lower) and [Co(Me₃-TPADP)($^{16}O_2^2H$)(CH₃CN)]²⁺ (upper, calcd m/z 191.1). **Figure S8**. UV-vis spectral changes of **3** (0.5 mM) upon addition of 100 equiv of cyclohexadiene (red line) and xanthene (blue line) in CH₃CN at -40 °C. Inset shows the time course of the absorbance at 350 nm. **Figure S9**. UV-vis spectral changes of **3** (0.5 mM) upon addition of 10 equiv of PPh₃ at -20 °C. Inset shows the time course of the absorbance at 523 nm and its first-order fitting (red line). **Figure S10**. UV-vis spectral changes of **3** (0.5 mM) upon addition of 25 equiv of thioanisole at –40 °C. Inset shows the time course of the absorbance at 523 nm and its first-order fitting (red line). **Figure S11**. GC-MS spectra of PhS(O)CH₃; (a) standard PhS(¹⁶O)CH₃, (b) PhS(¹⁶O)CH₃ obtained from the reaction of **3** with PhSCH₃, and (c) PhS(¹⁸O)CH₃ obtained from the reaction of ¹⁸O-labeled **3** with PhSCH₃. **Figure S12**. ESI-MS taken after the completion of the reaction of **3** with thioanisole in CH₃CN at –20 °C, showing the formation of a Co(III)-hydroxo complex: Mass peaks at m/z of 182.6 and 464.1 are assigned to $[Co(Me_3-TPADP)(OH)(CH_3CN)]^{2+}$ (calcd m/z 182.6) and $[Co(Me_3-TPADP)(OH)(CH_3CN)(ClO_4)]^{+}$ (calcd m/z 464.1), respectively. Insets show the observed isotope distribution patterns for $[Co(Me_3-TPADP)(OH)(CH_3CN)]^{2+}$ (green line, calcd m/z 183.1), $[Co(Me_3-TPADP)(^{18}OH)(CH_3CN)]^{2+}$ (blue line, calcd m/z 183.6). **Figure S13**. Plot of pseudo-first-order rate constants (k_{obs}) against concentrations of HClO₄ in the reactions of adding 25 equiv of thioanisole to different equivalent of HClO₄ with [Co^{III}(Me₃-TPADP)(O₂)]⁺ (**2**) (0.5 mM) at -40 °C. **Figure S14**. Unoccupied orbitals (excluding d_{z2}) and electronic structure schemes for S = 1 Fe^{IV}=O, S = 1/2 Co^{IV}=O, and S = 3/2 Co^{IV}=O complexes. ### References - [1] Che, C. M.; Li, Z. Y.; Wong, K. Y.; Poon, C. K.; Mak, T. C. W.; Peng, S. M. A Simple Synthetic Route to *N*,*N*'-Dialkyl-2,11-diaza[3.3](2,6)-pyridinophanes. Crystal Structures of *N*,*N*'-Di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane and Its Copper(II) Complex. *Polyhedron* **1994**, 13, 771-776. - [2] Wang, Z.; Yin, Y.; Geng, Z.; Wen, J. A Mononuclear Mn²⁺ Complex Based on a Novel Tris-(ethyl acetate) Pendant-Armed Tetraazamacrocycle: Effect of Pyridine on Self-Assembly and Weak Interactions. *Inorg. Chem. Commun.* **2012**, 21, 16-20. - [3] Serrano-Plana, J.; Oloo, W. N.; Acosta-Rueda, L.; Meier, K. K.; Verdejo, B.; García-España, E.; Basallote, M. G.; Münck, E.; Que, L., Jr.; Company, A.; Costas, M. Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C–H Bonds with Stereoretention. *J. Am. Chem. Soc.* **2015**, 137, 15833-15842.