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Supplementary Figures 

 
 
Figure S1. PGR is predicted to be intrinsically disordered. 
Panel (a) is the Uversky plot, showing PGR (green triangle – (0.3454, 0.0522)) lies on the 
portion of the plot where disordered proteins (black circles) tend to fall. Ordered proteins are 
shown in white circles. In panel (b), the results from several disorder predictions are plotted. The 
y-axis units should be considered arbitrary, as these algorithms have different ranges for their 
predictions; however, these results strongly support the hypothesis that PGR is an IDP. (c) 
shows PGR (green triangle – (0.10370, 0.15556)) in the boundary region (2) of the Das-Pappu 
phase plot separating weak polyampholytes/polyelectrolytes (1) and strong polyampholytes (3). 



Panel (d) shows secondary structure predictions by SABLE, SCRATCH, and GOR servers, 
each predicting essentially complete random coil. 
  



 

 

Figure S2. The sequence of PGR is highly conserved among S. epidermidis strains. 
Identical residues are marked with an asterisk (*), highly conserved residues with a semicolon 
(:), and weakly conserved residues with a period (.). The UniProt accession number and the 
name of the strain identify each sequence in the alignment. The NCTC 11047 strain (UniProt 
accession no. E0ACJ2) is significantly longer than the strains shown above, having an 
additional 7 AEPGKP repeats compared to RP62A (UniProt accession no. Q9L470), and thus 
was omitted for clarity. The Aap from strain PM221 (GenBank accession no. CDM15051) 
contains a region between the last half B-repeat and the LPXTG motif which does not resemble 
the PGR of any of the above strains, neither in number of residues nor in amino acid content. 

 

 
 
 
 
 
 
 
 
 
 
 
 
  



Supplementary Tables 
 
Table S1. Concentration dependence of sedimentation velocity AUC data 
PGR Concentration s20,w 

a f/f0 
b Mcalc

 c 

25 µM 1.05 2.14 14.4 kDa 
75 µM 1.05 2.11 14.0 kDa 
150 µM 1.03 2.15 14.1 kDa 
225 µM 1.02 2.18 14.1 kDa 
300 µM 0.99 2.32 14.8 kDa 
aThe sedimentation coefficient standardized to 20° C and pure water. 
bFrictional ratio – the experimental frictional coefficient divided by the frictional coefficient of an ideal, non-
hydrated sphere 
cThe molecular weight calculated from the sedimentation coefficient and frictional ratio 
 
 
 
Table S2. Temperature dependence of sedimentation velocity AUC data 
Temperature (° C) s20,w 

a f/f0 
b Mcalc

 c 

4° C 1.06 2.14 15.3 kDa 
20° C 1.05 2.14 14.4 kDa 
37° C 1.03 2.10 13.0 kDa 
aThe sedimentation coefficient standardized to 20° C and pure water. 
bFrictional ratio – the experimental frictional coefficient divided by the frictional coefficient of an ideal, non-
hydrated sphere 
cThe molecular weight calculated from the sedimentation coefficient and frictional ratio 
 
 
 
Table S3. Salt dependence of sedimentation velocity AUC data 
Temperature (° C) NaCl Concentration s20,w 

a f/f0 
b Mcalc

 c 

4° C 30 mM 1.04 2.05 13.8 kDa 
 100 mM 1.06 2.02 13.9 kDa 
 300 mM 1.06 2.00 13.8 kDa 
 1 M 1.03 2.00 13.2 kDa 

20° C 30 mM 1.04 2.09 13.7 kDa 
 100 mM 1.05 2.08 13.8 kDa 
 300 mM 1.04 2.08 13.7 kDa 
 1 M 1.00 2.19 13.8 kDa 

37° C 30 mM 1.04 2.04 12.6 kDa 
 100 mM 1.05 2.05 12.9 kDa 
 300 mM 1.03 2.09 13.0 kDa 
 1 M 0.98 2.12 12.2 kDa 

aThe sedimentation coefficient standardized to 20° C and pure water. 
bFrictional ratio – the experimental frictional coefficient divided by the frictional coefficient of an ideal, non-
hydrated sphere 
cThe molecular weight calculated from the sedimentation coefficient and frictional ratio 
 
 
 



 
 
Table S4. Comparison of hydrodynamic properties for PGR to a dataset of studied IDPs 
Sequence Na Net Charge Rh predictedb fPPII

c Rh Obsd Reference 
Aap-PGR 135 7 38.50 0.5350 37.06e This work 
p53(1-93) 93 15 29.51 0.4890 32.4 [1] 
p53(1-93) ALA- 93 15 28.66 0.4581 30.4 [1] 
p53 TAD 73 14 24.79 0.4500 23.8 [2] 
Securin 202 1 42.57 0.4130 39.7 [3] 
PDE-γ 87 4 26.51 0.4122 24.8 [4] 
Cad136 136 9 33.77 0.4025 28.1 [5] 
HIF1-α-403 202 29 42.13 0.4024 44.3 [6] 
Tau-K45 198 19 41.52 0.3988 45.0 [7] 
HIF1-α-530 170 10 37.81 0.3899 38.3 [6] 
Fos-AD 168 16 37.17 0.3783 35.0 [8] 
ShB-C 146 4 34.32 0.3764 32.9 [9] 
α-synuclein 140 9 33.47 0.3744 28.2 [10] 
Mlph(147-403) 260 28 47.00 0.3703 49.0 [11] 
CFTR-R-region 189 5 39.18 0.3644 32.0 [12] 
p57-ID 73 6 23.14 0.3636 24.0 [13] 
prothymosin-α 110 43 29.02 0.3633 33.7 [14] 
LJIDP1 94 4 26.46 0.3565 24.5 [15] 
Mlph(147-240) 97 15 26.85 0.3528 28.0 [11] 
SNAP25 206 14 40.60 0.3513 39.7 [16] 
Hdm2-ABD 97 29 26.47 0.3345 25.7 [17] 
Vmw65 89 19 25.13 0.3278 28.0 [18] 
p53(1-93) PRO- 93 15 24.93 0.2832 27.4 [1] 
aThe number of amino acids in the sequence 
bThe predicted Rh from sequence and according to equation 6 in the main text 
cThe fractional number of PPII residues from sequence and according to intrinsic PPII propensities [19] 
dThe Rh of the IDP as measured experimentally in the reference listed in the final column 
eAs measured in this study, listed is the average of SEC and DLS measurements. 
IDP dataset adapted from Tomasso et al. [19] and sorted by fPPII 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S5. Folded proteins and hydrodynamic measurements from literature  
Sequence Na Rh

b Reference 
staphylococcal nuclease 151‡ 22.5 [20] 
human recombinant lysozyme 132‡ 21.8 [20] 
bovine erythrocyte carbonic anhydrase 267‡ 26.8 [20] 
bovine pancreatic trypsin inhibitor 58 15.8 [21] 
SH3 domain of PI3 kinase 90 18.6 [21] 
horse heart cytochrome c 104 17.8 [21] 
hen lysozyme 129 20.5 [21] 
horse myoglobin 153 21.2 [21] 
bovine alpha-lactalbumin 123 18.8 [21] 
bovine pancreatic ribonuclease A 124 19.0 [21] 
sperm whale apomyoglobin 153 20.9 [21] 
ubiquitin 76 16.5 [21] 
(apo)cytochrome C 104 18.5 [21] 
α-lactalbumin 123 18.5 [21] 
tumor supressor, p16 156 20.0 [21] 
(apo)myoglobin 154 20.9 [21] 
β-lactoglobulin 162 22.0 [21] 
sarcoplasmic calcium binding 174 21.5 [21] 
adenylate kinase 194 21.9 [21] 
tryptophan synthase 268 24.2 [21] 
β-lactamase 257 23.7 [21] 
carbonic anhydrase B 260 23.3 [21] 
RTEM β-lactamase  263 24.5 [21] 
aThe number of amino acids in the sequence, taken from [21] unless otherwise noted 
bHydrodynamic radius, in Å, reported by the reference listed in the final column 
‡The number of residues was estimated from the MW using the average of 111.6 Da/residue 
Folded protein data set adapted from [21], see [22-24] for additional details and individual 
references 
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