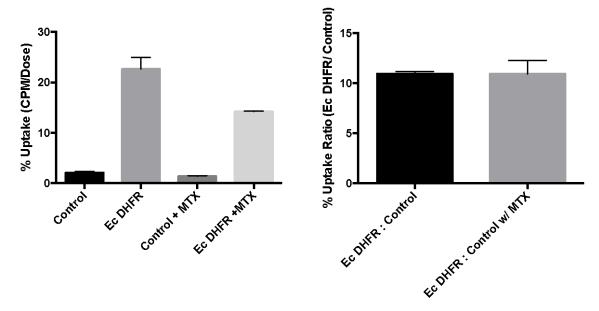

Supplemental Information


Quantitative PET Reporter Gene Imaging

with [11C]Trimethoprim

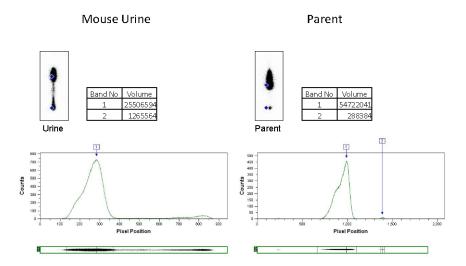
Mark A. Sellmyer, Iljung Lee, Catherine Hou, Brian P. Lieberman, Chenbo Zeng, David A. Mankoff, and Robert H.Mach

Fig. S1. Dot blot showing various concentrations (100-4 μ M) of recombinant *Ec* DHFR spotted on to a nitrocellulose membrane, dried for 1h, blocked, and then incubated in 5% milk with [11 C]TMP with or without cold TMP (10 μ M) for 30 minutes. Representative blot is shown for an experiment in biological duplicate.

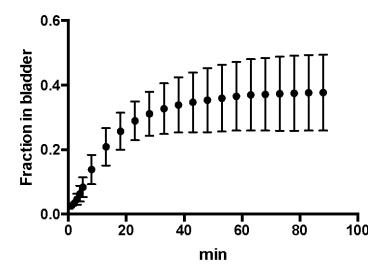
Fig. S2. HEK293 cell uptake study was performed with Methotrexate cotreatment. Confluent control or Ec DHFR cells were trypsinized, incubated with [11 C]TMP with and without co-treatment with Methotrexate (10 μ M, MTX). Cells were washed twice with PBS and then measured for uptake with a gamma counter. Fold uptake is shown in the right graph. Error bars represent standard deviation (n=3).

(% dose/organ)

	2 min (N=4)	15 min (N=4)	45 min (N=4)
Blood	4.59 ± 1.08	1.86 ± 0.41	0.81 ± 0.23
Heart	0.60 ± 0.19	0.16 ± 0.03	0.03 ± 0.00
Muscle	7.26 ± 1.09	7.57 ± 1.58	8.48 ± 3.54
Lung	1.17 ± 0.27	0.41 ± 0.07	0.14 ± 0.04
Kidney	11.8 ± 2.73	2.71 ± 0.42	0.59 ± 0.09
Pancreas	0.48 ± 0.27	0.42 ± 0.14	0.09 ± 0.02
Spleen	n/a	0.28 ± 0.05	0.08 ± 0.04
Liver	18.5 ± 2.84	5.30 ± 0.82	2.33 ± 0.58
Skin	2.68 ± 0.42	2.97 ± 0.49	2.85 ± 1.46
Brain	0.14 ± 0.03	0.12 ± 0.05	0.06 ± 0.03
Bone	4.65 ± 1.04	3.30 ± 0.60	3.01 ± 1.09
Stomach	0.93 ± 0.18	0.92 ± 0.23	0.44 ± 0.17
Gut	7.80 ± 1.24	6.53 ± 1.30	3.64 ± 1.44


(% dose/gram)

	2 min (N=4)	15 min (N=4)	45 min (N=4)
Blood	3.39 ± 0.81	1.28 ± 0.29	0.59 ± 0.16
Heart	6.76 ± 2.37	1.69 ± 0.41	0.35 ± 0.01
Muscle	0.94 ± 0.16	0.91 ± 0.20	1.07 ± 0.42
Lung	5.84 ± 1.51	2.14 ± 0.45	0.84 ± 0.23
Kidney	46.6 ± 9.10	10.6 ± 2.03	2.37 ± 0.35
Pancreas	5.25 ± 2.48	4.28 ± 1.44	1.01 ± 0.24
Spleen	n/a	2.72 ± 0.66	0.89 ± 0.40
Liver	19.8 ± 4.75	5.55 ± 0.97	2.68 ± 0.72
Skin	0.93 ± 0.18	0.95 ± 0.18	0.98 ± 0.54
Brain	0.35 ± 0.08	0.28 ± 0.11	0.16 ± 0.09
Bone	1.72 ± 0.42	1.13 ± 0.22	1.13 ± 0.16
Stomach	2.55 ± 0.65	3.04 ± 0.56	1.82 ± 0.72
Gut	5.74 ± 1.38	4.37 ± 0.74	2.68 ± 1.02


Fig. S3. Biodistribution report of C-11 TMP in female balb/c mice. 83 μ Ci of tracer was injected IV. Mice were sacrificed 2, 15 and 45 minutes post-injection. Gut includes large intestine, small intestine and colon. Mice were under anesthesia for the duration of the experiment and did not urinate limiting evaluation of the bladder.

Organ	Total (mSv)
Brain	0.06
Gut	0.05
Stomach	0.18
Heart	0.52
Kidneys	1.16
Liver	0.87
Lungs	0.22
Muscle	0.10
Pancreas	0.50
Bone	0.16
Total Body	0.13

Fig. S4. Estimated Human Dosimetry. Biodistribution data from female balb/c mice were used to estimate human dosimetry after [¹¹C]TMP 10 mCi in an adult female human model that was predefined in OLINDA/EXM 1.1. Kinetic data from time points (2, 15, and 45 min) were fitted as percent-injected dose/organ over time. By fitting the kinetic data using %ID/organ we assume the [¹¹C]TMP distribution would be relative to human and thus did not apply a scaling factor accounting for organ weight to subject total body weight between mouse and human.

Fig. S5. Thin layer radio-chromatography shows the spot size and relative counts from mouse urine compared to parent [11 C]TMP. A small amount of mouse urine and [11 C]TMP in saline was dried on a silica plate. The spots were run on with MeOH/CH $_2$ Cl $_2$ (1:5). The time/length of development for each TLC was slightly different accounting for the difference in the X-axis, but the R_f values are the same for the largest spot from both samples..

Fig. S6. Percent of radiosignal in the bladder while under anesthesia (no urination) as assessed by measuring the mean signal (Amide) in the bladder * bladder volume divided by the mean signal in the animal * whole animal volume (n=3).

Fig. S7. Representative autoradiography of explanted GI tract from the stomach to the rectum.

DHFR Protein Sequences

```
# Program: needle
# Rundate: Wed 13 Jul 2016 21:11:11
# Commandline: needle
    -auto
    -stdout
     -asequence emboss_needle-E20160713-211110-0797-67085135-pg.asequence
    -bsequence emboss_needle-B20160713-211110-0797-67085135-pg.bsequence-datafile BBLOSUM62
-gapopen 10.0
    -gapextend 0.5
    -endopen 10.0
-endextend 0.5
    -aformat3 pair
    -sprotein1
     -sprotein2
# Aligned_sequences: 2
# 1: EMBOSS_001
# 2: EMBOSS_001
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
# identity: 52/190 (27.4%)
# Similarity: 89/190 (46.8%)
# Gaps: 34/190 (17.9%)
# Score: 169.0
# Length: 190
#_____
EMBOSS_001
              1 MVGSLNCIVAVSONMGIGKNGDLPWPPLRNEFRYFORMTTTSSVEGKONL
EMBOSS_001 51 VIMGKKTWFSIPEKNRPLKGRINLVLSRELKEPPQGAHFL-SRSLDDALK
83
EMBOSS_001 100 LT-EQPELANKVDMVWIVGGSSVYKEAMNHPGHLKLFVTRIMQDFESDTF
                                                                 148
- . :.|| :::||..||::: |...||:||.

EMBOSS_001 84 ACGDVPE------IMVIGGGRVYEQFL--PKAQKLYLTHIDAEVBSDTH
EMBOSS_001 149 FPEIDLEKYK-LLPEYPGVLSDVQEEKGIKYKFEVYEKND
             EMBOSS 001
```

www.ebi.ac.uk/Tools/services/rest/emboss_needle/result/emboss_needle-E20160713-211110-0797-67085135-pg/aln

HUMAN

UniProtKB - P00374 (DYR HUMAN)

MVGSLNCIVA VSQNMGIGKN GDLPWPPLRN EFRYFQRMTT TSSVEGKQNLVIMGKKTWFS IPEKNRPLKG RINLVLSREL KEPPQGAHFL SRSLDDALKLTEQPELANKV DMVWIVGGSS VYKEAMNHPG HLKLFVTRIM QDFESDTFFPEIDLEKYKLL PEYPGVLSDV QEEKGIKYKF EVYEKND

E .coli

UniProtKB - POABQ4 (DYR_ECOLI)

MISLIAALAV DRVIGMENAM PWNLPADLAWFKRNTLNKPVIMGRHTWESIGRPLPGRKNI ILSSQPGTDD RVTWVKSVDE AIAACGDVPE IMVIGGGRVYEQFLPKAQKL YLTHIDAEVE GDTHFPDYEP DDWESVFSEF HDADAQNSHSYCFEILERR

```
TK Protein Sequences
# Program: needle
# Rundate: Tue 27 Sep 2016 20:24:31
# Commandline: needle
# -auto
 -stdout
 - a sequence\ emboss\_needle-l 20160927-202430-0138-5489320-oy. as equence
 -bsequence emboss_needle-I20160927-202430-0138-5489320-oy.bsequence-datafile EBLOSUM62
  -gapopen 10.0
  -gapextend 0.5
  -endopen 10.0
  -endextend 0.5
  -aformat3 pair
  -sprotein1
  -sprotein2
# Align_format: pair
# Report_file: stdout
# Aligned_sequences: 2
# 1: EMBOSS_001
# 2: EMBOSS_001
# Matrix: EBLOSUM62
# Gap_penalty: 10.0
# Extend_penalty: 0.5
# Length: 438
# Identity: 48/438 (11.0%)
# Similarity: 76/438 (17.4%)
# Gaps: 266/438 (60.7%)
# Score: 17.0
#-----
            1 MASYPCHQHASAFDQAARSRGHNNRRTALRPRRQQEATEVRPEQKMPTLL 50
EMBOSS 001
EMBOSS_001
                                   --MSCINLPTVL 10
EMBOSS_001 51 RVYIDGPHGMGKTTTTQLLVALGSRDDIVYVPEPMTYWRVLGASETIANI 100
          EMBOSS_001
            11 -----PGSPSKTRGQIQVILG-----PMFSGKSTELMRRVRRF 43
EMBOSS_001 101 YTTQHRL---
                             -----DQGEISAGDAAVVMTSAQITMGMP- 131
                |:..:|..|::...||..:|:.
       ...|::.
EMBOSS_001
            44 QIAQYKCLVIKYAKDTRYSSSFCTHDRNTMEALPACLLRDVAQEALGVAV 93
EMBOSS_001 132 YAVTDAVLAPHI-----GGEAGSSHAPPPALTLIFDRHPIAALL---- 170
        EMBOSS_001
            171 -----CYPAARYLMGSMTPQAVLAFVALIPPTLPGTNIVLGA 207
EMBOSS_001
            143 AESVVKLTAVCMECFREAAYTKRLGTEKEV-----EVIGG 177
EMBOSS_001
EMBOSS_001
            208 LPEDRHIDRL-----AKRQ------RPGERLDLAMLAAIRRV 238
            178 ADKYHSVCRLCYFKKASGQPAGPDNKENCPVPGKPGEAVAARKLFAPQQI 227
            239 YGLLANTVRYLQCGGSWREDWGQLSGTAVPPQGAEPQSNAGPRPHIGDTL 288
EMBOSS_001
EMBOSS_001
            228 -----LQCSPAN-----
            289 FTLFRAPELLAPNGDLYNVFAWALDVLAKRLRSMHVFILDYDQSPAGCRD 338
EMBOSS 001
            235 ----- 234
EMBOSS 001
           339 ALLQLTSGMVQTHVTTPGSIPTICDLARTFAREMGEAN 376
EMBOSS_001
EMBOSS_001 235 ----- 234
```

Human cytosolic TK1
UniProtKB - P04183 (KITH_HUMAN)
MSCINLPTVLPGSPSKTRGQIQVILGPMFSGKSTELMRRVRRFQIAQYKCLVIKYAKDTR
YSSSFCTHDRNTMEALPACLLRDVAQEALGVAVIGIDEGQFFPDIVEFCEAMANAGKTVI
VAALDGTFQRKPFGAILNLVPLAESVVKLTAVCMECFREAAYTKRLGTEKEVEVIGGADK
YHSVCRLCYFKKASGQPAGPDNKENCPVPGKPGEAVAARKLFAPQQILQCSPAN

Human Herpes Virus 1 TK
UniProtKB - P03176 (KITH_HHV11)
MASYPCHQHASAFDQAARSRGHNNRRTALRPRRQQEATEVRPEQKMPTLLRVYIDGPHGM
GKTTTTQLLVALGSRDDIVYVPEPMTYWRVLGASETIANIYTTQHRLDQGEISAGDAAVV
MTSAQITMGMPYAVTDAVLAPHIGGEAGSSHAPPPALTLIFDRHPIAALLCYPAARYLMG
SMTPQAVLAFVALIPPTLPGTNIVLGALPEDRHIDRLAKRQRPGERLDLAMLAAIRRVYG
LLANTVRYLQCGGSWREDWGQLSGTAVPPQGAEPQSNAGPRPHIGDTLFTLFRAPELLAP
NGDLYNVFAWALDVLAKRLRSMHVFILDYDQSPAGCRDALLQLTSGMVQTHVTTPGSIPT
ICDLARTFAREMGEAN

Fig. S8. Sequence alignment of *Ec* DHFR and Human DHFR and thymidine kinase from human herpes virus 1 and human cytosolic thymidine kinase. Alignment algorithm was done using EMBOSS NEEDLE Pairwise Protein Alignment.