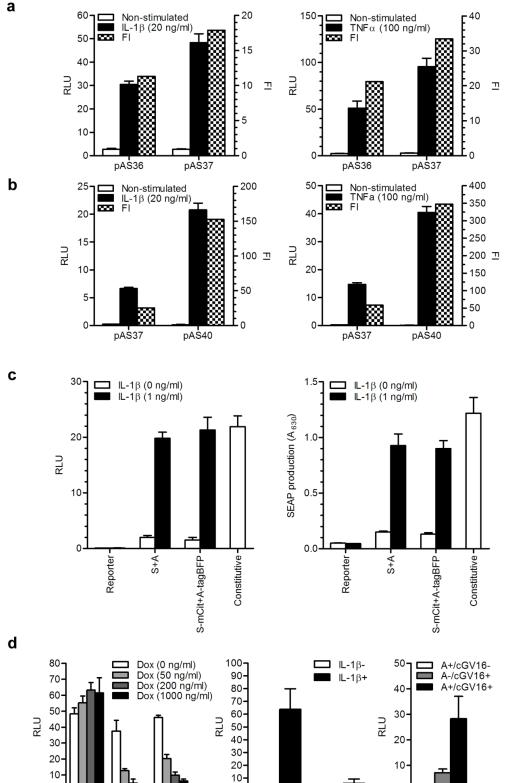
YMTHE, Volume 25

Supplemental Information

A Synthetic Mammalian Therapeutic Gene Circuit

for Sensing and Suppressing Inflammation

Anže Smole, Duško Lainšček, Urban Bezeljak, Simon Horvat, and Roman Jerala


SUPPLEMENTARY FIGURES

0-

0 ng

5 ng

pAS58

0-

Dox -

Dox +

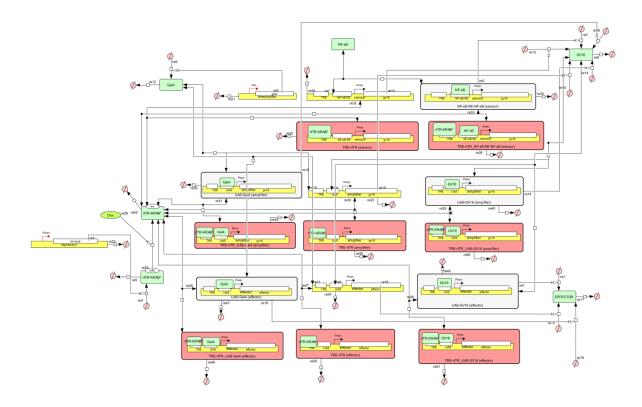
20 ng

0

Dox +

Dox -

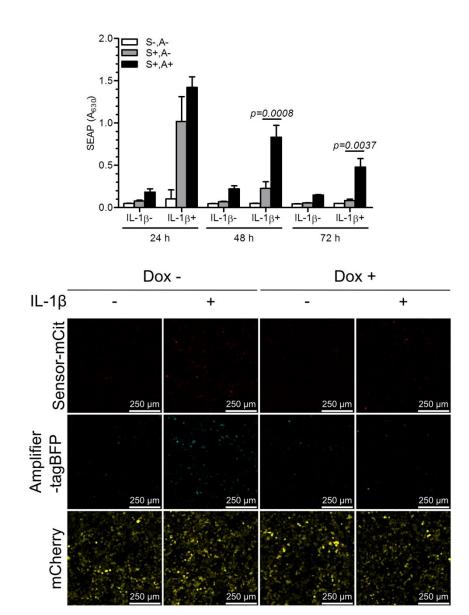
Supplementary Figure 1 Related to Figure 2


Tuning the elements used for constructing the anti-inflammatory device

(a) Optimization of NF- κ B responsive element. HEK 293T cells were transfected with pAS36 or pAS37 and stimulated with 20 ng/mL IL-1 β (left) or 100 ng/mL TNF α (right). After 24 h luciferase activity was measured by dual luciferase test.

(**b**) Optimization of a minimal promoter. HEK 293T cells were transfected with pAS37 or pAS40 and stimulated with 20 ng/mL IL-1 β (left) or 100 ng/mL TNF α (right). After 24 h luciferase activity was measured by dual luciferase test.

(c) The capacity of system activation. Activated anti-inflammatory device supports comparable reporter expression level to the constitutively expressed control (pAS108; P_{CMV} -Luc or pAS109; P_{CMV} -SEAP) as measured by luciferase (left) or SEAP (right). Similarly, sensor and amplifier constructs with 2A peptide-fluorescent protein fusions (pAS97; TRE- $P_{NF-\kappa B2}$ - P_{MIN} -GV16-myc-2A-mCit and pAS98; TRE-UAS- P_{MIN} -GV16-myc-2A-tagBFP) support comparable system activation to the basic sensor and amplifier. For detailed information about transfected plasmids and their amounts in each specific experiment, see Supplementary table 1 and 2, respectively. Error bars indicate s.d. (*n*=4).


(d) Validation of the rtTR-KRAB reset repressor. The constitutively expressed rtTR-KRAB (pAS58; P_{hCMV} -rtTR-NLS-KRAB) represses Gal4-VP16 (plasmid pSGVP)-induced activation of the reporter construct (pAS51; TRE-UAS- P_{MIN} -Luc) in the presence of the increasing concentrations of doxycycline (Dox). In the absence of Dox, pAS58 alone did not significantly influence system activation (left). Activated sensor (middle) and amplifier (right) can also be shut down efficiently.

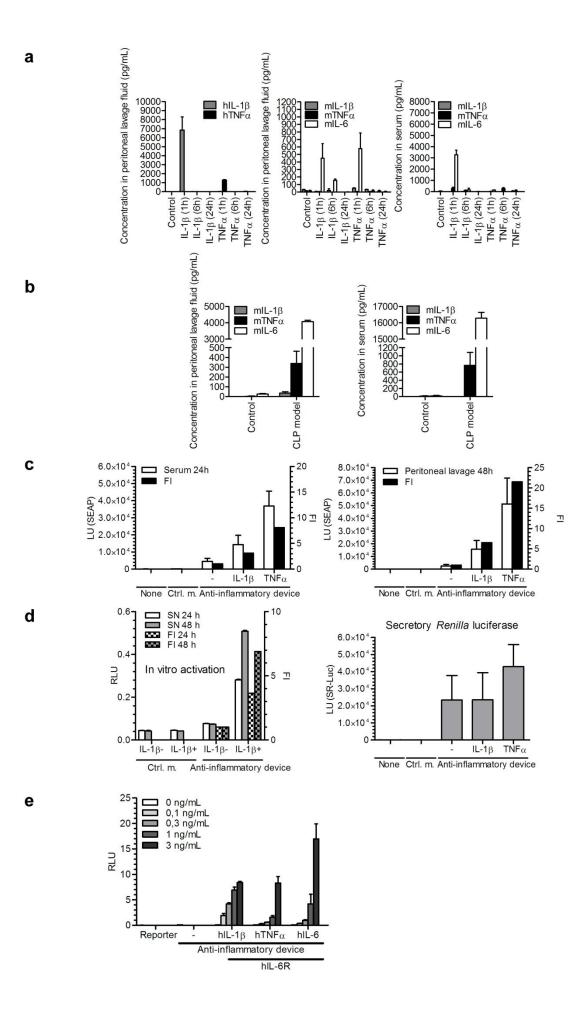

Supplementary Figure 2 Related to the Matematical ODE model

State transition diagram of the genetic circuit.

The state transition diagram of the genetic circuit was constructed using CellDesigner 4.4 software¹³. The state transitions were described with reactions listed in Supplementary Table 5.

a

b


С

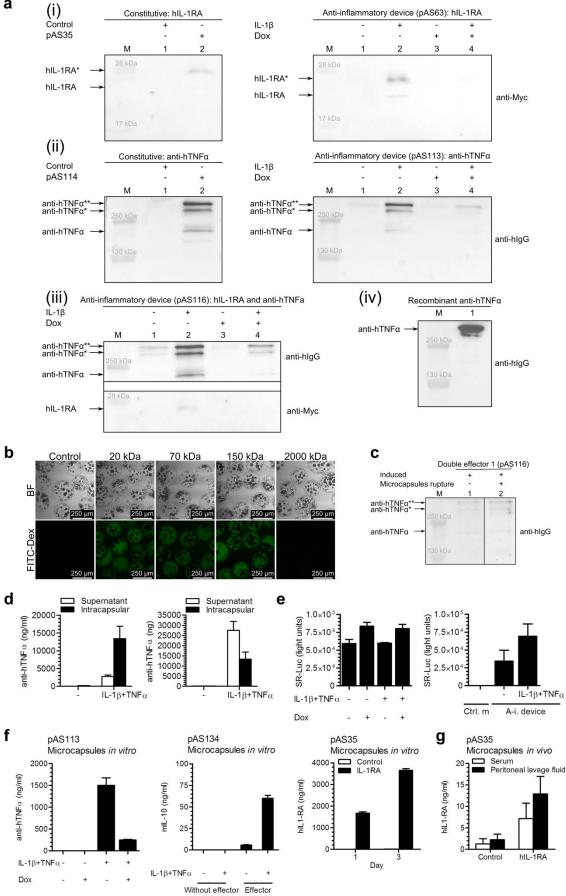
Supplementary Figure 3 Related to Figure 3

(a) Anti-inflammatory device-engineered HEK 293T cells (reporter pAS72; TRE-UAS-P_{MIN}-SEAP) were stimulated with hIL-1 β for 4 h and then input signal was removed by medium exchange. SEAP production was quantified in the culture supernatants every 24 h along with a medium exchange to observe kinetics of a system activation. Compared to sensor alone (grey bars), setup which included also amplifier construct (black bars) yielded stronger system activation at the later time points indicating its role in the sustained system activation. For detailed information about transfected plasmids and their amounts in each specific experiment, see the Tables S1 and S2, respectively. Error bars indicate s.d. (*n*=4).

(b) Demonstration of the system performance by a confocal fluorescence microscopy of antiinflammatory device-engineered HEK 293T cells. Sensor and amplifier constructs were observed directly by in frame fusion via 2A peptide with mCitrine and tagBFP reporter genes, respectively (pAS97; TRE-P_{NF- κ B2}-P_{MIN}-GV16-myc-2A-mCit and pAS98; TRE-UAS-P_{MIN}-GV16-myc-2A-tagBFP). Twenty-four hours after stimulation, mCitrine and tagBFP positive cells were observed only in the presence of interleukin-1 β (IL-1 β) and absence of doxycycline (Dox). mCherry was used as a transfection control.

(c) System functionality is dependent on intracellular Gal4-VP16 transcriptional activator (GV16) meaning it is inevitable that sensor and enhancer are activated in the same cell. Cells were stimulated with IL-1 β for 24 h and then observed by a confocal fluorescence microscopy to demonstrate the simultaneous activation of both constructs in the same cell. For detailed information about transfected plasmids and their amounts in each specific experiment, see the Supplementary Table 1 and 2, respectively. Error bars indicate s.d. (*n*=4).

Supplementary Figure 4 Related to Figure 4


(a) Concentration of human IL-1 β and TNF α in peritoneal lavage fluid (left), mouse IL-1 β , TNF α and IL-6 in peritoneal lavage fluid (middle) or serum (right) of mice, which were injected i.p. with human IL-1 β (300 ng/mouse) or human TNF α (250 ng/mouse) and then sacrificed at different time points.

(b) Concentration of mouse IL-1 β , TNF α and IL-6 in peritoneal lavage fluid (left) and serum (right) of mice 72 h after CLP procedure.

(c) SEAP levels in serum 24 h post implantation and in the peritoneal lavage fluid 48 h post implantation. For detailed information about transfected plasmids and their amounts in each specific experiment, see Supplementary table 1 and 2, respectively. Error bars indicate s.d.

(d) The response of the microencapsulated anti-inflammatory device *in vitro* prior to implantation in mice (left) and secretory *Renilla* luciferase (pAS75; SR-Luc) in peritoneal lavage fluid 48 h after microcapsules implantation. SR-Luc was co-transfected along with the anti-inflammatory device but not with the control microcapsules. SR-Luc is comparable among all groups (right).

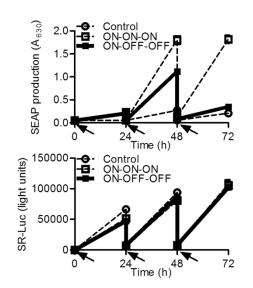
(e) Validation of the chimeric NF- κ B-STAT3 sensor. Cells were transfected with the constructs for the anti-inflammatory device, except for the sensor, where pAS60 (TRE-P_{NF- κ B2}-P_{MIN}-GV16-myc) was replaced by pAS132 (TRE-P_{NF- κ B2-STAT3}-P_{MIN}-GV16-myc). Cells were also transfected with hIL-6 receptor (hIL-6R) where indicated to enable responsiveness to human IL-6. For detailed information about transfected plasmids and their amounts in each specific experiment, see Supplementary table 1 and 2, respectively. Error bars indicate s.d. (*n*=4).

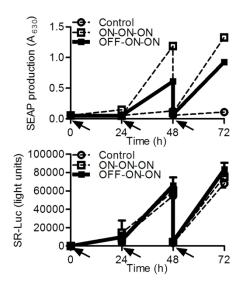
а

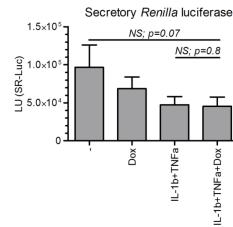
Supplementary Figure 5 Related to Figure 5

(a) Western blot analysis of anti-inflammatory effectors from cell culture. (i) Left: Constitutive (pAS35; P_{cmv} -hIL-1RA-myc); and right: inducible (pAS63; TRE-UAS- P_{MIN} -hIL-1RA) production of human interleukin-1 receptor antagonist (hIL-1RA). (ii) Left: Constitutive (pAS114; P_{CMV} -anti-hTNF α Ab); and right: inducible (pAS113; TRE-UAS- P_{MIN} -anti-hTNF α Ab) production of anti-hTNF α antibody (anti-hTNF α). (iii) Anti-inflammatory devicederived (pAS116; TRE-UAS- P_{MIN} -anti-hTNF α Ab-hIL-1RA) production of hIL-1RA and anti-hTNF α . (iv) Recombinant anti-hTNF α used as a control. Amounts of effectors produced from the anti-inflammatory device are comparable to the amounts from a constitutive expression. Putative glycosylation of hIL-1RA is marked as an asterisk. Anti-hTNF α produced in our system has a putative glycosylation at a heavy chain, resulting in tree bands observed (none, only one or both heavy chains glycosylated, marked as an asterisk). Recombinant control, produced from CHO cells however, shows only one substantial band, implicating that biological activity could not be exactly the same. For detailed information about the transfected plasmids and their amounts in each specific experiment, see Supplementary table 1 and 2, respectively.

(**b**) MWCO of the microcapsules. MWCO was determined by FITC-Dextrane (FITC-Dex) of different molecular weights (20 kDa, 70 kDa, 150 kDa, 2000 kDa). Alginate-PLL-alginate microcapsules were incubated overnight at 37 °C with the FITC-Dex solution (20 μ g/mL) and then they were washed 3 x using MOPS buffer. Immediately after that, we acquired images using confocal fluorescence microscopy.

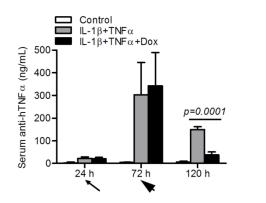

(c) All forms of anti-hTNFα are able to cross the membrane of microcapsules as observed by western blot analysis, where all bands are present in both, ruptured and unruptured microcapsules. Microcapsules were ruptured by injecting the suspension through 23G needle.
(d) Intracapsular amount of anti-hTNFα produced from double effector (pAS116; TRE-UAS-

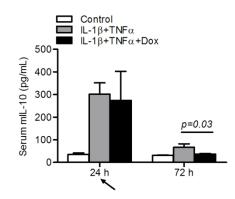

 P_{MIN} -anti-hTNF α Ab-hIL-1RA). Concentration, determined in 10 mL of supernatant or in 1 mL suspension of the same, but previously ruptured microcapsules (left) and total amount of anti-hTNF α (right). For detailed information about transfected plasmids and their amounts in each specific experiment, see Supplementary table 1 and 2, respectively. Error bars indicate s.d. (*n*=3).


(e) Secretory *Renilla* luciferase (SR-Luc) control for the *in vitro* (left) and *in vivo* (right) production of anti-inflammatory proteins. SR-Luc was measured either in ruptured microcapsules for *in vitro* assay or in the peritoneal lavage fluid 48 h after microcapsules implantation. SR-Luc is comparable among all groups. For detailed information about transfected plasmids and their amounts in each specific experiment, see Supplementary table 1 and 2, respectively. Error bars indicate s.d. (n=4).

(f) Production of anti-inflammatory effectors from different constructs and different regimes as indicated in the figure. For detailed information about transfected plasmids and their amounts in each specific experiment, see Supplementary table 1 and 2, respectively. Error bars indicate s.d. (n=4).

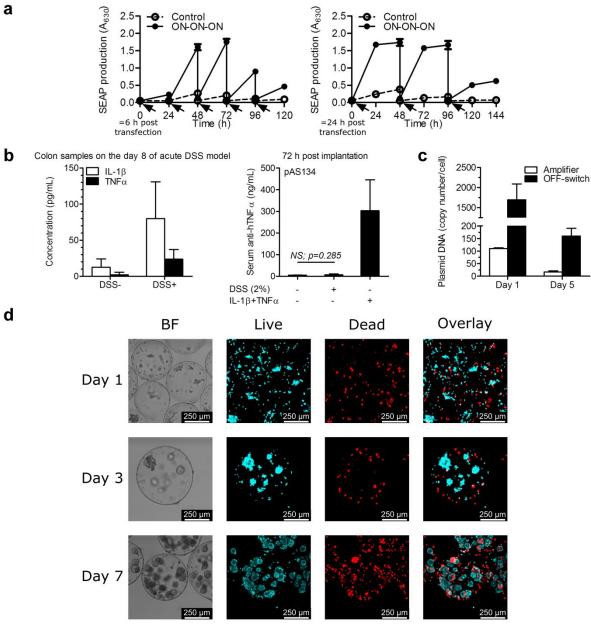
(g) Constitutive *in vivo* production of hIL-RA from the construct pAS35; P_{cmv} -hIL-1RA-myc. For detailed information about transfected plasmid and its amount see Supplementary table 1 and 2, respectively. Error bars indicate s.d. (*n*=4).

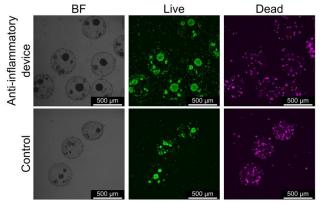




С

d


Supplementary Figure 6 Related to Figure 6


(a) The reversibility of the synthetic anti-inflammatory device. Upper left panel: Raw SEAP measurements for in vitro shutdown of the system. Anti-inflammatory device-engineered HEK 293T cells (reporter pAS72; TRE-UAS-P_{MIN}-SEAP) were stimulated with interleukin-1β (IL-1β, 1 ng/mL) 6 h after transfection (marked as ON) or left unstimulated (marked as control). 24 h after first stimulation, supernatant containing SEAP was collected and medium was exchanged (indicated by arrows) or in addition, cells were stimulated with IL-1 β (1 ng/mL) (marked as ON) or shut down by doxycycline (Dox, 1 µg/mL) (marked as OFF). 48 h and 72 h after first stimulation, procedure was repeated. Upper right panel: Raw SEAP measurements for in vitro rebooting of the system shutdown. Anti-inflammatory deviceengineered HEK 293T cells (reporter pAS72; TRE-UAS-P_{MIN}-SEAP) were stimulated with IL-1 β (1 ng/mL) 6 h after transfection (marked as ON), shut down by Dox (1 μ g/mL) (marked as OFF) or left unstimulated (marked as control). 24 h after first stimulation, supernatant containing SEAP was collected and medium was exchanged (indicated by arrows) or in addition, cells were stimulated with IL-1B (1 ng/mL) (marked as ON) or left unstimulated (Control). Lower panel: Secretory Renilla luciferase (SR-Luc) used for an internal control. Secretory Renilla luciferase is comparable among all groups at any time point in in vitro reversibility test.

(b) SR-Luc corresponding to the *in vivo* restraint of the full system activation

(c, d) Shut down of the anti-inflammatory device *in vivo*. The data represent concentrations corresponding to the results represented in Fig. 6c and 6d. The anti-inflammatory device-engineered HEK 293T cells (effector pAS134; TRE-UAS-P_{MIN}-anti-hTNF α Ab-mIL-10) were microencapsulated, implanted i.p. and fully activated by injection of a combination of 300 ng of hIL-1 β and 250 ng of hTNF α per mouse. After 24 h (thin arrow) the device was shut down by an i.v. Dox injection (20 mg/kg). (c) The device was additionally activated and

shut down after 72 h (thick arrow) to reach the relevant time span needed for an observation of the anti-hTNF α antibody kinetics. Serum was collected at different time points and anti-hTNF α antibody or mIL-10 levels were measured.

е

Supplementary Figure 7 Related to Figure 7

(a) A decrease in the system's capacity due to the transient nature of the system. Left: The anti-inflammatory device-engineered HEK 293T cells (reporter pAS72; TRE-UAS-P_{MIN}-SEAP) were stimulated with hIL-1 β (1 ng/mL) every 24 h by exchanging the medium (indicated by the arrows). The experiment was started 6 h post transfection, which was represented by 0 h time point. The kinetics of SEAP production was measured every 24 h. Right: The anti-inflammatory device-engineered HEK 293T cells (reporter pAS72; TRE-UAS-P_{MIN}-SEAP) were stimulated with hIL-1 β (1 ng/mL) every 48 h by exchanging the medium (indicated by the arrows). The experiment was started 24 h post transfection, which was represented by 0 h time point. The kinetics of SEAP production was measured every 24 h.

(b) DSS-induced colitis increased endogenous inflammatory cytokines in the supernatants of colon biopsy samples but does not activate the device. Left: Concentration of endogenous mIL-1 β and mTNF α in the supernatants of colon biopsy samples on the 8th day of DSS-induced acute colitis (*n*=6 biopsy samples per mouse, 2 mice per group) Right: The activation of the implanted anti-inflammatory device by DSS. The mice were given either water or 2 % DSS for 8 days and on the 5th day of this time-course experimental model, the microcapsules containing anti-inflammatory device-engineered cells (effector construct pAS134; TRE-UAS-P_{MIN}-anti-hTNF α Ab-mIL-10, Supplementary Table 1) were implanted i.p. Positive control group was stimulated with a combination of 300 ng of hIL-1 β and 250 ng of hTNF α per mouse 1 h post implantation. Concentration of anti-hTNF α was measured 72 h post implantation (on the 8th day of the experimental colitis model) (*n*=3).

(c) A decrease in the system's capacity due to the transient nature of the system. HEK 293T cells were transfected according to the Supplementary Table 2 and lysed after 1 or 5 days. Samples were analyzed by real-time quantitative PCR using the primers to specifically

amplify the amplifier or the inducible OFF-switch constructs. The plasmid copy number in the samples was estimated from the standard curves of the known amounts of the respective constructs spiked into the lysate and recalculated per cell (n = 2 biological replicates tested at 2 different dilutions of the respective lysate).

(**d**) Confocal fluorescence microscopy of the microcapsules in the *in vitro* culture as observed 1, 3 or 7 days after microencapsulation procedure. A large majority of the microencapsulated cells remained viable and divided as observed by aggregates formed. Live and dead cells were stained with Hoechst and propidium iodide, respectively.

(e) Confocal fluorescence microscopy of the microcapsules after having been implanted in peritoneal cavity of mice for 3 days. Cells remain viable during the course of the experiments, conducted in this study. Live and dead cells were stained with Hoechst and propidium iodide, respectively.

EXTENDED EXPERIMENTAL PROCEDURES

The ability of antibody molecules to transverse the alginate-PLL-alginate membrane

Anti-hTNF α antibody is a glycosylated, 150 kDa molecule and since the ability of antibody molecules to transverse the alginate-PLL-alginate membrane is somewhat controversial^{1,2}, we investigated whether the anti-hTNF α is able to cross the membrane of microcapsules in our system. First, we have shown that 20 kDa, 70 kDa and also 150 kDa, but not 2000 kDa FITC-Dextrane molecules are able to cross the membrane (Supplementary Fig. 5b). Next, we have shown that glycosylated, higher molecular mass forms of the antibody are secreted from the microcapsules, since we detected corresponding bands in the western blot analysis of either intact or ruptured microcapsules (Supplementary Fig. 5c). The intracapsular concentration of anti-hTNF α was released into the supernatant (Supplementary Fig. 5d).

Confocal fluorescence microscopy related to Supplementary Fig. 3b, 3c, 5b and 7

For the *in vitro* direct observation of the system's performance, HEK 293T cells were seeded onto 8-well microscopic chambers (Ibidi) at a density of 5 x 10^4 cells per well. Cells were transfected with the constructs pAS97 (observation of the sensor activity) and/or pAS98 (observation of the amplifier activity), pAS72, pAS67, pAS58, pAS75 and pmCherry-C1 (detailed description in the Supplementary Table 1). 4 h after transfection, doxycycline (1 µg/mL) was added to the samples, which we wanted to shut down. 24 h after transfection, the system was stimulated with human IL-1 β (R&D Systems, Inc., Minneapolis, USA) at a final concentration of 1 ng/mL. 4 h after stimulation, medium was removed and cells were washed 3 x using fresh medium to remove an input signal. After 24 h, the responsiveness of the system was visualized and microscopic images were acquired using the Leica TCS SP5 inverted laser-scanning microscope on a Leica DMI 6000 CS module equipped with a HCX PL Fluotar L 20 x, numerical aperture 0.4 (Leica Microsystems, Wetzlar, Germany). A 514-

nm laser line of a 100-mW argon laser with 25 % laser power was used for mCitrine excitation, and the emitted light was detected between 520 and 580 nm. A 50-mW 405-nm diode laser was used for tagBFP excitation and the emitted light was detected between 420 and 460 nm. A 1-mW 543-nm HeNe laser was used for mCherry excitation and the emitted light was detected between 560 and 630 nm. Leica LAS AF software was used for acquisition and ImageJ software was used for image processing.

To determine an approximate MWCO of the microcapsules, we observed the permeability of microcapsules for fluorescein isothiocyanate-dextran (FITC-Dex, Sigma Aldrich) of different molecular weights (20 kDa, 70 kDa, 150 kDa and 2000 kDa). Alginate-PLL-alginate microcapsules were incubated overnight at 37 °C with the FITC-Dex solution (20 μ g/mL) and then they were washed 3 x using MOPS buffer. Immediately after that, we acquired images using confocal fluorescence microscopy. A 488 Argon laser was used for FITC-Dex excitation and the emitted light was detected between 502 and 553 nm.

To observe integrity of microcapsules and viability of cells after 3 day *in vivo* experiment we made peritoneal lavage and collected microcapsules. We stained microcapsules with Hoechst at a final concentration of 1 μ g/mL (ImmunoChemistry Technologies, LLC, 639) for live cells and propidum iodide at a final concentration of 0.6 μ g/mL (Sigma Aldrich, P4864) for dead cells. After 30 min incubation at 37 °C, images were acquired. A 1-mW 543-nm HeNe laser was used for propidium iodide excitation and the emitted light was detected between 600 and 670 nm. A 405 Diode laser was used for Hoechst excitation and the emitted light was detected between 429 and 509 nm. The same procedure was followed for the visualization of the microencapsulated cells after 1, 3 and 7 days in the *in vitro* culture.

Cytokine detection related to Supplementary Fig. 4a, 4b and 7b

Serum and peritoneal lavage fluid of mice were collected as described in the Materials and Methods section (Animal Models) in the main article. Colon biopsy samples were prepared by following the described³ "Full-thickness organ culture" method to determine a concentration of inflammatory cytokines in the supernatants. Inflammatory cytokine levels were measured by a sandwich ELISA according to the manufacturer's instructions (eBioscience) as follows: human IL-1 β was detected by human IL-1 beta ELISA Ready-SET-Go! (eBioscience, 88-7010), human TNF- α by human TNF alpha ELISA Ready-SET-Go! (eBioscience, 88-7346), mouse IL-1 β by mouse IL-1 beta ELISA Ready-SET-Go! (eBioscience, 88-7346), mouse IL-1 β by mouse TNF alpha ELISA Ready-SET-Go! (eBioscience, 88-7013), mouse TNF α by mouse TNF alpha ELISA Ready-SET-Go! (eBioscience, 88-7324), mouse IL-6 by mouse IL-6 ELISA Ready-SET-Go! (eBioscience, 88-7064).

Western blotting related to Supplementary Fig. 5a and 5c

Supernatants from pAS35 (CMV promoter-driven hIL-1RA-myc production), pAS113 (NF- κ B-driven anti-hTNF α antibody expression), pAS114 (CMV promoter-driven anti-hTNF α antibody) and pAS116 (NF- κ B-driven anti-hTNF α antibody-hIL-1RA-myc double effector expression unit) (detailed description in the Supplementary Table 1) were analyzed for hIL-RA-myc and anti-hTNF α antibody expression. 30 µL of a cell culture supernatant, expressing certain protein was mixed with 4xSDS buffer without reducing agent, boiled for 5 min at 95 °C and centrifuged at 14000g for 3 min. Proteins were resolved on 12 % SDS-PAGE and analyzed by a standard western blotting procedure. hIL-1RA-myc was detected by rabbit anti-myc IgG primary antibody (1: 500) (Sigma Aldrich, C3956) and goat polyclonal to rabbit IgG (HRP) secondary antibody (1: 3000) (Abcam, ab6721), while anti-hTNF α antibody was detected by rabbit polyclonal secondary antibody to human IgG – H and L (HRP) (1: 3000) (Abcam, ab 6759). Recombinant anti-hTNF- α -hIgG1 (InvivoGen, htnfa-mab1) and an empty vector pcDNA3.1 were used as controls.

Estimation of the plasmid copy number per cell related to Supplementary Fig. 7c

A decrease in the system's capacity due to the transient nature of the transfection was estimated by real-time quantitative PCR analysis. HEK 293T cells were seeded in 10 cm tissue culture petri dish (TPP), transfected at 50-70 % confluency according to the Supplementary Table 2, washed with PBS twice, trypsinized and collected by centrifugation (1400 rpm, 8 min) 1 or 5 days post transfection. The number of cells was determined by Trypan blue staining. Cell lysis was performed by resuspending the pellet in 500 µL MQ, incubation at 4 °C for 12 h, freezing at -70 °C, boiling at 95 °C for 10 min and centrifugation (12000 rpm, 20 min). Supernatants were transferred to fresh tubes and stored for analysis at -20 °C. Samples were diluted 1000-fold or 10000-fold and analyzed by real-time quantitative PCR using the primers to specifically amplify the plasmid encoding the amplifier (F: 5'-ACTGTCCTCCGAGAGATCTTAGAGGG-3' R: 5'-GCGACACTCCCAGTTGTTCTTCAG-3') the inducible OFF-switch or (F: 5'-5'-CTCCAGCATCACATTTCTGTACACG-3') GGCGGTGGTGCTTTGTCTCC-3' R: constructs. Real-time PCR was performed using Power SYBR Green PCR Master Mix (Roche) in a Roche LightCycler® 480. Known amounts of the corresponding plasmids were spiked into the 1000-fold or 10000-fold diluted lysate of the non-transfected cells (prepared as described above) to obtain the standard curves (C_t plotted against log plasmid copy number) under the same cycling conditions. The plasmid copy number in the samples was estimated from the standard curves and recalculated per cell.

Name of	Description of gene construct	Reference
the plasmid		
pISRE-Luc	Mammalian expression vector encoding P _{ISRE} -P _{TAL} -driven luciferase expression unit	Clontech
	(P _{ISRE} -P _{TAL} -Lucuferase-pA). pISRE-Luc contains five copies of the ISRE-binding	
	sequence, located upstream of the TATA-like promoter (P_{TAL}) region from the herpes	
	simplex virus thymidine kinase (HSV-TK) promoter.	
pcDNA3.1	Mammalian expression vector (P _{CMV} -MCS-pA)	Life
		Technologies
pFLAG-	Mammalian expression vector for secretory proteins (P _{CMV} -preprotrypsin leader sequence-	Sigma Aldrich
CMV3	flag-tag-MCS-pA)	
pMF208	Mammalian expression vector encoding SV40-PIR3-driven SEAP expression (P _{PIR} ON-	Kindly
	SEAP- pA) ⁴	provided by
		Professor Dr.
		Martin
		Fussenegger
		(Institute of
		Biotechnology,
		Swiss Federal
		Institute of
		Technology,
		ETH Zürich) ⁴
phRL-TK	Mammalian expression vector for constitutive HSV-TK-promoter-driven renilla luciferase	Promega
	expression (phRL-TK-rLuc)	
pSGVP	Mammalian expression vector for constitutive SV40 promoter-driven GV16 expression	Kindly
	(GV16 is Gal4-VP16 transcriptional activator).	provided by
		Professor Dr
		Mark
		Ptashne
		(Memorial
		Sloan Kettering
		Cancer Center,
		New York, NY,

Supplementary Table 1. Genetic constructs used and designed in this study

		USA) ⁵
pLVPT-	Lentiviral vector containing rtTR-NLS-KRAB (reverse tetracycline repressor fused to	(plasmid
rtTR-	nuclear localization signal and KRAB transcription repression domain)	11652,
KRAB-		Addgene) ⁶
2SM2		
pMF111	Mammalian expression vector pTBC1 encoding tetracycline-responsive element TetO7-	Kindly
	driven SEAP expression.	provided by
		Professor Dr.
		Martin
		Fussenegger
		(Institute of
		Biotechnology,
		Swiss Federal
		Institute of
		Technology,
		ETH Zürich) ⁷
pmCherry-	Mammalian expression vector encoding constitutive CMV promoter-driven expression of	Clontech
C1	pmCherry-C1 (Clontech). Plasmid ensures constitutive expression of mCherry, and was	
	used to normalize levels of transfection in confocal microscopy experiments.	
pORF9-	Mammalian expression vector for constitutive hEF1/HTLV promoter-driven human IL6R	InvivoGen
hIL06Ra	(IL-6 receptor, isoform 1) expression.	
pAS34	Mammalian expression vector encoding constitutive HSV-TK promoter-driven hIL-1RA-	This work
	myc expression unit (P _{HSV-TK} -hIL-1RA-myc). hIL-1RA was PCR amplified from pORF9-	
	hIL1RNa (InvivoGen, commercially available vector) (5'-	
	caggaagettggcattccggtactgttggtaaagccaccATGGAAATCTGCAGAGGCCTCCGC-3', 5'-	
	$ggcc \underline{tctaga} attacagatcctcttcagagatgagtttctgctcCTCGTCCTCGGAAGTAGAATTTGGTG$	
	ACC-3') adding C-terminal myc-tag and cloned into the corresponding sites	
	(HindIII/XbaI) of phRL-TK, replacing chimeric intron-renilla luciferase cassette.	
pAS35	Mammalian expression vector encoding constitutive CMV promoter-driven hIL-1RA-myc	This work
	expression unit (P _{cmv} -hIL-1RA-myc). hIL-1RA was PCR amplified from pORF9-hIL1RNa	
	(InvivoGen, commercially available vector) (5'-	
	caggaagcttCGACCCTCTGGGAGAAAATCCAGC-3', 5'-	
	$ggcc \underline{tctaga} attacagatcctcttcagagatgagtttctgctcCTCGTCCTCGGAAGTAGAATTTGGTG$	

	ACC-3') omitting signal sequence but adding C-terminal myc-tag and cloned into the	
	corresponding sites (HindIII/XbaI) of pFLAG-CMV3, creating secretory of hIL-1RA	
	(preprotrypsin leader sequence).	
pAS36	Mammalian expression vector encoding $P_{NF-\kappa B1}$ - P_{TAL} -driven luciferase expression unit	This work
	$(P_{NF-\kappa B1}-P_{TAL}-Luc)$. The NF- κB responsive element (sequence:	
	GGGAATTTCCGGGAATTTCCGGGAATTTCCGGGAATTTCC) was cloned into the	
	corresponding sites (NheI/BgIII) of the pISRE-Luc vector, replacing the P _{ISRE} .	
pAS37	Mammalian expression vector encoding $P_{NF-\kappa B2}$ - P_{TAL} -driven luciferase expression unit	This work
	$(P_{NF-\kappa B2}-P_{TAL}-Luc).$	
	The NF-KB responsive element (sequence:	
	GGGAATTTCCGGGGACTTTCCGGGGAATTTCCGGGGACTTTCCGGGAATTTCC)	
	was cloned into the corresponding sites (NheI/BgIII) of the pISRE-Luc vector, replacing	
	the P _{ISRE} .	
pAS40	Mammalian expression vector encoding P _{NF-kB2} -P _{MIN} -driven luciferase expression unit	This work
	$(P_{NF-\kappa B2}-P_{MIN}-Luc)$. We excised P_{TAL} from pAS37 with BgIII/HindIII and replaced it with	
	P _{MIN} minimal promoter (sequence:	
	TAGAGGGTATATAATGGAAGCTCGACTTCCAG).	
pAS44	Mammalian expression vector encoding P _{NF-κB2} -P _{MIN} -driven GV16-myc expression unit	This work
	(GV16-myc, Gal4-VP16 transcriptional activator with C-terminal myc-tag,) ($P_{NF-\kappa B2}$ - P_{MIN} -	
	GV16-myc). GV16 was PCR amplified from pSGVP vector adding C-terminal myc-tag	
	with the reverse primer (5'-	
	caggaagettggcattccggtactgttggtaaagccaccATGAAGCTACTGTCTTCTATCGAACAAGC-	
	3' and 5'-	
	$ggcc \underline{tctaga} attacagatcctcttcagagatgagtttctgctcCCCACCGTACTCGTCAATTCCAAGGGC-barrier attacagatcctcttcagagatgagtttctgctcCCACCGTACTCGTCAATTCCAAGGGC-barrier attacagatcctcttcagagatgagtttctgctcCCACCGTACTCGTCAATTCCAAGGGC-barrier attacagatgagtttctgctcCCACCGTACTCGTCAATTCCAAGGGC-barrier attacagatgagtttctgctccCCACCGTACTCGTCAATTCCAAGGGC-barrier attacagatgagtttctgctccCCACCGTACTCGTCGTCAATTCCAAGGGC-barrier attacagatgagtttctgctccCCACCGTACTCGTCGTCAATTCCAAGGGC-barrier attacagatgagtttctgctccCCACCGTACTCGTCGTCAATTCCAAGGGC-barrier attacagatgagtttctgctccCCACCGTACTCGTCGTCGTCAATTCCAAGGGC-barrier attacagatgagtgagtgagtgagtgagtgagtgagtgag$	
	3') and cloned into the corresponding sites (HindIII/XbaI) of pAS40, replacing the	
	luciferase expression unit.	
pAS48	Mammalian expression vector encoding P _{NF-kB2} -P _{MIN} -driven GV16 expression unit (GV16,	This work
	Gal4-VP16 transcriptional activator) (P _{NF-кB2} -P _{MIN} -GV16). GV16 was PCR amplified from	
	pSGVP vector (5'-	
	caggaagettggcattccggtactgttggtaaagccaccATGAAGCTACTGTCTTCTATCGAACAAGC-	
	3' and 5'-ggcctctagaaTTACCCACCGTACTCGTCAATTCCAAGGGC-3') and cloned	
	into the corresponding sites (HindIII/XbaI) of pAS40, replacing the luciferase expression	

	unit.	
pAS49	Mammalian expression vector encoding UAS-P _{MIN} -driven luciferase expression unit.	This work
	Luciferase is expressed only in the presence of GV16, which binds to UAS sequence (5	
	consecutive Gal4 binding sites), placed directly upstream P_{MIN} (UAS- P_{MIN} -Luc, UAS,	
	upstream activatory sequence). UAS (sequence:	
	CGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTC	
	CGAGCGGAGTACTGTCCTCCGAGCGGAGTACTGTCCTCCGAG) was cloned into	
	the corresponding sites (NheI/BglII) of pAS40, replacing the $P_{NF-\kappa B2}$.	
pAS51	Mammalian expression vector encoding TRE-UAS-P _{MIN} -driven luciferase expression unit	This work
	(TRE-UAS-P _{MIN} -Luc). Luciferase could be repressed by rtTR-NLS-KRAB-2SM2 which	
	binds to 7 consecutive Tet-binding sites (Tet-responsive element; TRE) placed directly	
	upstream UAS in the presence of doxycycline. TRE was PCR-amplified from pMF111 (5'-	
	ggccggtaccCTCGAGTTTACCACTCCC-3', 5'-	
	ggccgctagcGAGCTCGACTTTCACTTTTCTC-3') and cloned into the corresponding sites	
	(KpnI/NheI) directly upstream UAS of pAS49.	
pAS53	Mammalian expression vector encoding UAS-P _{MIN} -driven GV16 expression unit (UAS-	This work
	P_{MIN} -GV16). The construct is based on a positive feedback loop of an orthogonal	
	transcriptional activator GV16, which amplifies its own transcription by binding UAS	
	placed directly upstream P _{MIN} . GV16 was PCR amplified from pSGVP vector (5'-	
	$cagg \underline{aagcttg} gcattccgg tactgttgg taaagccaccATGAAGCTACTGTCTTCTATCGAACAAGC-$	
	3' and 5'-ggcctctagaaTTACCCACCGTACTCGTCAATTCCAAGGGC-3') and cloned	
	into the corresponding sites (HindIII/XbaI) of pAS49, replacing the luciferase expression	
	unit.	
pAS54	Mammalian expression vector encoding UAS-P _{MIN} -driven GV16-myc expression unit	This work
	(UAS- P_{MIN} -GV16-myc). The construct is based on a positive feedback loop of an	
	orthogonal transcriptional activator GV16, which amplifies its own transcription by	
	binding UAS placed directly upstream P_{MIN} . GV16 was PCR amplified from pSGVP	
	vector adding C-terminal myc-tag with the reverse primer (5'-	
	$cag \underline{gaagettg} gcattccggtactgttggtaaagccaccATGAAGCTACTGTCTTCTATCGAACAAGC-$	
	3' and 5'-	
	$ggcc \underline{tctaga} attacagatcctcttcagagatgagtttctgctcCCCACCGTACTCGTCAATTCCAAGGGC-barrier and a tctacagatcctcttcagagatgagtttctgctcCCACCGTACTCGTCAATTCCAAGGGC-barrier and a tctacagatgagtttctgctcCCACCGTACTCGTCAATTCCAAGGGC-barrier and a tctacagatgagtttctgctcCCACCGTACTCGTCAATTCCAAGGAGTACTCGTCAATTCCAAGGAGTAGAGTAGAGAGAG$	
	3') and cloned into the corresponding sites (HindIII/XbaI) of pAS49, replacing the	
	luciferase expression unit.	

-		
pAS58	The inducible off-switch construct. Mammalian expression vector encoding constitutive	This work
	CMV-promoter-driven rtTR-NLS-KRAB expression (P _{CMV} -rtTR-NLS-KRAB). rtTR-	
	NLS-KRAB binds 7 consecutive Tet-binding sites (Tet-responsive element; TRE) and	
	silences gene expression several kilobases upstream and downstream only in the presence	
	of a doxycycline. rtTR-NLS-KRAB-2SM2 was PCR-amplified from pLVPT-rtTR-KRAB-	
	2SM2 (5'-	
	ggccggtaccGCCACCATGGCTAGACTGGACAAGAGCAAAGTCATAAACGGC-3', 5'-	
	ccgggaattcTTAAACTGATGATTTGATTTCAAATGCAGTCTCTGAATCAGG-3') and	
	cloned into the corresponding sites (KpnI/EcoRI) of pcDNA3.1.	
pAS60	The sensor construct. Mammalian expression vector encoding TRE-P _{NF-кB2} -P _{MIN} -driven	This work
	GV16-myc expression unit (TRE- $P_{NF-\kappa B2}$ - P_{MIN} -GV16-myc). TRE was PCR-amplified from	
	pMF111 (5'-ggccggtaccCTCGAGTTTACCACTCCC-3', 5'-	
	ggccgctagcGAGCTCGACTTTCACTTTTCTC-3') and cloned into the corresponding sites	
	(KpnI/NheI) directly upstream UAS of pAS44.	
pAS62	The amplifier construct. Mammalian expression vector encoding TRE-UAS-P _{MIN} -driven	This work
	GV16-myc expression unit (TRE-UAS-P _{MIN} -GV16-myc). TRE was PCR-amplified from	
	pMF111 (5'-ggccggtaccCTCGAGTTTACCACTCCC-3', 5'-	
	ggccgctagcGAGCTCGACTTTCACTTTTCTC-3') and cloned into the corresponding sites	
	(KpnI/NheI) directly upstream UAS of pAS54.	
pAS63	Mammalian expression vector encoding TRE-UAS-P _{MIN} -driven human IL-1RA expression	This work
	unit (TRE-UAS-P _{MIN} -hIL-1RA). hIL-1RA was excised from pAS34 using HindIII/XbaI	
	and cloned into the corresponding sites of pAS51 vector, replacing luciferase cassette.	
pAS67	The positive feedback "thresholder" construct. Mammalian expression vector encoding	This work
	constitutive HSV-TK promoter-driven Gal4-myc expression unit (P_{HSV-TK} -G-myc). Gal4	
	was PCR amplified from pSGVP adding C-terminal myc-tag with the reverse primer (5'-	
	$cagg \underline{aagctt} gg cattccgg tactgttgg taa agccacc ATGAAGCTACTGTCTTCTATCGAACAAGC-$	
	3', 5'-	
	$ggcc \underline{tctaga} attacagatcctcttcagagatgagtttctgctcCGATACAGTCAACTGTCTTTGACC-3')$	
	and cloned into the corresponding sites (HindIII/XbaI) of phRL-TK, replacing chimeric	
	intron-renilla luciferase cassette.	
pAS72	Mammalian expression vector encoding TRE-UAS-P _{MIN} -driven secretory alkaline	This work
	phosphatase (SEAP) expression unit (TRE-UAS-P _{MIN} -SEAP). SEAP was PCR-amplified	
	from pMF208 ⁴ vector (5'-	

	gtctaagcttggcattccggtactgttggtaaagccaccATGCTGCTGCTGCTGCTGCTGCTGGGCC-3',	
	5'-ggccactagtttatcaTGTCTGCTCGAAGCGGCCGGCC-3'), digested with HindIII/SpeI	
	and cloned into the HindIII/XbaI digested pAS62, thereby giving SpeI/XbaI mixed site at	
	3', replacing GV16-myc.	
pAS75	Mammalian expression vector encoding CMV-driven secretory renilla luciferase (SR-Luc)	This work
	expression unit (P _{CMV} -SR-Luc). Renilla luciferase was PCR-amplified from phRL-TK (5'-	
	ggccaagettGCTTCCAAGGTGTACGACCCCG-3', 5'-	
	ccggtctagaaTTACTGCTCGTTCTTCAGC-3') and cloned into the corresponding sites	
	(HindIII/XbaI) of pFLAG-CMV3, creating secretory form of renilla luciferase	
	(preprotrypsin leader sequence).	
pAS97	Mammalian expression vector encoding TRE-P _{NF-kB2} -P _{MIN} -driven GV16-myc-2A-mCitrine	This work
1	expression unit (TRE-P _{NF-kB2} -P _{MIN} -GV16-myc-2A-mCit). 2A-mCit was PCR-amplified	
	(5'-	
	CATCTCTGAAGAGGATCTGggcgccggaagcggaGAGGGGAGAGGAAGTCTTCTGAC	
	CGGCCGGCCGCCCGAC <u>TCTAGA</u> ATTAgcgcgcCTTGTACAGCTCGTCCATGCCG	
	3') from	
	10x[b]_14_[CMV]_12_TALA:KRAB:t2A:mCit ⁸ and pAS60 was PCR amplified (5'-	
	CGGCATGGACGAGCTGTACAAGgcgcgcTAATTCTAGAGTCGGGGGGGGGCGGCC-3', 5'-	
	-3'). Both fragments were assembled using Gibson assembly method ⁹ , introducing 2A-	
	mCit cassette into the sensor construct downstream of GV16-myc. 2A amino acid	
	sequence: GSGEGRGSLLTCGDVEENPGP ¹⁰ .	
pAS98	Mammalian expression vector encoding TRE-UAS-P _{MIN} -driven GV16-myc-2A-tagBFP	This work
	expression unit (TRE-UAS-P _{MIN} -GV16-myc-2A-tagBFP). First, 2A-TagBFP was PCR	
	amplified (5'-atcgggcgccggaagcggaGAGGGGAGAGGAAGTCTTCTGACCTGCGG-3',	
	5'-cgatgcgcgcATTGAGCTTGTGCCCCAGTTTGCTAGGGAGG-3') from	
	10x[a]_14_[CMV]_12_TALB:KRAB:t2A:BFP ⁸ and ligated into the corresponding sites	
	(KasI/BssHII) of pAS97. Then this construct was digested with EcoRI/XbaI and ligated	
	into the corresponding sites of pAS62, introducing 2A-tagBFP cassette into the amplifier	
	construct downstream of GV16-myc. 2A amino acid sequence:	
	GSGEGRGSLLTCGDVEENPGP ¹⁰ .	
pAS108	Mammalian expression vector for constitutive CMV promoter-driven luciferase expression	This work

	(P _{CMV} -Luc). CMV promoter was excised from pcDNA3.1 using BglII/HindIII and cloned	
	into the corresponding sites of pAS51 vector, replacing P_{MIN} .	
pAS109	Mammalian expression vector for constitutive CMV promoter-driven SEAP expression	This work
	(P _{CMV} -SEAP). CMV promoter was excised from pcDNA3.1 using BglII/HindIII and	
	cloned into the corresponding sites of pAS72 vector, replacing P_{MIN} .	
pAS113	Mammalian expression vector encoding TRE-UAS- P_{MIN} -driven anti-hTNF α antibody	This work
	expression unit (TRE-UAS- P_{MIN} -anti-hTNF α Ab). Anti-hTNF α antibody was excised	
	from pAS117 using HindIII/XbaI and cloned into the corresponding sites of pAS51 vector,	
	replacing luciferase cassette.	
pAS114	Mammalian expression vector encoding constitutive CMV promoter-driven anti-hTNFα	This work
	antibody (P_{CMV} -anti-hTNF α Ab). Anti-hTNF α antibody was excised from pAS117 using	
	HindIII/XbaI and cloned into the corresponding sites of pcDNA3.1 vector.	
pAS115	Mammalian expression vector encoding TRE-UAS-P _{MIN} -driven anti-hTNFα antibody-2A-	This work
	tagBFP expression unit (TRE-UAS- P_{MIN} -GV16-myc-2A-anti-hTNF α Ab). Anti-hTNF α	
	antibody was excised from pAS117 using HindIII/KasI and cloned into the corresponding	
	sites of pAS98 vector, replacing GV16-myc cassette.	
pAS116	Mammalian expression vector encoding TRE-UAS-P _{MIN} -driven anti-hTNFα antibody-hIL-	This work
	1RA-myc double effector expression unit (TRE-UAS- P_{MIN} -anti-hTNF α Ab-hIL-1RA;	
	DE1).	
	hIL-1RA was PCR amplified from pORF9-hIL1RNa (InvivoGen, commercially available	
	vector) (5'-	
	$gtct \underline{ggcgcc} gaagcggagagggggggggggggggggggggg$	
	ATCTGCAGAGGCCTCC-3', 5'-	
	$ggcc \underline{tctaga} attacagatcctcttcagagatgagtttctgctcCTCGTCCTCGGAAGTAGAATTTGGTG$	
	ACC-3') adding N-terminal 2A peptide and C-terminal myc-tag and cloned into the	
	corresponding sites of pAS115, replacing 2A-tagBFP (KasI/XbaI).	
	Amino acid sequence with annotation:	
	MGVKVLFALICIAVAEAEVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWV	
	RQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTA	

	HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS	
	LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ	
	GNVFSCSVMHEALHNHYTQKSLSLSPGK <mark>RAKR</mark> GSGEGRGSLLTCGDVEENPGP <mark>M</mark>	
	GVKVLFALICIAVAEADIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKP	
	GKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYT	
	FGQGTKVEIK <mark>TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNA</mark>	
	LQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF	
	NRGEC <mark>RAKR</mark> GA <mark>GSGEGRGSLLTCGDVEENPGP</mark> MEICRGLRSHLITLLLFLFHSETIC	
	RPSGRKSSKMQAFRIWDVNQKTFYLRNNQLVAGYLQGPNVNLEEKIDVVPIEPHA	
	LFLGIHGGKMCLSCVKSGDETRLQLEAVNITDLSENRKQDKRFAFIRSDSGPTTSFE	
	SAACPGWFLCTAMEADQPVSLTNMPDEGVMVTKFYFQEDEEQKLISEEDL	
	Gaussia luciferase signal peptide ¹¹	
	anti-hTNF α Ab heavy chain variable region ¹²	
	RAKR motif for cleavage by furine	
	hIg gamma-1 chain constant region	
	2A peptide	
	anti-hTNF α Ab light chain variable region ¹²	
	Ig kappa chain constant region	
	hIL-1RA-myc tag	
AS117	Synthetic gen, encoding anti-hTNF α antibody Adalimumab ¹² , (anti-hTNF α Ab).	This work
	Nucleotide sequence:	
	aagettggcatteeggtactgttggtaaagccaceATGGGCGTGAAGGTGCTGTTCGCCCTGATCTG	
	TATCGCCGTGGCCGAGGCCGAAGTGCAGCTGGTGGAATCTGGCGGAGGACTG	
	GTGCAGCCTGGCAGAAGCCTGAGACTGAGCTGTGCCGCCAGCGGCTTCACCTT	
	CGACGACTACGCCATGCACTGGGTGCGCCAGGCCCCTGGAAAAGGCCTGGAAT	
	GGGTGTCCGCCATCACCTGGAACAGCGGCCACATCGATTACGCCGACAGCGTG	
	GAAGGCCGGTTCACCATCAGCCGGGACAACGCCAAGAACAGCCTGTACCTGC	
	AGATGAACTCCCTGCGGGCCGAGGACACCGCCGTGTACTACTGTGCCAAGGTG	
	TCCTACCTGAGCACCGCCAGCAGCCTGGATTATTGGGGGCCAGGGCACACTCGT	
	GACCGTGTCTAGCGCCAGCACAAAGGGCCCCAGCGTGTTCCCTCTGGCCCCTA	
	GCAGCAAGAGCACAAGCGGAGGAACAGCCGCCCTGGGCTGCCTCGTGAAGGA	
	CTACTTTCCCGAGCCCGTGACAGTGTCCTGGAATAGCGGAGCCCTGACCAGCG	

GCGTGCACACCTTTCCAGCTGTGCTGCAGAGCAGCGGCCTGTACAGCCTGAGC AGCGTCGTGACTGTGCCCAGCAGCTCTCTGGGCACCCAGACCTACATCTGCAA CGTGAACCACAAGCCCAGCAACACCAAGGTGGACAAGAAGGTGGAACCCAAG AGCTGCGACAAGACCCACACCTGTCCCCCTTGTCCTGCCCCCGAACTGCTGGG AGGCCCTTCCGTGTTCCTGTTCCCCCCAAAGCCCAAGGACACCCTGATGATCA GCCGGACCCCCGAAGTGACCTGCGTGGTGGTGGATGTGTCCCACGAGGACCCT GAAGTGAAGTTTAATTGGTACGTGGACGGCGTGGAAGTGCACAATGCCAAGA CCAAGCCTAGAGAGGAACAGTACAACTCCACCTACCGGGTGGTGTCCGTGCTG ACCGTGCTGCATCAGGACTGGCTGAACGGCAAAGAGTACAAGTGCAAAGTGT CCAACAAGGCCCTGCCTGCCCCATCGAGAAAACCATCAGCAAGGCCAAGGG CCAGCCCCGCGAACCCCAGGTGTACACACTGCCCCCAAGCAGGGACGAGCTG ACCAAGAACCAGGTGTCCCTGACCTGTCTCGTGAAAGGCTTCTACCCCAGCGA CATTGCCGTGGAATGGGAGAGCAACGGCCAGCCCGAGAACAACTACAAGACC ACCCCCCTGTGCTGGACAGCGACGGCTCATTCTTCCTGTACTCCAAGCTGACA GTGGACAAGTCCCGGTGGCAGCAGGGCAACGTGTTCAGCTGCAGCGTGATGCA CGAGGCCCTGCACAACCACTACACCCAGAAGTCCCTGAGCCTGAGCCCCGGCA AGAGAGCCAAGAGGGATCTGGCGAGGGCAGAGGCAGCCTGCTGACATGTGG CGACGTGGAAGAGAACCCAGGCCCTATGGGAGTGAAAGTGCTGTTTGCTCTGA TCTGCATTGCTGTGGCTGAAGCCGACATCCAGATGACCCAGAGCCCCTCTAGC GCATCCGGAACTACCTGGCCTGGTATCAGCAGAAGCCCGGCAAGGCCCCTAAG CTGCTGATCTACGCCGCCTCCACACTGCAGAGCGGAGTGCCCTCCAGATTTTCC GGCAGCGGCTCCGGCACCGACTTCACCCTGACAATCAGCTCCCTGCAGCCAGA GGACGTGGCCACCTACTACTGCCAGCGGTACAACAGAGCCCCCTACACCTTCG TTCCCACCTAGCGACGAGCAGCTGAAGTCCGGCACAGCCTCTGTCGTGTGCCT GCTGAACAACTTCTACCCTCGGGAAGCCAAGGTGCAGTGGAAAGTGGATAAC GCCCTGCAGTCCGGCAACTCCCAGGAAAGCGTGACCGAGCAGGACAGCAAGG ATAGCACCTACAGCCTGTCCTCCACCCTGACCCTGTCCAAGGCCGACTACGAG AAGCACAAGGTGTACGCCTGTGAAGTGACCCACCAGGGCCTGTCCAGCCCCGT GACCAAGAGCTTCAACCGGGGCGAGTGTAGGGCCAAGAGGGGCGCCtaattctaga). Amino acid sequence with annotation:

MGVKVLFALICIAVAEAEVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWV

	RQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTA VYYCAKVSYLSTASSLDYWGQGTLVTVSS <mark>ASTKGPSVFPLAPSSKSTSGGTAALG</mark> CLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYI CNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ	
	GVKVLFALICIAVAEADIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKP	
	GKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYT FGQGTKVEIK <mark>TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNA</mark>	
	LQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF	
	NRGEC <mark>RAKR</mark> GA	
	Gaussia luciferase signal peptide ¹¹ anti-hTNF α Ab heavy chain variable region ¹²	
	RAKR motif for cleavage by furine	
	hIg gamma-1 chain constant region	
	2A peptide	
	anti-hTNF α Ab light chain variable region ¹²	
	Ig kappa chain constant region	
pAS132	The NF-κB-STAT3 hybrid sensor construct. Mammalian expression vector encoding TRE-	This work
	P _{NF-kB2-STAT3} -P _{MIN} -driven GV16-myc expression unit (TRE-P _{NF-kB2-STAT3} -P _{MIN} -GV16-myc).	
	NF-KB-STAT3 hybrid responsive element (sequence:	
	GGGAATTTCCGGGGACTTTCCGGGGAATTTCCGGGGACTTTCCGGGAATTTCCA	
	ACGTTCATTTCCCGTAAATCGTCGAACGTTCATTTCCCGTAAATCGTCGAACGT	
	TCATTTCCCGTAAATCGTCGAACGTTCATTTCCCGTAAATCGTCGAACGTTCAT	
	TTCCCGTAAATCGTCGAACGTT) was cloned into the corresponding sites (NheI/BglII)	
	of pAS60, replacing NF-κB2 responsive element.	
pAS133	Synthetic gen, encoding 2A-mouse IL-10-myc tag (mIL-10). Nucleotide sequence:	This work
	<u>GGCGCC</u> GGAAGCGGAGAGGGGAGAGGAAGTCTTCTGACCTGCGGAGACGTCG	
	AAGAGAATCCTGGACCCATGCCCGGCAGCGCCCTGCTGTGCTGCCTGC	
	CTGACAGGCATGAGGATCAGCAGGGGGCCAGTACAGCAGGGAGGATAACAACT	

		1
	GCACCCACTTCCCCGTGGGCCAAAGCCACATGCTGCTGGAACTGAGGACCGCC	
	TTCTCCCAGGTGAAGACCTTCTTCCAGACCAAGGACCAGCTGGACAACATCCT	
	GCTGACCGACAGCCTGATGCAGGACTTCAAGGGCTACCTGGGCTGCCAGGCCC	
	TGAGCGAGATGATCCAGTTCTACCTGGTGGAGGTGATGCCCCAGGCTGAGAAG	
	CACGGCCCCGAGATCAAGGAGCACCTGAACAGCCTGGGAGAGAAGCTGAAGA	
	CCCTGAGGATGAGGCTGAGGAGATGCCACAGGTTCCTGCCCTGCGAGAACAA	
	GTCCAAGGCCGTGGAGCAGGTGAAGAGCGACTTCAACAAGCTGCAGGACCAG	
	GGCGTGTACAAGGCTATGAACGAGTTCGACATCTTCATCAACTGTATCGAGGC	
	CTACATGATGATCAAGATGAAGAGCGAGCAGAAACTCATCTCTGAAGAGGAT	
	CTG <u>GCGCGC</u> TAAT <u>TCTAGA.</u> Amino acid sequence:	
	GAGSGEGRGSLLTCGDVEENPGPMPGSALLCCLLLLTGMRISRGQYSREDNNCTH	
	FPVGQSHMLLELRTAFSQVKTFFQTKDQLDNILLTDSLMQDFKGYLGCQALSEMI	
	QFYLVEVMPQAEKHGPEIKEHLNSLGEKLKTLRMRLRRCHRFLPCENKSKAVEQV	
	KSDFNKLQDQGVYKAMNEFDIFINCIEAYMMIKMKSEQKLISEEDLAR	
	2A peptide	
	Mouse IL-10-myc tag	
pAS134	Mammalian expression vector encoding TRE-UAS- P_{MIN} -driven anti-hTNF α antibody-	This work
	mIL-10-myc double effector expression unit (TRE-UAS-P _{MIN} -anti-hTNFα Ab-mIL-10;	
	DE2). 2A-Mouse IL-10 was excised from pAS133 using (KasI/XbaI) and cloned into the	
	corresponding sites of pAS115, replacing 2A-tagBFP.	
	MGVKVLFALICIAVAEAEVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWV	
	RQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMNSLRAEDTA	
	VYYCAKVSYLSTASSLDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALG	
	CLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYI	
	CNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR	
	TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL	
	HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVS	
	LTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQ	
	GNVFSCSVMHEALHNHYTQKSLSLSPGKRAKRGSGEGRGSLLTCGDVEENPGPM	
	GVKVLFALICIAVAEADIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKP	
	GKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYT	
	FGQGTKVEIKTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNA	

LQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSF	
NRGEC <mark>RAKR</mark> GA <mark>GSGEGRGSLLTCGDVEENPGP</mark> MPGSALLCCLLLLTGMRISRGQY	
SREDNNCTHFPVGQSHMLLELRTAFSQVKTFFQTKDQLDNILLTDSLMQDFKGYL	
GCQALSEMIQFYLVEVMPQAEKHGPEIKEHLNSLGEKLKTLRMRLRRCHRFLPCE	
NKSKAVEQVKSDFNKLQDQGVYKAMNEFDIFINCIEAYMMIKMKSEQKLISEEDL	
AR	
Gaussia luciferase signal peptide ¹¹	
anti-hTNF α Ab heavy chain variable region ¹²	
RAKR motif for cleavage by furine	
hIg gamma-1 chain constant region	
2A peptide	
anti-hTNF α Ab light chain variable region ¹²	
Ig kappa chain constant region	
mIL-10-myc tag	

Experiment/type of plate	Plasmid (detailed description in Supplementary Table 1)	Amount (ng)
Fig. 2a left/CoStar White 96-well	pAS49	50
plates (Corning)	phRL-TK	5
	pAS48	0/0.5/1/10
Fig. 2a middle/8-well	pAS72	80
tissue culture chambers (μ -Slide 8	pA67	140
well, Ibidi Integrated BioDiagnostics,	pAS58	30
Martinsried München, Germany)	pAS75	60
	pmCherry-C1	25
	pAS97	1.5
Fig. 2b left/CoStar White 96-well	pAS49	50
plates (Corning)	phRL-TK	5
	pSGVP	1
	pAS53	0/0.5/1/10/50
Fig. 2b middle/8-well	pAS72	80
tissue culture chambers (μ -Slide 8	pA67	140
well, Ibidi Integrated BioDiagnostics,	pAS58	30
Martinsried München, Germany)	pAS75	60
	pmCherry-C1	25
	pAS98	0/20
Fig. 2c/CoStar White 96-well plates	pAS51	50
(Corning)	phRL-TK	10
	pAS58	0/5
	pAS60	0/0.5/1/10
	pAS62	0/0.5/1/10
Fig. 3a/CoStar White 96-well plates	pAS51	45
(Corning)	phRL-TK	15
	pAS58	5
	pAS60	0.5
	pAS62	0.5
	pAS67	0/5/10/25/50/75/100

Supplementary Table 2. Amount of transfected plasmids used in different experiments

Fig. 3b and Supplementary Fig.	pAS72	45
3a/CoStar White 96-well plates	pAS75	50
(Corning)	pAS67	75
	pAS58	5
	pAS60	0.5
	pAS62	0/0.5
Fig. 4a/CoStar White 96-well plates	pAS51	35
(Corning)	phRL-TK	15
	pAS67	75
	pAS58	5
	pAS60	0.5
	pAS62	0.5
Fig. 4b, 4c and 4d/CoStar White 96-	pAS51	50
well plates (Corning)	phRL-TK	15
	pAS67	75
	pAS58	5
	pAS60	0.5
	pAS62	0.5
Fig. 4e The responsiveness of the	pAS72	5000
synthetic anti-inflammatory device to	pAS75	2500
an inflammatory signal in vivo/10 cm	pAS67	3000
tissue culture petri dish (TPP)	pAS58	600
	pAS60	30
	pAS62	20
	or	
	pcDNA3.1 (control group)	11140
Fig. 4f The responsiveness of the	pAS72	6000
synthetic anti-inflammatory device in a	pAS75	1000
CLP model <i>in vivo</i> /10 cm tissue culture	pAS67	3500
petri dish (TPP)	pAS58	700
	pAS60	30

	pAS62	20
Fig. 5b Production of therapeutic anti-	pAS116 or pAS134	5000
inflammatory proteins in vitro /10 cm	pAS75	2500
tissue culture petri dish (TPP)	pAS67	3500
	pAS58	700
	pAS60	30
	pAS62	20
Fig. 5c Production of therapeutic anti-	pAS116 or pAS134	8000
inflammatory proteins in vivo /10 cm	pAS75	2500
tissue culture petri dish (TPP)	pAS67	3500
	pAS58	700
	pAS60	30
	pAS62	20
Fig. 5d, 6c-e and Supplementary Fig.	pAS134	8000
6c and d Production of therapeutic	pAS75	1000
anti-inflammatory proteins in vivo and	pAS67	3500
reversibility experiments with the anti-	pAS58	1000
inflammatory proteins as an output in	pAS60	35
vivo /10 cm tissue culture petri dish	pAS62	20
(TPP)		
Fig. 5e/6 wells tissue culture plate	Production cell line:	
(TPP) for production cell line pr	pAS35 or pAS114	2000
CoStar White 96-well plates for		
reporter cell line (Corning)	Reporter cell line:	
	pAS40	50
	phRL-TK	5
Fig. 6a, Supplementary Fig. 6a and	pAS72	5000
Supplementary Fig. 7a/10 cm tissue	pAS75	2500
culture petri dish (TPP)	pAS67	3500
	pAS58	600
	pAS60	30
L		<u> </u>

pAS62	20
pAS72	5000
pAS75	2500
pAS67	3500
pAS58	1000
pAS60	30
pAS62	20
pAS134 or pcDNA3.1 (control group without an effector)	8000
pAS75	2500
pAS67	3500
pAS58	700
pAS60	30
pAS62	20
pAS36 or pAS37	100
phRL-TK	5
pAS37 or pAS40	100
phRL-TK	5
pAS51	50
phRL-TK	10
pSGVP	20
pAS58	0/5/20
pAS51	50
phRL-TK	10
pAS58	5
pAS60	1
pAS62	1
pAS51	50
phRL-TK	10
pAS58	5
pSGVP	1
pAS62	0/1
	pAS72 pAS75 pAS67 pAS58 pAS60 pAS62 pAS75 pAS75 pAS62 pAS75 pAS75 pAS75 pAS67 pAS75 pAS67 pAS75 pAS67 pAS75 pAS60 pAS60 pAS60 pAS61 pAS7 or pAS40 phRL-TK pAS51 pAS58 pAS60 pAS58 pAS59 pAS51 pAS58 pAS58 pAS58 pAS59 pAS51 pAS52 pAS53 pAS54 pAS55

Supplementary Fig. 1d left/CoStar	pAS51	30
White 96-well plates (Corning)	phRL-TK	10
	pAS58	5
	pAS67	75
	pAS97 or pAS60 (to compare to)	0.5
	pAS98 or pAS62 (to compare to)	0.5
	п	
	pAS108 (as a constitutive control)	30
Supplementary Fig. 1d right/CoStar	pAS72	40
White 96-well plates (Corning)	pAS75	30
	pAS58	5
	pAS67	75
	pAS97 or pAS60 (to compare to)	0.5
	pAS98 or pAS62 (to compare to)	0.5
	or	
	pAS109 (as a constitutive control)	40
Supplementary Fig. 3b/8-well	pAS72	80
tissue culture chambers (μ -Slide 8	pA67	140
well, Ibidi Integrated BioDiagnostics,	pAS58	30
Martinsried München, Germany)	pAS75	60
	pmCherry-C1	25
	pAS97	1.5
	pAS98	2
Supplementary Fig. 3c/8-well	pAS72	80
tissue culture chambers (µ-Slide 8	pA67	140
well, Ibidi Integrated BioDiagnostics,	pAS58	30
Martinsried München, Germany)	pAS75	60
	pmCherry-C1	25
	pAS97	0/1.5

	pAS98	0/2
Supplementary Fig. 4e/CoStar White	pAS51	50
96-well plates (Corning)	phRL-TK	15
	pAS58	5
	pAS67	75
	pAS132	0.5
	pAS62	0.5
	pAS123	10
Supplementary Fig. 5/CoStar White	Constitutive production:	
96-well plates (Corning)	pAS35	50
	pAS114	50
	Inducible production:	
	pAS60	0.5
	pAS62	0.5
	pAS58	5
	pAS67	75
	pAS63 or AS113 or pAS116	50
Supplementary Fig. 5f, left Production	pAS113	5000
of therapeutic anti-inflammatory	pAS75	2500
proteins in vitro /10 cm tissue culture	pAS67	3500
petri dish (TPP)	pAS58	700
	pAS60	25
	pAS62	20
Supplementary Fig. 5f Production of	pAS35	25000
therapeutic anti-inflammatory proteins		
in vitro and in vivo/10 cm tissue culture		
petri dish (TPP)		

MATHEMATICAL MODEL

Deterministic ODE model

To predict the responsiveness of the device to stimuli and determine the optimal transfection amounts, we constructed a simple deterministic model with ordinary differential equations (ODEs) using CellDesigner 4.4 software¹³. First we constructed a state transition diagram representing the genetic circuit (Supplementary Fig. 2). Next, we characterized the state transitions with the mass action kinetic law.

The formation of a complex between a transcription factor (TF) and its corresponding response element on DNA was expressed as:

$$\frac{d[TF-DNA]}{dt} = k_a \cdot [TF] \cdot [DNA] - k_d \cdot [TF-DNA]$$

where k_a represents the on-rate constant and k_d represents the off-rate constant.

For protein (P) production, we assumed first-order kinetics:

$$\frac{d[P]}{dt} = k_s \cdot [TF - DNA]$$

and

$$\frac{d[P]}{dt} = k_l \cdot [DNA]$$

The protein production rate constant is described with k_s . Parameter k_l corresponds to leaky protein production constant that represents the basal protein synthesis from transcribed genes under the control of an uninduced minimal promoter.

Proteins are degraded to amino acids (aa) according to the first order kinetics:

$$k_{deg} \cdot [P]$$

where k_{deg} corresponds to the protein degradation constant.

We also took into account the dilution of the device's genetic components due to cell division with dilution constant k_{dil} , which corresponds to the cell doubling time.

$k_{dil} \cdot [DNA]$

As protein turnover is faster than the typical cell doubling ($k_{dil} < k_{deg}$), we neglected the dilution of protein moieties.

Furthermore, we assumed the amount of amino acids remained constant over the course of simulation. Thus, the model species amino acids ("aa") served as a source and a sink for protein production and degradation, respectively. Conversely, the species "lost" represented a sink for the DNA constructs lost due to the dilution by cell division. These two model species were defined as boundary conditions in the CellDesigner state transition model (see Supplementary Table 3).

Simulations

The simulations were performed using the integrated SBML ODE Solver¹⁴. We were particularly interested in a behavior of the device in the two limiting cases: where there was no input signal (non-stimulated), i.e. the NF- κ B protein complex particle number was set to zero, and where the input signal had maximal value (stimulated). The NF- κ B particle number in simulations with stimulated genetic device was set to 24 000 by taking the mean nuclear NF- κ B concentration of roughly 40 nM in persistently stimulated cells¹⁵ and estimating the volume of a cell nucleus to be $1 \cdot 10^{-12}$ L.

$$N(NF-\kappa B) = c \cdot V \cdot N_A \approx 24\ 000$$

The initial quantities of genetic constructs per individual cell were estimated by taking into account the efficiency of transient transfection with polyethylenimine (PEI) and the amount of DNA·PEI complexes that are successfully trafficked to the nucleus. We estimated that 90 % of the cells $(4 \cdot 10^4$ cells per well in a 96-well plate) receive the plasmids and that 0.07 % of the initial DNA quantity reach the nucleus^{16,17}.

$$N(DNA) = \frac{m(DNA) \cdot 7 \cdot 10^{-4}}{M(DNA) \cdot N(cells) \cdot 0.9} \cdot N_A$$

The time t = 0 in the simulations corresponds to the transfection of the cells with DNA constructs. In time course simulations, the particle number of NF- κ B was held at 24 000 for the duration of stimulation (24 h post transfection to the end of the experiment at 48 h time point post transfection), similar to the experiments with cell cultures. In parameter scan experiments, the input signal for stimulated genetic device had maximal value for the duration of the simulation (24 h).

Supplementary Table 3. List of species included in the deterministic model exported from CellDesigner 4.4 software

Class	id	Name	Initial quantity (particle number; N)	Boundary condition	Comment
GENE	s1	sensor	2.2	false	The sensor construct (pAS60).
GENE	s19	amplifier	2.2	false	The amplifier construct (pAS62).
GENE	s28	effector	181.8	false	The luciferase effector construct (pAS51).
GENE	s15	repressor	8.1	false	The inducible OFF-switch construct (pAS58).
GENE	s29	thresholder	425.1	false	The "thresholder" construct (pAS67).
PROTEIN	s54	GV16	0.0	false	The Gal4-VP16 transcriptional activator.
PROTEIN	s11	rtTR-KRAB*	0.0	false	Thedoxycycline-inducedactivertTR-KRABtranscriptional repressor.
PROTEIN	s45	NFkappa_B	0.0	false	The NF- κ B represents the input signal for the device. In the non-stimulated setting, the initial quantity was 0. Conversely, in simulations of the induced genetic device, the initial quantity was set to 24 000 (estimated from ref. ¹⁵).

DD OFFIDI		EFERGEOR		6.1	
PROTEIN	s57	EFFECTOR	0.0	false	In the model, the effector
					protein was set to be the firefly
					luciferase.
		~			
PROTEIN	s49	Gal4	0.0	false	The Gal4 regulatory protein
					from yeast.
PROTEIN	s8	rtTR-KRAB	0.0	false	The inactive rtTR-KRAB
					transcriptional repressor.
COMPLEX	s43	NFkappa_B RE-NF-	0.0	false	NF-κB in complex with its
		_kappa_B (sensor)			corresponding response
					element in the sensor construct.
					element in the sensor construct.
COMPLEX	s40	TRE-rtTR (sensor)	0.0	false	rtTR-KRAB in complex with
					its corresponding response
					element in the sensor construct.
COMPLEX	s39	TRE-rtTR_NFkappa_B RE-	0.0	false	NF-κB and rtTR-KRAB in
COMILLA	337		0.0	Tarse	
		NFkappa_B (sensor)			complex with their
					corresponding response
					elements in the sensor
					construct.
COMPLEX	s32	UAS-Gal4 (effector)	0.0	false	Gal4 in complex with its
					corresponding response
					element in the effector
					construct.
COMPLEX	s34	UAS-GV16 (effector)	0.0	false	Gal4-VP16 in complex with its
					corresponding response
					element in the effector
					construct.
COMPLEX	s36	TRE-rtTR_UAS-Gal4 (effector)	0.0	false	Gal4 and rtTR-KRAB in
	550			Tuise	
					-
					corresponding response
					elements in the effector
					construct.
COMPLEX	s42	TRE-rtTR (effector)	0.0	false	rtTR-KRAB in complex with
					its corresponding response
					element in the effector
					construct.
COMPLEX	s38	TRE-rtTR_UAS-GV16	0.0	false	Gal4-VP16 and rtTR-KRAB in
		(effector)			complex with their
					1

					corresponding response elements in the effector construct.
COMPLEX	s31	UAS-Gal4 (amplifier)	0.0	false	Gal4 in complex with its corresponding response element in the amplifier construct.
COMPLEX	s33	UAS-GV16 (amplifier)	0.0	false	Gal4 in complex with its corresponding response element in the amplifier construct.
COMPLEX	s35	TRE-rtTR_UAS-Gal4 (amplifier)	0.0	false	Gal4 and rtTR-KRAB in complex with their corresponding response elements in the amplifier construct.
COMPLEX	s41	TRE-rtTR (amplifier)	0.0	false	rtTR-KRAB in complex with its corresponding response element in the ampllifier construct.
COMPLEX	s37	TRE-rtTR_UAS-GV16 (amplifier)	0.0	false	Gal4-VP16 and rtTR-KRAB in complex with their corresponding response elements in the amplifier construct.
SIMPLE_MOLECULE	s58	Dox	0.0	true	Doxycycline (OFF-switch inducer) moiety.
DEGRADED	s30	aa	0.0	true	Amino acids (protein source and sink in the model).
DEGRADED	s16	lost	0.0	true	Lost DNA constructs due to dilution through cell division (sink in the model).

Supplementary Table 4. List of parameters included in the deterministic model exported

from CellDesigner 4.4 software

id	Name	Description	Value	Units	Comment
ka_GV16	ka ^{GV16}	Gal4-VP16 - DNA on-rate binding	1.66.10-6	$N^{-1} \cdot s^{-1}$	Value was calculated from 1.10 ⁶ M ⁻
		constant.			$^{1} \cdot s^{\text{-1}}$ (estimated from ref. 18 ; $K_{D} \approx 10$
					nM).
kd_GV16	k _d ^{GV16}	Gal4-VP16 - DNA off-rate constant.	0.01	s ⁻¹	Value was estimated from ref. ¹⁹ .
k_l	kı	Leaky protein production rate.	0.00125	s ⁻¹	Estimated value represents 0.5 % of
					the maximal protein production rate.
k_deg	k _{deg}	Average protein degradation rate.	2.79045.10-5	s ⁻¹	Value was calculated from estimated
					average protein half life in humans
					$(6.9 h)^{20}$.
ka_NFkB	k _a nfкB	NF-κB - DNA on-rate binding constant.	1.66.10-6	$N^{-1} \cdot s^{-1}$	Value was calculated from 1.10 ⁻⁶ M ⁻
					$^{1} \cdot s^{-119}$.
kd_NFkB	$k_d^{NF\kappa B}$	NF-κB - DNA off-rate constant.	0.01	s ⁻¹	Value was estimated from ref. ¹⁸ .
k_s	ks	Protein production rate.	0.25	s ⁻¹	Estimated.
k_dil	k _{dil}	Dilution rate.	8.02254.10-6	s ⁻¹	Calculated from estimated cell
					generation time of 24 h.
k_dox	k ^{dox}	Doxycycline - rtTR-KRAB association	1.66.10-6	$N^{-1} \cdot s^{-1}$	Calculated from $1 \cdot 10^6$ M ⁻¹ ·s ⁻¹
		constant.			(estimated from ref. ²¹).
ka_rtTR	ka ^{rtTR}	rtTR-KRAB - DNA on-rate binding	1.66.10-6	$N^{-1} \cdot s^{-1}$	Estimated.
		constant.			
kd_rtTR	k _d ^{rtTR}	rtTR-KRAB - DNA off-rate constant.	0.01	s ⁻¹	Estimated.
k_deg_luc	k _{deg} luc	Firefly luciferase degradation rate.	9.62704.10-5	s ⁻¹	Value was calculated from luciferase
					half life in HEK 293T cells (2 h) ²² .
k_deg_gal4	k _{deg} gal4	Gal4 degradation rate.	1.15525.10-4	s ⁻¹	Value was calculated from Gal4 half
					life in HeLa cells (100 min) ²³ .
k_deg_gv16	k _{deg} gv16	Gal4-VP16 degradation rate.	1.54033.10-4	s ⁻¹	Value was calculated from Gal4-
					VP16 half life in HeLa cells (75
					min) ²³ .

Supplementary Table 5. List of reactions included in the deterministic model exported

from CellDesigner 4.4 software

Туре	id	Reversible	Reaction	Trigger	Math	Comment
HETERODIMER_ASSOCIATION	re1	true	s45 + s1 ≒ s43		$\frac{d[s43]}{dt}$ = s45 · s1 · ka_NFkB - s43 · kd_NFkB	BindinganddissociationofNF- κ Bcomplextoitscorrespondingresponseelementonsensorconstruct.
STATE_TRANSITION	re2	false	s30 → s54	s43	$\frac{d[s54]}{dt} = s43 \cdot k_s$	Production of Gal4-VP16 from amino acids, triggered by NF- kB-induced transcription of the sensor construct expression unit.
STATE_TRANSITION	re3	false	s30 → s8	s15	$\frac{d[s30]}{dt} = s15 \cdot k_s$	ProductionofinactivertTR-KRABfromaminoacids,triggeredbyconstitutivetranscriptionfromtherepressorconstructexpression unit.
HETERODIMER_ASSOCIATION	re4	true	s54 + s19 ≓ s33		$\frac{d[s33]}{dt}$ = s54 · s19 · ka_GV16 - s33 · kd_GV16	Binding and dissociation of Gal4-VP16 to its corresponding response

						element on the
						amplifier
						construct.
STATE_TRANSITION	re5	false	$s8 \rightarrow s30$		d[s30]	Inactive rtTR-
					$\frac{d[s30]}{dt} = s8 \cdot k_deg$	KRAB
						degradation.
						Binding and
						dissociation of
					d[s34]	Gal4-VP16 to its
					$\frac{d[s34]}{dt}$	corresponding
					$=$ s54 · s28 · ka_GV16	response
					− s34 · kd_GV16	element on the
						effector
HETERODIMER_ASSOCIATION	re6	true	s54 + s28 ≓ s34			construct.
						Production of
						luciferase
						reporter from
						amino acids,
					d[c57]	triggered by
					$\frac{d[s57]}{dt} = s34 \cdot k_s$	Gal4-VP16-
						induced
						transcription of
						the effector
						construct
STATE_TRANSITION	re7	false	$s30 \rightarrow s57$	s34		expression unit.
					d[c20]	Gal4-VP16
					<u>d[s30]</u> dt	degradation to
STATE_TRANSITION	re8	false	$s54 \rightarrow s30$		= s54 · k_deg_gv16	amino acids.
	100	Tuise	551 555			
						Production of
						Gal4 from
						amino acids,
					<u>d[s49]</u> dt	triggered by
						constitutive
					$=$ s29 · k_s · 0.01	transcription
						from the
						"thresholder"
STATE_TRANSITION	re9	false	s30 → s49	s29		construct

						expression unit.
						The production
						rate was set to 1
						% of the
						estimated
						maximal protein
						production rate
						(k_s).
						Binding and
						dissociation of
					d[s31]	Gal4 to its
					dt	corresponding
					$=$ s49 · s19 · ka_GV16	response
					− s31 · kd_GV16	element on the
						amplifier
HETERODIMER_ASSOCIATION	re10	true	s49 + s19 ≓ s31			construct.
THE TERODIVIER_ASSOCIATION	1010	uue	347 317 (~ 331			
						Binding and
						dissociation of
					<u>d[s32]</u> dt	Gal4 to its
						corresponding
					$=$ s49 · s28 · ka_GV16	response
					— s32 · kd_GV16	element on the
						effector
HETERODIMER_ASSOCIATION	re11	true	$s49 + s28 \rightleftharpoons s32$			construct.
					d[s30]	Gal4
					dt	degradation to
STATE_TRANSITION	re12	false	$s49 \rightarrow s30$		$=$ s49 · k_deg_gal4	amino acids.
						Production of
						Gal4-VP16 from
						amino acids,
						triggered by
					$\frac{d[s54]}{dt} = s1 \cdot k_l$	leaky
					dt -	transcription of
						the sensor
						construct
STATE_TRANSITION	re13	false	$s30 \rightarrow s54$	s1		expression unit.
	1015	14150	330 2 334	51	d[s54]	Production of
STATE_TRANSITION	re14	false	$s30 \rightarrow s54$	s33	$\frac{d[s54]}{dt} = s33 \cdot k_s$	
	I					

						Gal4-VP16 from
						amino acids,
						triggered by
						Gal4-VP16-
						induced
						transcription of
						the amplifier
						construct
						expression unit.
						Production of
						Gal4-VP16 from
						amino acids,
						triggered by
					$\frac{d[s54]}{dt} = s19 \cdot k_l$	leaky
					dt dt	transcription of
						the amplifier
						construct
STATE_TRANSITION	re15	false	$s30 \rightarrow s54$	s19		expression unit.
						Production of
						luciferase
						reporter from
						amino acids,
						triggered by
					$\frac{d[s57]}{dt} = s28 \cdot k_l$	leaky
						transcription of
						the effector
						construct
STATE_TRANSITION	re16	false	$s30 \rightarrow s57$	s28		expression unit.
						Luciferase
					<u>d[s30]</u> dt	reporter
						degradation to
STATE_TRANSITION	re17	false	$s57 \rightarrow s30$		= s57 · k_deg_luc	amino acids.
						Production of
					11 5 41	Gal4-VP16 from
					<u>d[s54]</u> dt	amino acids,
					$= s31 \cdot k_l \cdot 0.01$	triggered by
STATE_TRANSITION	re18	false	$s30 \rightarrow s54$	s31		leaky
	1010	14100				

Image: state stat
Image: state stat
Image: state stat
Image: second
The represse leaky production rate was set to % of th unrepressed leaky production rate. Production of
Image: state of the state
rate was set to % of th unrepressed leaky productio rate. Production of
% of th unrepressed leaky production rate. Production
Image: set of the set of th
Image: second
rate.
Production of
luciferase
effector from
amino acida
triggered b
leaky
transcription
the Gal4-boun
$\frac{d[s57]}{dt} \qquad effector$
a construct
$= s32 \cdot k_l \cdot 0.01$ construct expression uni
The represse
leaky productio
rate was set to
% of th
unrepressed
leaky productio
STATE_TRANSITIONre19false $s30 \rightarrow s57$ $s32$ rate.
Dilution of th
$\frac{d[s16]}{dt} = s1 \cdot k_{dil}$ sensor construction of the sensor construct
STATE_TRANSITIONre20false $s1 \rightarrow s16$ division.
Dilution of th
$\frac{d[s16]}{dt} = s29 \cdot k_{dil} \qquad \text{``thresholder''}$
STATE_TRANSITION re21 false $s29 \rightarrow s16$ construct due t

						cell division.
STATE_TRANSITION	re22	false	s15 → s16		$\frac{d[s16]}{dt} = s15 \cdot k_{dil}$	Dilution of the repressor construct due to cell division.
STATE_TRANSITION	re23	false	s19 → s16		$\frac{d[s16]}{dt} = s19 \cdot k_{dil}$	Dilution of the amplifier construct due to cell division.
STATE_TRANSITION	re24	false	s28 → s16		$\frac{d[s16]}{dt} = s28 \cdot k_{dil}$	Dilution of the effector construct due to cell division.
STATE_TRANSITION	re25	false	s8 → s11	s58	$\frac{d[s11]}{dt}$ = s8 · s58 · k_dox	Binding of doxycycline to an inactive rtTR- KRAB, producing an active rtTR- KRAB.
HETERODIMER_ASSOCIATION	ге26	true	s11 + s34 ≓ s38		$\frac{d[s38]}{dt}$ = s11 · s34 · ka_rtTR - s38 · kd_rtTR	Binding and dissociation of rtTR-KRAB to its corresponding response element on the Gal4-VP16- bound effector construct.
HETERODIMER_ASSOCIATION	re27	true	s11 + s28 ≓ s42		$\frac{d[s42]}{dt}$ = s11 · s28 · ka_rtTR - s42 · kd_rtTR	Binding and dissociation of rtTR-KRAB to its corresponding response element on the

					effector
					construct.
					Binding and
					dissociation of
					rtTR-KRAB to
				<u>d[s36]</u> dt	its
					corresponding
				$=$ s11 · s32 · ka_rtTR	response
				− s36 · kd_rtTR	element on the
					Gal4-bound
					effector
HETERODIMER_ASSOCIATION	re28	true	$s11 + s32 \rightleftharpoons s36$		construct.
					Binding and
					dissociation of
					rtTR-KRAB to
				4[-27]	its
				<u>d[s37]</u> dt	corresponding
				$=$ s11 · s33 · ka_rtTR	response
				− s37 · kd_rtTR	element on the
					Gal4-VP16-
					bound amplifier
HETERODIMER_ASSOCIATION	re29	true	$s11 + s33 \rightleftharpoons s37$		construct.
					Binding and
					dissociation of
					rtTR-KRAB to
				$\frac{d[s41]}{dt}$	its
				$=$ s11 · s19 · ka_rtTR	corresponding
				– s41 · kd_rtTR	response
					element on the
					amplifier
HETERODIMER_ASSOCIATION	re30	true	$s11 + s19 \rightleftharpoons s41$		construct.
					Binding and
				4[-25]	dissociation of
				<u>d[s35]</u> dt	rtTR-KRAB to
				$=$ s11 · s31 · ka_rtTR	its
				− s35 · kd_rtTR	
HETERODIMED ASSOCIATION			a11 ⊨ a01 N -05		corresponding
HETERODIMER_ASSOCIATION	re31	true	$s11 + s31 \rightleftharpoons s35$		response

					element on the
					Gal4-bound
					amplifier
					construct.
					Binding and
					dissociation of
				<u>d[s40]</u> dt	rtTR-KRAB to
					its
				$=$ s11 · s1 · ka_rtTR	corresponding
				− s40 · kd_rtTR	response
					element on the
HETERODIMER_ASSOCIATION	re32	true	$s11 + s1 \rightleftharpoons s40$		sensor construct.
					Binding and
					dissociation of
					rtTR-KRAB to
				<u>d[s39]</u> dt	its
				$= s11 \cdot s43 \cdot ka_rtTR$	corresponding
					response
				− s39 · kd_rtTR	element on the
					NF-ĸB-bound
HETERODIMER_ASSOCIATION	re33	true	s11 + s43 ≓ s39		sensor construct.
					Dilution of the
					NF-KB-bound
				d[s16]	
				$\frac{d[s16]}{dt} = s43 \cdot k_{dil}$	sensor construct
					due to cell
STATE_TRANSITION	re34	false	s43 → s16		division.
					Dilution of the
					rtTR-KRAB-
				$\frac{d[s16]}{dt} = s40 \cdot k_{dil}$	bound sensor
					construct due to
STATE_TRANSITION	re35	false	$s40 \rightarrow s16$		cell division.
					Dilution of the
					NF-κB and
				d[s16]	rtTR-KRAB-
				$\frac{d[s16]}{dt} = s39 \cdot k_{dil}$	bound sensor
					construct due to
STATE_TRANSITION	re36	false	s39 → s16		cell division.

						Dilution of the
						Gal4-bound
					$\frac{d[s16]}{dt} = s31 \cdot k_{dil}$	amplifier
					at	construct due to
STATE_TRANSITION	re39	false	$s31 \rightarrow s16$			cell division.
						Dilution of the
						Gal4-VP16-
					$\frac{d[s16]}{dt} = s33 \cdot k_{dil}$	bound amplifier
					dt -	construct due to
STATE_TRANSITION	re40	false	$s33 \rightarrow s16$			cell division.
_						Active rtTR-
					$\frac{d[s30]}{dt} = s11 \cdot k_{deg}$	KRAB
STATE_TRANSITION	re42	false	$s11 \rightarrow s30$		dt dt	degradation.
						Dilution of the
						Gal4 and rtTR-
						KRAB-bound
					$\frac{d[s16]}{dt} = s35 \cdot k_{dil}$	amplifier
						construct due to
STATE_TRANSITION	re44	false	$s35 \rightarrow s16$			cell division.
	1044	Talse	355 / 310			Dilution of the
						rtTR-KRAB-
					$\frac{d[s16]}{dt} = s41 \cdot k_{dil}$	bound amplifier
					$dt = S41 \cdot k_d ll$	construct due to
STATE_TRANSITION	no 15	false	$s41 \rightarrow s16$			cell division.
STATE_TRANSITION	re45	false	S41 → S16			
						Dilution of the
						Gal4-VP16 and
					$\frac{d[s16]}{dt} = s37 \cdot k_{dil}$	rtTR-KRAB-
					at	bound amplifier
						construct due to
STATE_TRANSITION	re46	false	s37 → s16			cell division.
					$\frac{d[s16]}{dt} = s32 \cdot k_{dil}$	Dilution of the
						Gal4-bound
						effector
						construct due to
STATE_TRANSITION	re47	false	$s32 \rightarrow s16$			cell division.
					$\frac{d[s16]}{dt} = s34 \cdot k_{dil}$	Dilution of the
STATE_TRANSITION	re48	false	$s34 \rightarrow s16$		dt –	Gal4-VP16-

						bound amplifier
						construct due to
						cell division.
						Dilution of the
						Gal4 and rtTR-
					$\frac{d[s16]}{dt} = s36 \cdot k_{dil}$	KRAB-bound
					$dt = s36 \cdot k_d ll$	effector
						construct due to
STATE_TRANSITION	re49	false	$s36 \rightarrow s16$			cell division.
						Dilution of the
					$\frac{d[s16]}{dt} = s42 \cdot k_{dil}$	rtTR-KRAB-
						bound effector
						construct due to
STATE_TRANSITION	re50	false	$s42 \rightarrow s16$			cell division.
						Dilution of the
						Gal4-VP16 and
					$\frac{d[s16]}{dt} = s38 \cdot k_{dil}$	rtTR-KRAB-
						bound effector
						construct due to
STATE_TRANSITION	re51	false	s38 → s16			cell division.

SUPPLEMENTARY REFERENCES

- 1. King, GA, Daugulis, AJ, Faulkner, P and Goosen, MFA. (1987). Alginate-Polylysine Microcapsules of Controlled Membrane Molecular Weight Cutoff for Mammalian Cell Culture Engineering. *Biotechnol. Prog.* **3**: 231–240.
- 2. Dubrot, J, Portero, A, Orive, G, Hernández, RM, Palazón, A, Rouzaut, A, *et al.* (2010). Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. *Cancer Immunol. Immunother.* **59**: 1621–1631.
- 3. Wirtz, S, Neufert, C, Weigmann, B and Neurath, MF (2007). Chemically induced mouse models of intestinal inflammation. *Nat. Protoc.* **2**: 541–546.
- 4. Fussenegger, M, Morris, RP, Fux, C, Rimann, M, von Stockar, B, Thompson, CJ, *et al.* (2000). Streptogramin-based gene regulation systems for mammalian cells. *Nat. Biotechnol.* **18**: 1203–1208.
- 5. Sadowski, I, Ma, J, Triezenberg, S and Ptashne, M (1988). GAL4-VP16 unusualy potent transcription activator. *Nature* **335**: 563–564.
- 6. Szulc, J, Wiznerowicz, M, Sauvain, M, Trono, D and Aebischer, P (2006). A versatile tool for conditional gene expression and knockdown. *Nat. Methods* **3**.
- 7. Fussenegger, M, Mazur, X and Bailey, JE (1997). A Novel Cytostatic Process Enhances the Ovary Cells. *Biotechnol Bioeng*. **20**:927-939.
- 8. Lebar, T, Straz, M, Bezeljak, U, Golob, A, Jerala, M, Kadunc, L, *et al.* (2014). A bistable genetic switch based on designable DNA-binding domains. **29**: 5007
- 9. Gibson, DG, Young, L, Chuang, R-Y, Venter, JC, Hutchison, CA and Smith, HO (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat. Methods* **6**: 343–345.
- 10. Kim, JH, Lee, SR, Li, LH, Park, HJ, Park, JH, Lee, KY, *et al.* (2011). High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. *PLoS One* **6**: 1–8.
- Stern, B, Olsen, LC, Tröße, C, Ravneberg, H and Pryme, IF (2007). Improving mammalian cell factories: The selection of signal peptide has a major impact on recombinant protein synthesis and secretion in mammalian cells. *Trends Cell Mol. Biol.* 2: 1–17.
- 12. Abbott Biotechnology Ltd. Human antibodies that bind human TNFα. US Patent 6,090,382 filed 9 Feb. 1996, and issued 18 Jul. 2000.
- 13. Funahashi, A, Morohashi, M, Kitano, H and Tanimura, N (2003). CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. *Biosilico* 1: 159–162.
- 14. Machné, R, Finney, A, Müller, S, Lu, J, Widder, S and Flamm, C (2006). The SBML ODE Solver Library: A native API for symbolic and fast numerical analysis of reaction networks. *Bioinformatics* **22**: 1406–1407.
- 15. Hoffmann, A, Levchenko, A, Scott, ML and Baltimore, D (2002). The IkappaB-NFkappaB signaling module: temporal control and selective gene activation. *Science* **298**: 1241–1245.
- 16. Kichler, A, Leborgne, C, Coeytaux, E and Danos, O (2001). Polyethyleniminemediated gene delivery: A mechanistic study. *J. Gene Med.* **3**: 135–144.

- 17. Pollard, H, Remy, JS, Loussouarn, G, Demolombe, S, Behr, JP and Escande, D (1998). Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. *J. Biol. Chem.* **273**: 7507–7511.
- Hong, M, Fitzgerald, MX, Harper, S, Luo, C, Speicher, DW and Marmorstein, R (2008). Structural Basis for Dimerization in DNA Recognition by Gal4. *Structure* 16: 1019–1026.
- 19. Bergqvist, S, Alverdi, V, Mengel, B, Hoffmann, A, Ghosh, G and Komives, E a (2009). Kinetic enhancement of NF-kB DNA dissociation by IkBa. **2009**: 1–6.
- 20. Eden, E, Geva-Zatorsky, N, Issaeva, I, Cohen, A, Dekel, E, Danon, T, *et al.* (2011). Proteome half-life dynamics in living human cells. *Science* **331**: 764–768.
- 21. Sotiropoulos, V and Kaznessis, YN (2007). Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes. *BMC Syst. Biol.* **1**: 7.
- Ignowski, JM and Schaffer, D V. (2004). Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. *Biotechnol. Bioeng.* 86: 827–834.
- 23. Salghetti, SE, Muratani, M, Wijnen, H, Futcher, B and Tansey, WP (2000). Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. *Proc. Natl. Acad. Sci. U. S. A.* **97**: 3118–3123.