OMTO, Volume 4

Supplemental Information

Bacterial Carriers for Glioblastoma Therapy

Nalini Mehta, Johnathan G. Lyon, Ketki Patil, Nassir Mokarram, Christine Kim, and Ravi V. Bellamkonda

Supplemental Figure S1. Kaplan Meier plot for control (n =6 for each set) and treated rats that were injected with carrier expressing either (a) Azurin (n = 6) or (b) p53, (n = 6). Results showed no survival in control and treated rat group. *p* value = 0.0263 for Azurin survival plot and *p* value = 0.6721 for p53 survival plot. (c) Tumor volumes calculated from MRI images for control (n = 6) and carrier treated rats expressing *only Azurin* (n = 6). Tumor volume increased exponentially in all control and treated rats. (d) Tumor volumes calculated from MRI images for control (n = 6). Tumor volume increased exponentially in all control and treated rats expressing *only p53* (n = 6). Tumor volume increased exponentially in all control (n = 6) and carrier treated rats expressing *only p53* (n = 6). Tumor volume increased exponentially in all control and treated rats.

Supplement Figure S2. Multiple responses to apoptotic proteins are observed following carrier injection. Near the site of carrier injection, there is increased expression of p53, increase in cleaved PARP (indicator of apoptosis), decrease in ki67 (indicator for cell proliferation), and an increased influx of activated microglia or CD68 positive cells (indicator of innate immune response). In spite of multiple responses, the tumor of non-responders continued to grow possibly because the rate of tumor proliferation exceeded the rate of apoptosis. Picture shown on left is entire tumor from a non-responder rat stained with anti-ki67 antibodies showing high proliferation rate in most part of the tumor except the site of carrier injection. Scale bars: 200 μ m.

Supplemental Figure S3. IHC images of brain sections from treated responder rats euthanized on day 52 post tumor implant or at day 104 to check for presence of (a) p53, (b) PARP, or (c) TUNEL, each stained red above. Green- human anti-mitochondria antibodies which specifically stains tumor cells, Blue-DAPI. The sections show sparsely dispersed tumor cells (green) on day 52. Right side of yellow line - carrier injection site shows a big gap, presumably the site where tumor cells were originally proliferating. In the 52-day section, lot of p53, PARP and TUNEL staining observed exclusively within tumor region. The adjacent healthy cells did not show TUNEL staining indicating absence of apoptosis in this region. In the day 104 sections, p53, PARP and TUNEL staining was negative. There were no glioma cells in all of the responder tissues euthanized on day 104 (See Fig 6a), thus no representative human anti-mitochondrial signal for these conditions. Compared to treated responder rats, the tumor population from (d) control and (e) treated non-responder rats was dense. Yellow lines demarcate intra- and extra-tumoral regions. Scale bars: 100 μm.

Supplemental Figure S4. (a) Survival analysis and **(b)** tumor volumes for animal cohort used in proteomic analysis (12 animals, 6 control, 3 non-responder, 3 responder). **(C)** Volcano plots depicting significantly differentially expressed proteins. Each dot represents a unique protein (by uniprot accession). Significant threshold was set to a false discovery rate of < 0.05 and a fold change of greater than ± 2 -fold. (d) Dendrogram

clustering of proteomics samples by Euclidian distance between peptide spectrum matches across all measured proteins. Note the strong clustering of responders (R1-3), while the non-responders (N1-3) and controls (C1-6) are more closely related in their proteomic signature. (e) Euler Diagram depicting overlapping membership of differentially expressed proteins across the fold-change pairs and further subset by whether this differential expression was relatively an up- or down- fold change. Numbers in parentheses indicate total number of proteins in that particular differential expression subset. R/C is differentially expressed proteins in responders relative to controls, N/C is non-responders relative to controls, and R/N is responders relative to controls, where the sign indicates either +: up- or -: down- fold differential expression.

Supplemental Figure S5. GSEA enrichment map for significantly affected pathways (p-value < 0.05, false discovery rate < 25%) in (A) responders relative to controls, and (B) non-responders relative to control using the Reactome and Gene Ontology datasets. Red dots indicate positively enriched pathways; blue indicates negatively enriched pathways. Relative size maps to relative magnitude of Normalized enrichment score. Edge size corresponds to number of proteins that overlap between gene sets.

Supplemental Figure S6. Gene neighborhood network (via BIOGRID and g:profiler) using proteins from apoptosis antibody array. Coloring indicated average protein foldchange for (a) non-responders, and (b) responders relative to controls using proteomics and western array data. Network has been pruned for visualization for any undetected/unmeasured protein and any node of degree 1 that was not directly connected to p53. Overall this network in non-responders is mixed in regulation, while the responder network is primarily down-regulated relative to controls.

04210 3/3/16 (c) Kanehisa Laboratories **Supplemental Figure S7.** KEGG (a) P53 Signaling (HAS:04115) and (b) Apoptosis (HSA:04210) pathways, colored using average non-responder fold-change relative to controls, using proteomics and western array data. No clear pro- or anti-apoptotic signal is apparent from these mappings i.e., both relatively positive and negative expression of proteins occurs for both pro- and anti-apoptotic responses.

Supplemental Table S1 Primers used for cloning and FISH probe

Primer Name	Primer sequence (5' to 3 ')
PflE-F	ATATACATGTAAACGGCCTCTCTTATTTC
PfIE-R	ATATAAGCTTCCACTTTACGGATAAACATACC
p53-F	ATATGGATCCATGGAGGAGCCGCAGTCAGATCC
p53-R	ATATGAATTCTCAGTCTGAGTCAGGCCCTTCTGTC
Azurin-F	ATATGGATCCACGCCGGGCAGATCCCGCTC
Azurin-R	ATATGAATTCTCACTTCAGGGTCAGGGTGCCCTTCATC
23S rDNA FISH probe with 5'Texas Red	AATCACTTCACCTACGTG

Supplemental Table S2. Mass spectrometry results for identification of Azurin expression (3 biological replicates). Listed are the results detected as AZUR_PSEAE (accession: P00282, species: Pseudomonas aeruginosa). Azurin-negative controls did not have a detectable gel band for mass spectrometry analysis.

Sample ID	Sample Group	# Unique Peptides	Intensity
5	Azurin+	5	1.20E+08
6	Azurin+	5	2.10E+08
7	Azurin+	2	1.40E+07

Supplemental Table S3. Proteomic individual protein snapshot. Shown are the 20 largest by Log2 Fold Change (Log2 FC) magnitude, up- and down- fold changes between each condition pair. Values below the significance threshold are highlighted in red. Please see **Supplemental Information** for complete dataset.

Non-responders relative to Controls		Responders relative to Controls			Responders relative to Non-responders						
UP Fold				UP Fold				UP Fold			
Gene	Accession	Log2 FC	p-value	Gene	Accession	Log2 FC	p-value	Gene	Accession	Log2 FC	p-value
ALDH1A3	P47895	1.387	0.000606033	Ppp1r9a	O35867	2.882	9.60E-16	Pclo	Q9JKS6	4.549	2.80E-11
HSPB6	O14558	1.35	0.000363856	NEGR1	Q7Z3B1	2.799	8.23E-13	Bsn	G3V984	4.36	2.98E-24
ETFA	H0YM12	1.195	0.00080317	Slc6a17	P31662	2.758	2.17E-12	Bsn	O88778	4.184	4.34E-27
SDCBP	G5EA09	1.143	2.26E-06	Madd	O08873	2.682	7.51E-13	Gria2	F1LNE4	4.139	8.54E-08
Itgam	G3V8L7	1.13	0.001078139	Rap1gap	F1LV89	2.668	2.47E-09	Tnr	A0A096MJE6	3.971	3.38E-14
VPS51	Q9UID3	1.091	0.049194741	Caskin1	D3ZE17	2.633	1.20E-15	SYNGAP1	Q96PV0	3.964	8.35E-10
Ufc1	Q6BBI8	1.023	0.030357066	Ppp1r1b	Q6J4I0	2.603	1.29E-13	Dmxl2	F1M164	3.932	4.19E-08
Arfgef2	Q7TSU1	1.002	0.034141206	Negr1	Q9Z0J8	2.596	3.24E-13	Plcb1	P10687	3.857	3.91E-13
CCDC124	Q96CT7	0.999	0.009064815	Ppfia3	F1LSE6	2.575	1.19E-13	Palm	Q920Q0	3.739	2.22E-14
Lsm2	Q6MG66	0.996	0.010576147	PTPRD	P23468	2.496	6.11E-08	Pde2a	F8WFW5	3.66	2.62E-10
CTSA	X6R5C5	0.982	0.002856246	CALB1	P05937	2.493	2.62E-13	Srcin1	Q9QXY2	3.543	6.77E-20
H1FX	Q92522	0.972	0.05456802	Cep170b	D4A1G8	2.488	6.05E-08	Ank2	F1LM42	3.529	5.92E-36
UQCRH	P07919	0.966	0.022953964	Agap2	Q8CGU4	2.416	7.21E-12	Oxr1	Q4V8B0	3.505	3.76E-11
RRP8	O43159	0.959	0.040943669	Myef2	D4AEI5	2.373	6.39E-11	DMXL2	Q8TDJ6-3	3.453	3.49E-12
TUBGCP2	Q9BSJ2-4	0.95	0.02492262	Scn2a	P04775	2.349	2.21E-14	Camkv	F1LR80	3.45	9.14E-13
SRP19	P09132	0.947	0.03322118	Acsl6	A0A0A6YYM0	2.334	2.37E-16	SYT1	P21579	3.445	1.50E-35
Emr1	Q5Y4N8	0.928	0.065066637	Akap12	Q5QD51	2.327	1.12E-14	Synpo	Q9Z327-2	3.432	2.44E-08
HNMT	P50135	0.927	0.054959028	Pclo	Q9JKS6	2.324	1.26E-38	Camkv	Q63092	3.426	8.67E-12
Vps53	D3ZPE5	0.922	0.051045151	Dpp10	Q6Q629	2.322	5.79E-11	Add2	F8WFS9	3.424	9.44E-11
Cstf2t	M0R6B9	0.911	0.046867016	Prkce	P09216	2.317	1.20E-10	Impact	Q5GFD9	3.413	3.74E-08

Non-responders relative to Controls		Responders relative to Controls				Responders relative to Non-responders					
DOWN Fold				DOWN Fol	d			DOWN Fold			
Gene	Accession	Log2 FC	p-value	Gene	Accession	Log2 FC	<u>p-value</u>	Gene	Accession	Log2 FC	p-value
Bsn	G3V984	-2.622	1.44E-06	COL6A3	P12111	-4.848	3.75E-28	COL6A3	P12111	-5.025	4.84E-26
Bsn	O88778	-2.531	6.74E-06	A1i3	P14046	-4.794	1.85E-14	PRKDC	P78527	-4.763	3.28E-13
Tnr	A0A096MJE6	-2.218	0.0004623	PRKDC	P78527	-4.561	2.65E-13	ANXA1	P04083	-4.596	3.56E-13
Plcb1	P10687	-2.123	8.15E-05	Mug1	Q03626	-4.544	1.86E-15	TGFBI	Q15582	-4.528	7.52E-14
Pgrmc1	P70580	-1.97	0.002310608	TNC	P24821	-4.449	1.72E-13	A1i3	P14046	-4.516	8.03E-13
NCDN	Q9UBB6-3	-1.956	9.16E-05	ANXA1	P04083	-4.441	9.92E-15	Mug1	Q03626	-4.509	1.69E-11
Hpcal4	P35332	-1.94	0.003098431	NES	P48681	-4.425	4.68E-12	NES	P48681	-4.473	7.03E-12
Scin	E9PU64	-1.905	0.000154763	IQGAP1	P46940	-4.416	4.48E-11	FBN1	P35555	-4.452	8.32E-14
Pclo	Q9JKS6	-1.889	0.003141926	FN1	P02751-15	-4.352	8.74E-11	AHNAK2	Q8IVF2	-4.451	3.77E-13
Dmx12	F1M164	-1.851	0.003603893	FLNC	Q14315	-4.272	2.27E-16	IQGAP1	P46940	-4.361	3.20E-13
KRT2	P35908	-1.816	0.000899208	AHNAK2	Q8IVF2	-4.256	2.39E-12	COL6A1	P12109	-4.313	2.93E-11
Synpo	Q9Z327	-1.806	0.005110261	MVP	Q14764	-4.115	1.74E-19	TNC	P24821	-4.26	3.84E-13
Ncdn	O35095	-1.765	0.000144521	TGFBI	Q15582	-4.056	1.83E-11	LGALS1	P09382	-4.26	6.71E-56
Synpo	Q9Z327-2	-1.74	0.008823966	COL6A1	P12109	-4.035	8.09E-11	MVP	Q14764	-4.206	2.87E-19
Tmod2	P70566	-1.728	0.003512689	Iqgap1	G3V7Q7	-4.019	1.63E-11	FN1	P02751-15	-4.196	4.12E-10
Homer1	Q9Z214	-1.718	0.012052618	KTN1	Q86UP2	-3.971	1.85E-11	CAST	P20810-6	-4.19	1.24E-11
Gria2	F1LNE4	-1.714	0.012457946	A1m	Q63041	-3.955	1.22E-12	KTN1	Q86UP2	-4.119	1.03E-11
Camkv	Q63092	-1.704	0.001715614	Нрх	P20059	-3.933	4.86E-10	FAM129B	Q96TA1	-4.086	1.96E-12
Add2	F8WFS9	-1.696	0.00342469	CAST	P20810-6	-3.928	8.33E-10	PLIN3	O60664	-4.028	1.16E-10
L1cam	D3ZPC4	-1.668	0.007714873	COL6A2	P12110	-3.919	1.38E-10	CKAP4	Q07065	-4.002	1.02E-10

Supplemental Table S4. Gene Set Enrichment Analysis (GSEA) snapshot. Shown are the 5 largest positively (red) and negatively (blue) enriched pathways for each condition pair, selected by Normalized Enrichment Score (NES) magnitude. ES: Enrichment score; NOM p-val: nominal p-value given by GSEA; FDR: False Discovery Rate; FWER: Family-wise error rate.

	NAME	SIZE	ES	NES	NOM	FDR	FWER
					p-val	q-val	p-val
Non-responders	PROTEIN FOLDING	17	0.6480	2.4384	0.0000	0.0186	0.0090
relative to	ASSOCIATION OF TRIC CCT WITH TARGET PROTEINS DURING BIOSYNTHESIS	10	0.7606	2.3412	0.0000	0.0170	0.0170
Controls	FORMATION OF THE TERNARY COMPLEX AND SUBSEQUENTLY THE 43S COMPLEX	11	0.6838	2.1303	0.0000	0.0788	0.1100
	PEPTIDE CHAIN ELONGATION	33	0.4547	2.1004	0.0000	0.0797	0.1470
	STRUCTURAL CONSTITUENT OF RIBOSOME	27	0.4858	2.0839	0.0000	0.0735	0.1690
	TRANSMISSION OF NERVE IMPULSE	34	-0.6387	-1.6677	0.0000	0.1472	0.6770
	CLATHRIN COATED VESICLE	9	-0.8026	-1.6971	0.0000	0.0985	0.4820
	NEUROTRANSMITTER RELEASE CYCLE	16	-0.7191	-1.7001	0.0021	0.1114	0.4680
	SECOND MESSENGER MEDIATED SIGNALING	14	-0.7356	-1.7007	0.0011	0.1365	0.4610
	SYNAPTIC TRANSMISSION	30	-0.6641	-1.7201	0.0000	0.1147	0.3260
Responders	TCA CYCLE AND RESPIRATORY ELECTRON TRANSPORT	74	0.5741	2.3851	0.0000	0.0000	0.0000
relative to	TRANSMISSION ACROSS CHEMICAL SYNAPSES	60	0.5787	2.2875	0.0000	0.0000	0.0000
Controls	NEURONAL SYSTEM	66	0.5587	2.2337	0.0000	0.0000	0.0000
	RESPIRATORY ELECTRON TRANSPORT ATP SYNTHESIS BY CHEMIOSMOTIC COUPLING AND HEAT PRODUCTION BY UNCOUPLING PROTEINS	49	0.5782	2.2141	0.0000	0.0000	0.0000
	MITOCHONDRION	114	0.4766	2.1351	0.0000	0.0003	0.0020
	NONSENSE MEDIATED DECAY ENHANCED BY THE EXON JUNCTION COMPLEX	35	-0.7143	-2.8738	0.0000	0.0000	0.0000
	PEPTIDE CHAIN ELONGATION	33	-0.7578	-2.8885	0.0000	0.0000	0.0000
	INFLUENZA VIRAL RNA TRANSCRIPTION AND REPLICATION	34	-0.7467	-2.8986	0.0000	0.0000	0.0000
	3 UTR MEDIATED TRANSLATIONAL REGULATION	36	-0.7423	-2.9374	0.0000	0.0000	0.0000

	NAME	SIZE	ES	NES	NOM	FDR	FWER
					p-val	q-val	p-val
Responders	NEUROTRANSMITTER RELEASE CYCLE	17	0.7612	2.0635	0.0000	0.0031	0.0040
relative to	ACTIVE TRANSMEMBRANE TRANSPORTER ACTIVITY	30	0.6512	1.9963	0.0000	0.0062	0.0150
Non-responders	NEURONAL SYSTEM	69	0.5640	1.9732	0.0000	0.0065	0.0230
	SYNAPTIC TRANSMISSION	31	0.6445	1.9725	0.0000	0.0049	0.0230
	TCA CYCLE AND RESPIRATORY ELECTRON TRANSPORT	77	0.5515	1.9322	0.0000	0.0071	0.0440
	REACTOME 3 UTR MEDIATED TRANSLATIONAL REGULATION	36	-0.7416	-3.0801	0.0000	0.0000	0.0000
	REACTOME INFLUENZA VIRAL RNA TRANSCRIPTION AND REPLICATION	34	-0.7420	-3.0824	0.0000	0.0000	0.0000
	REACTOME SRP DEPENDENT COTRANSLATIONAL PROTEIN TARGETING TO MEMBRANE	39	-0.7320	-3.0827	0.0000	0.0000	0.0000
	REACTOME INFLUENZA LIFE CYCLE	45	-0.7101	-3.1372	0.0000	0.0000	0.0000
	REACTOME TRANSLATION	52	-0.7248	-3.2511	0.0000	0.0000	0.0000