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Supporting Information 
 
Chiappino-Pepe et al. 
 
S1 Methods 
 
Part 1. Reconstruction process of iPfa 
Steps in the reconstruction process of iPfa. The reconstruction process of iPfa involved 
six main steps: (i) generation of a draft metabolic network with the RAVEN Toolbox [1] (S6 
Table) and its curation; (ii) compartmentalization of the metabolic network, which involved 
the assignment of enzymes to intracellular compartments and the definition of transport 
reactions between compartments (S7 Table); (iii) definition of biomass composition in the 
form of a biomass reaction; (iv) definition of uptakes and secretions of the parasite cell, 
which involved the definition of a broad range of potential substrates that are likely to be 
accessible to the parasites from the host cells and the blood serum [2, 3]; (v) 
thermodynamic curation of the model, as performed previously [4-6]; and (vi) addition of 
missing metabolic capabilities, so called gap-filling reactions, that are necessary to 
simulate growth (S1 Table). We also integrated experimentally measured uptake and 
secretion rates, i.e., for glucose [7], L-isoleucine [8] and lactate [7]. 
 
Generation of a draft metabolic network. We retrieved the protein sequences (FASTA 
files) of P. falciparum 3D7 from PlasmoDB [9], which is based on the genome sequencing 
performed in 2002 [10], and annotated the enzymatic functions to the proteins with the 
RAVEN Toolbox [1]. The generation of the draft metabolic network was determined by two 
factors: the parameters specified in the annotation process (i.e. cut-off value and minimal 
score ratios, as defined below); and the associations between orthologous groups (5 digit 
K-ID), proteins and reactions that were obtained from the KEGG database [11]. 
The annotation process, i.e., matching between the protein sequences and the 
orthologous groups, was performed with the function getKEGGModelForOrganism in the 
RAVEN Toolbox [1]. Three main input parameters were specified to define the goodness 
of the annotations: the cut-off value of 10-15, the minimal score ratio of 0.8 and the minimal 
score ratio for a knocked out gene of 0.3. The output of this annotation process is 
summarized in S6 Table. 
The versions of the software and the data used in the reconstruction process were: version 
1.07 of the RAVEN Toolbox, version 11.1 of the protein FASTA files/protein sequences for 
P. falciparum 3D7 from PlasmoDB, and the version of KEGG as of July 2014. 
 
We evaluated and curated the gene annotations obtained from RAVEN with the 
experimental evidence on gene and/or enzyme characterization in P. falciparum available 
in the literature. In this curation process, we also assigned unique metabolite identifiers to 
some molecules, such as the alpha and beta isoforms of the monosaccharide D-glucose 
and D-fructose, and the diacylglycerol with 1,2-diacyl-sn-glycerol. In addition, we corrected 
the reactions for cofactor specificity when information was available. For instance, the 
quinone participating in the electron transport chain in the mitochondrion was assigned to 
be ubiquinone-8 [12]. 
 
For instance, based on recent findings [13], we incorporated in iPfa the pyruvate 
dehydrogenase activity of the mitochondrial BCKDH complex. The BCKDH-PDH function 
has been experimentally characterized in the rodent malaria parasite P. berghei [13], and 
has been annotated to the genes defined in Table SI. 
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We inferred the function of the mitochondrial BCKDH-PDH in P. falciparum using as 
reference the experimental characterization of this complex in P. berghei. 
We performed a bidirectional homology measurement of the protein sequences in P. 
falciparum and P. berghei with the RAVEN Toolbox [1] and we have inferred the 
orthologous genes in P. falciparum with the enzymatic function of BCKDH-PDH complex 
(Table SII). Based on of the BLASTp, the sequence similarity between the orthologous 
sequences is lower than 1E-172 for the four genes involved in the BCKDH-PDH complex, 
which suggests this function is also present in P. falciparum. 
 
Table SI. Experimental annotation of mitochondrial BCKDH-PDH in P. berghei as defined 
by Oppenheim et al. [13]. 
 
E.C. 
number Experimental annotation Gene P. berghei 

(updated ID) 

Orthologous P. 
falciparum gene 
(suggested in [13]) 

1.2.4.4  
Branched-chain alpha-ketoacid 
dehydrogenase E1 alpha  
(BCKDHNE1a)   

PBANKA_1411100 PF3D7_1312600   

1.2.4.4  Branched-chain alpha-keto acid 
dehydrogenase E1 beta  (BCKDHNE1b)   PBANKA_1104200 PF3D7_0504600   

2.3.1.168  Branched-chain alpha-keto acid 
dehydrogenase E2 (BCKDHN E2)   PBANKA_0402300 PF3D7_0303700   

1.8.1.4  Lipoamide dehydrogenase E3 
(BCKDHNE3)   PBANKA_1446900 PF3D7_1232200   

 
 
Table SII. Result from homology measurement between protein sequences in P. 
falciparum and P. berghei performed with the RAVEN Toolbox [1] in this study. 
 
Gene P. berghei Inferred orthologous  

P. falciparum gene E-value Identity Alignment Length 

PBANKA_1411100 PF3D7_1312600 0 83.95 430 
PBANKA_1104200 PF3D7_0504600 0 86.09 338 
PBANKA_0402300 PF3D7_0303700 1.00E-172 57.94 447 
PBANKA_1446900 PF3D7_1232200 0 79.8 505 
 
 
Compartmentalization. The compartmentalization process of iPfa involved the 
localization of enzymes in five intracellular compartments (i.e. the cytosol, the apicoplast, 
the mitochondrion, the endoplasmic reticulum and the nucleus) and the definition of 
transport reactions between these compartments. 
Nearly 25% of the enzymes in iPfa were localized based on experimental evidence. The 
information on experimental localization of enzymes in P. falciparum  was obtained from 
the online databases ApiLoc [14] (last time updated in 2011) and from MPMP [15] (last 
time accessed in March 2015). The remaining 75% of the enzymes were assigned to the 
intracellular compartments based on localization scores. These scores compare the 
protein sequences to be localized with the amino acid sequences that target the proteins 
to the specific intracellular compartments, such as the bipartite targeting sequence for the 
apicoplast in P. falciparum [16]. The software used to generate the localization scores 
were TargetP [17] (version 1.1), MitoProt II [18] (version 1.101), and ApicoAP [19] (version 
2). The input to these software was the FASTA file obtained from PlasmoDB (version 11.1, 
strain 3D7) containing the information on the protein sequences of P. falciparum, as 
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described in the generation of a draft metabolic network. The experimental localization and 
localization scores obtained for the enzymes and the associated genes in iPfa are 
summarized in S7 Table. 
 
P. falciparum has other intracellular compartments (e.g. digestive vacuole, Golgi 
apparatus) that were not explicitly included in iPfa. These compartments were a priori 
considered in the reconstruction of iPfa. However, very few enzymes in iPfa (i.e., four 
enzymes in the digestive vacuole and one enzyme in the Golgi apparatus) were 
experimentally localized in these compartments (S7 Table). We then decided to include 
the corresponding reactions in the cytosol. 
For example, some of the reactions that occur in the digestive vacuole, such as the 
hemoglobin digestion/degradation, are included in iPfa and located in the cytosol. Other 
processes in this organelle, such as the accumulation of hemozoin and Ca2+, are not 
considered in this study since a (quasi)-steady state condition for the metabolites should 
be satisfied within flux balance and thermodynamics flux analyses.  
 
Intracellular transport reactions allow the exchange of metabolites between intracellular 
compartments. Under the absence of information or experimental evidence about the 
transport reactions in P. falciparum [20], we defined transporters for all cytosolic 
metabolites that were also present in other intracellular compartments, only if these 
metabolites fulfilled three conditions: they were not phosphorylated, they did not present a 
Coenzyme A (CoA) and neither a [acyl-carrier protein] (ACP) moiety attached (following 
the same considerations that had been applied in previous studies, such as ToxoNet1 
[21]). In these cases, the transport mechanism considered was simple diffusion. We 
allowed the transport of phosphorylated molecules that has been previously characterized 
in P. falciparum, such as the transport of phosphoenolpyruvate and glycerone phosphate 
into the apicoplast [22]. 
 
Biomass definition. The biomass reaction in a genome-scale metabolic model (GEM) 
comprises all major biomass components of the cell. We defined in the biomass reaction 
of iPfa five major biomass macromolecule groups, i.e., DNA, RNA, Protein, Lipids and 
Carbohydrates and others. We defined the metabolic precursors or biomass building 
blocks and their quantity in each macromolecule group based on available experimental 
data in the literature. 
The frequency of DNA and RNA nucleotides and amino acids in P. falciparum has been 
experimentally characterized and reported [23]. In the same way, we obtained the 
frequency of the lipid components in the parasite, Table 1 in [24] and Table 2 in [25]. The 
distribution of free fatty acids was estimated from available experimental results [25, 26]. 
The biomass precursors for which no experimental quantification in P. falciparum was 
found were grouped in Carbohydrates and others. They represent nucleotide sugars, 
polyamines, prosthetic groups, coenzymes and ions, which are commonly defined as 
essential biomass components [27]. In this case, we calculated their frequency assuming a 
distribution proportional to the number of carbons present in their molecular composition. 
We did not define other putative biomass precursors like glycoproteins, which are part of 
the GPI-anchors, because detailed knowledge about their production from the sugars 
nucleotides was not found for P. falciparum. Instead their precursors, i.e. the nucleotide 
sugars, where defined as biomass components. 
 
When it was not specified, the frequencies obtained from the different sources were 
assumed to be in %-mol/mol. All frequencies were normalized to calculate the final 
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stoichiometric coefficients, as defined in standard reconstruction protocols [28]. Growth 
associated maintenance (GAM), which accounts for non-metabolic processes, was 
calculated based on the biomass composition, as commonly performed [28]. 
 
Definition of the available substrates in iPfa: uptakes and secretions. iPfa has an in 
silico rich medium composed of 236 potential substrates. The medium in iPfa was primarily 
compiled based on the general assumption about the transportability of the metabolites in 
the cytosol: unless evidence was found to define a specific transport mechanism, we 
allowed the transport of all molecules that do not incorporate phosphate, coenzyme A 
(CoA) and acyl-carrier proteins (ACP) in their molecular structures, and we assumed that 
transports occur through passive diffusion. We further included in the medium metabolites 
that were not present in the cytosol of the draft metabolic network, and that are part of the 
the RPMI 1640 media formulation [2] and the serum composition [3]. These metabolites 
were accounted in our gap-filling approach to identify precursors of the biomass building 
blocks. Such an approach allowed the definition of precursors like pantothenate, thymidine 
and succinate in the in silico rich medium of iPfa. 
 
In addition, iPfa integrates available experimental data on uptake and secretion rates in P. 
falciparum trophozoites. The efflux values integrated included the maximum uptake rate of 
L-isoleucine (set to 0.053 mmol/h-gDW cell, as calculated from the value 553 ± 27 
µmol/(1012 cells per hour) [8]) and of D-glucose (set to 0.62 mmol/h-gDW cell, as 
calculated from the value 120 ± 34 µM glucose/(109 parasitized red blood cells per 24 
hour) [7]), and the maximum secretion rate of lactate (set to 0.76 mmol/h-gDW cell, based 
on the value 143 ± 47 µM lactate/(109 parasitized red blood cells per 24 hour) [7] and 
consistent with previous data [29, 30]). To calculate these values we assumed a cell dry-
weight for P. falciparum of 1.05•10-11 gDW/cell [23], which represents around 30% of the 
erythrocyte dry-weight [31]. 
 
The predicted growth rate in iPfa is 0.16 h-1 after integration of the L-isoleucine uptake 
rate. This value is comparable with the growth rates derived from the doubling time in P. 
falciparum trophozoites [32]. The number of malaria parasites in the blood stages 
increases exponentially [33], hence Eq 1 can be applied to estimate the growth rate of P. 
falciparum in the blood stages. 
 

 
		
gr =

ln N(t)
N(0)

⎛
⎝⎜

⎞
⎠⎟

t
  (1) 

 
where N(t) and N(0) is the number of cells at time t and time 0 and gr is the growth rate. 
The coefficient of N(t) and N(0) is two in the calculation of the doubling time. 
 
For a doubling time of 12.3 h [32], the specific growth rate of P. falciparum in the blood 
stages is around 0.06 h-1. In this study, we assumed a broader physiological range of 
growth rate, i.e. between 0.05 and 0.14 h-1. This range accounts for the development of 14 
and 32 merozoites within 24 or 48 hours as observed in the in vitro cultivation of P. 
falciparum during one cycle of erythrocyte infection. 
 
 
Thermodynamic curation of iPfa. Data integrated: pH, membrane potential and 
concentration data. Statistics. The Gibbs free energy of a reaction (∆rG’) is a measure of 
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its driving force and determines thermodynamically feasible direction under which the 
reaction can operate, defined as reaction directionality [34-36]. We integrated the 
thermodynamic properties of the metabolites and reactions in iPfa in the form of 
thermodynamic constraints following the systematic approach defined within the 
framework of Thermodynamics-based Flux Analysis (TFA) [4-6]. Thermodynamic 
constraints determine the feasible range of ∆rG’ and hence reduce the uncertainty in the 
reaction directionalities and with it the feasible solution space that is characteristic of highly 
underdetermined problems like the analysis of metabolic networks with Flux Balance 
Analysis (FBA). These constraints in iPfa accounted for the intracellular conditions, like the 
pH, the membrane potential and the intracellular concentration ranges of the metabolites. 
TFA further allowed the integration of experimentally measured concentration ranges of 
metabolites [37-40]. 
 
We defined a pH of 7.3 in the cytosol, based on the pH value and the membrane potential 
reported in [41, 42]. Under the absence of information, we assumed the same pH value in 
the endoplasmic reticulum and the nucleus. We estimated a pH of 7.5 in the mitochondrion 
of P. falciparum, based on measurements in Saccharomyces cerevisiae [43] and the 
similar mitochondrial membrane potential that both organisms present, as argued below 
and as it has been hypothesized before for similar pathogens like Trypanosoma cruzi: “it is 
able to build up and retain a membrane potential of a value comparable with that of 
mammalian mitochondrion” [44]. We defined a pH value of 6.8 in the extracellular medium, 
i.e., the parasitophorous vacuole or in silico rich medium in iPfa, which was obtained from 
interpolation of Fig 9 in [42] for a ±95 mV membrane potential, and it is consistent with the 
statement in [45] that the extracellular pH should be higher than 6.5. We defined a 
membrane potential of ±95 mV for the extracellular membrane of the parasite, as 
measured in [42]. Based on the experimental studies in P. berghei and P. yoelii 
trophozoites [46, 47] and Toxoplasma gondii tachyzoites [48], the membrane potential in 
the mitochondrion of Plasmodium parasites should be higher than ±150 mV. We assumed 
a membrane potential of ±180 mV for the mitochondrial membrane, which is the value in 
S. cerevisiae [49]. 
 
We created a thermodynamically curated version of iPfa where we allowed the 
concentration of every metabolite to vary between 1 µM and 50 mM, which is the 
physiological range used in similar TFA studies [4, 50]. The extracellular metabolite 
concentrations were allowed to vary between 0.01 µM and 100 mM. We also generated 
various thermodynamically curated versions of iPfa integrating one-at-a-time each of the 
ten metabolomics data set considered in this study [37-39]. Nine metabolomics data sets 
were measured with NMR: eight were obtained from different isolates of P. falciparum 
trophozoite-infected red blood cells [38] and one from isolated trophozoites [37]. The 
remaining data set was measured with LC-MS in isolated trophozoites [39]. The 
physiological range of concentration (defined above) was considered for a metabolite, if no 
data was available in the metabolomics sets. For the metabolites present in more than one 
intracellular compartment of iPfa, the same concentration range was defined in all of these 
compartments. We also generated a combined metabolomics data set [37-40], where one 
unique concentration range was calculated for each metabolite appearing in multiple data 
sets. This unique concentration range comprised all the measured concentration values 
(Fig SI A and B). The absolute concentration values and the concentration ratios of the 
metabolites determine the final ∆rG’. For example, the range of the ratio NADP/NADPH in 
the combined metabolomics data set varies between 1.6 and 6.0 mol/Lcell / mol/Lcell. 
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Fig SI A and B. Absolute concentration ranges in logarithmic scale (LN of mol/L of 
cell) of the metabolites in the combined metabolomics data set.  
 
We calculated the thermodynamic properties of the compounds in iPfa using the group 
contribution method (GCM) [5, 6]. In this study, the R groups of large fatty acids and 
phospholipids were not specified and hence their thermodynamic properties were not 
considered. 
 
In addition, we checked all reactions for correct atom balancing at the pH considered in the 
corresponding intracellular compartments. Overall in iPfa, thermodynamic properties were 
calculated for 70% of the total number of enzymatic and transport reactions and nearly 
84% of them did not present pre-assigned directionality. The pre-assigned directionalities 
in iPfa are based on the directionalities defined in the KEGG database, which were 
reviewed using the enzyme database BRENDA [51]. We additionally prevented the 
hydrolysis reactions (EC 3.-.-.-) for which no thermodynamic properties could be calculated 
to occur in the reverse direction. Note that thermodynamic constraints affect also the 
reactions for which no thermodynamic properties are calculated. For instance, the 
directionality of the reactions with thermodynamic information can determine the 
directionality of the neighboring reactions. This is an effect of the propagation of mass and 
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thermodynamic constraints due to the connectivity of the metabolic network and the 
growth requirement, as discussed in previous studies on network thermodynamics [34]. 
 
Metabolic tasks and gap-filling. Metabolic tasks are defined in this study as the 
production of biomass building blocks [1, 21]. The draft metabolic network of iPfa did not 
contain all the necessary reactions that allowed simulation of growth. This is a common 
situation in the reconstruction process of GEMs [28] and requires the inclusion of reactions 
without gene association in a process called gap-filling [52]. We evaluated each metabolic 
task in iPfa and performed gap-filling when a metabolic task was not feasible, i.e. when a 
biomass building block could not be produced in iPfa. We developed a gap-filling approach 
based on a mixed-integer linear programming (MILP) formulation to look for alternative 
groups of minimal number of reactions (borrowed from another metabolic network) that 
determined the feasibility of all metabolic tasks. This formulation allows the integration of 
thermodynamic constraints. 
In the draft metabolic network of iPfa 24 of the 73 total metabolic tasks were not feasible. 
We used ToxoNet1 [21] to gap-fill 15 of these metabolic tasks. The remaining 9 metabolic 
tasks were gap-filled with reactions from the KEGG-based metabolic network as of 2015, 
which comprises all to date known enzymatic reactions in any organism [11]. These gap-
filling reactions and alternatives are reported in S1 Table. 
 
Part 2. Analyses of iPfa 
Studies on essential genes and reactions. Following standard procedures, single 
reaction and gene knockout simulations were performed in iPfa; the reactions and genes 
were deleted one-by-one and growth was simulated. In a similar fashion, double gene 
knockouts implied the pairwise deletion of non-single essential genes. Reactions or genes 
were defined as essential when simulation of their knockout resulted in a growth rate 
smaller than 10% of the optimal predicted value, i.e., 0.16 h-1. This value corresponds to a 
90% reduction of the maximum specific growth rate predicted with iPfa when experimental 
efflux values are integrated (see the step on the definition of uptakes and secretions in the 
reconstruction process of iPfa to learn about the specific growth rate of P. falciparum). The 
results of gene and reaction essentiality in iPfa reported in S2 Table and S3 Table were 
obtained using the in silico rich medium composed of 236 metabolites. 
 
The optimal predicted growth value was the same in all scenarios, i.e. using FBA and TFA. 
The threshold of 10% used to identify essential genes and pairs of genes does not have 
any impact on the identification of essential genes and reactions in this study (see Fig SII 
A and B), since no knockouts led to in silico growth reducing phenotypes. No additional 
filtering was applied to identify essential genes and pairs of genes. 
 
The comparison of single gene and reaction essentiality allowed to understand what 
enzymes of iPfa rendered the genes essential (S2 Table). Two classes of genes were 
identified based on the essentiality of its associated reactions. The first class involves 
genes that are essential because one (or more) of its encoded enzymes is (are) alone 
indispensable for growth. In this case, the gene is essential in silico and one (or more) of 
its associated reactions is (are) also essential in silico. The second class involves genes 
that are essential because a group of its encoded enzymes is indispensable (and not any 
of its encoded enzymes alone). In this case, the gene is essential in silico and none of its 
associated reactions appears as single essential, which happens when the gene-to-
reaction associations is not one-to-one. In S2 Table the reactions and enzymes that are 
responsible for the essentiality of the in silico essential genes are presented. This 
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information is relevant because genes are normally classified as essential or non-essential 
based on the outcome from experimental gene knockouts, but medical therapies are 
normally designed to target essential enzymes in the pathogens. Thus, it is of interest to 
know, which of the enzymes encoded by the essential gene performs the essential 
function in the metabolic network of the pathogen. 
 
 
 

 
 
Fig SII A and B. Predicted phenotype upon single (A) and double (B) gene knockout in 
iPfa. Predictions made with TFA with the combined metabolomics data set integrated. 
 
 
Gene essentiality per metabolic task. This analysis allowed the identification of the 
metabolic tasks or biomass building blocks that could not be performed or produced, 
respectively, upon knockout of the essential genes. In addition to the analysis described in 
Methods, a MILP formulation was defined to identify the groups of building blocks that 
could not be produced at the same time due to stoichiometric requirements. The analysis 
was performed with FBA and TFA. 
 
The study of the metabolic tasks using TFA provides additional understanding of the effect 
of the knockouts. TFA constrains further the metabolic network and thus there are less 
alternative pathways to fulfill a metabolic task. In turn, when thermodynamics is taken into 
account, the number of metabolic tasks impacted by the knockout of one gene might 
increase. This analysis also suggests a thermodynamic dependency between the 
metabolic subsystems. 
 
Ranking of metabolites based on the Reduction of Uncertainty (RoU) in the Gibbs 
free energy of the reactions (∆rG’). FBA defines mass balance constraints for each 
metabolite in the GEM and solves a linear problem to determine the intracellular fluxes. 
Thus, the FBA of a genome-scale model with a higher number of reactions than 
metabolites is underdetermined and has an inherent uncertainty in its solution, referred to 
as feasible solution space [53]. TFA, with the integration of thermodynamic constraints 
reduces this space and allows only the thermodynamically feasible solutions. However, 
there is still an uncertainty or feasible range in the fluxes and other thermodynamic 
properties like the ∆rG’. The range in the ∆rG’ is directly related with the concentration 
ranges of the metabolites participating in the reaction. 
 
In iPfa a reduction of uncertainty in the concentration ranges of the metabolites and hence 
in the ∆rG’ of the reactions was achieved by integrating metabolomics data (see the 

A B 
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description of the thermodynamic curation of iPfa to know the concentrations used). Here, 
studies were performed on iPfa to identify the metabolites from the metabolomics data 
sets used that determined the highest reduction of uncertainty in the ∆rG’, referred to as 
Reduction of Uncertainty (RoU) and defined in Eq 2. The RoU identifies which reactions 
are impacted individually by each metabolite concentration, to which extent are these 
reactions impacted and hence which are the most impacting metabolites (S1 Dataset). 
This analysis is independent of the studies on bottleneck metabolites (Table 2, Materials 
and Methods), and allows a ranking of the metabolites based on a different metric. 
Consistent with experimental observations [54], the results of both studies indicate that the 
phosphorylated nucleotides appear among the most impacting metabolites. 
 
The RoU in ∆rG’ was calculated for a reaction i by comparing its range of ∆rG’ when 
physiological ranges were assumed for all metabolites (defined as ∆∆rG’ref,i in Eq 1) with its 
range of ∆rG’ when the experimental concentration range of one metabolite j was 
integrated (∆∆rG’[met j], i). A global RoU was then calculated by adding the RoUi of all the 
reactions in iPfa to define the overall impact of each metabolite (S1 Dataset). 
 

 
		
RoUi =

ΔΔG'ref ,i− ΔΔG'[met , j ],i
ΔΔG'ref ,i

  (2) 

 
The metabolite concentration ranges of the combined metabolomics data sets were used 
for this study (see the description of the thermodynamic curation of iPfa to know the 
experimental data that comprised this set). The range of ∆rG’ was obtained with 
Thermodynamic Variability Analysis (TVA) [4], which follows the same principles as the 
Flux Variability Analysis (FVA) [55]. In TVA a growth rate of iPfa between the 80% of its 
optimal value and its optimal value, i.e., between 0.14 and 0.16 h-1, was required (see the 
step on the definition of uptakes and secretions in the reconstruction process of iPfa to 
understand the source of these values). 
 
This study falls within the scope of a well developed framework called Thermodynamics-
based Metabolite Sensitivity Analysis (TMSA) that has been developed by A. Kiparissides 
& V. Hatzimanikatis [56] for the ranking of metabolites that reduce the uncertainty of 
different parameters in the metabolic networks and allow a better definition of the internal 
states of the cells. 
 
Studies of bottleneck metabolites and reactions impacted. This study identified the 
metabolites responsible for the thermodynamic bottlenecks, which determined the 
directionality of a set of reactions and allowed the identification of eight genes as essential 
(Table 2). iPfa was used with generic concentration ranges (1 µM - 50 mM) or 
simultaneous integration of the experimental concentration ranges, and each of the eight 
genes was knocked out separately (S2 Table). These models were feasible with FBA, but 
not with TFA. A MILP formulation was defined to search for the minimal number of 
metabolites whose concentration ranges should be relaxed to make the model feasible in 
TFA. All the alternative solutions were obtained, and the minimal sets were formed by 
picking one metabolite from each alternative. The minimal set should involve at least one 
metabolite from each alternative. The metabolites that were shared among more 
alternatives appeared in the minimal sets. 
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Table SIII A. Unique set of reactions impacted after integration of the bottleneck 
metabolite concentration ranges associated to the gene PF3D7_1415700. 
 
Reaction ID1 (Reaction directionalities2) 
R01280_c (B) 
R00371_c (B) 
R01281_c (B) 
R00371_r (B) 
R01281_r (B) 
T_c_to_r_C00037 (B) 
T_c_to_r_C03508 (B) 
T_c_to_e_C03508 (B) 
R02055_r (F) 
T_c_to_r_C00065 (F) 
T_c_to_r_C00249 (F) 
T_c_to_r_C00024 (F) 
R02057_r (R) 
R01468_r (R) 
R02038_r (R) 
T_c_to_r_C00189 (R) 
T_c_to_r_C00011 (R) 
T_c_to_e_C00033 (R) 
 
Table SIII B. Unique set of reactions impacted after integration of the bottleneck 
metabolites concentration ranges associated to the gene PF3D7_0111500. 
 
Reaction ID1 (Reaction directionalities2) 
R00156_c (F) 
R00570_c (F) 
R04231_c (F) 
R00155_c (B) 
R00158_c (B) 
R00512_c (B) 
R00662_c (B) 
 
 
Table SIII C. Unique set of reactions impacted after integration of the bottleneck 
metabolites concentration ranges associated to the gene PF3D7_0928900 
 
Reaction ID1 (Reaction directionalities2) 
R00328_c (B) 
R00332_c (B) 
R00426_c (B) 
R00428_c (B) 
R00434_c (B) 
R01234_c (B) 
R01855_c (B) 
R02090_c (B) 
R04639_c (B) 
R05046_c (B) 
R05048_c (B) 
 
 
Table SIII D. Common set of reactions impacted after integration of the bottleneck 
metabolites concentration ranges associated to the three genes PF3D7_1415700, 
PF3D7_0111500 and PF3D7_0928900. 
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Reaction ID1 (Reaction directionalities2) 
R00130_c (B) R02094_c (B) R01195_a (B) R07770_m (B) T_c_to_e_C17023 (B) T_c_to_e_C00137 (F) 
R00161_c (B) R02101_c (B) R05633_a (B) R07771_m (B) T_c_to_e_C05198 (B) T_c_to_e_C00183 (F) 
R00257_c (B) R02326_c (B) R00570_a (B) T_c_to_a_C00009 (B) T_c_to_e_C00156 (B) T_c_to_e_C00188 (F) 
R00416_c (B) R03361_c (B) R00512_a (B) T_c_to_a_C00013 (B) T_c_to_e_C16240 (B) T_c_to_e_C00712 (F) 
R00549_c (B) R03435_c (B) R01015_a (B) T_c_to_a_C00019 (B) T_c_to_e_C00059 (B) T_c_to_e_C01595 (F) 
R00619_c (B) R05692_c (B) R05634_a (B) T_c_to_a_C00073 (B) T_c_to_e_C00255 (B) T_c_to_e_C06424 (F) 
R00885_c (B) R08193_c (B) R05636_a (B) T_c_to_a_C00111 (B) T_c_to_e_C00378 (B) T_c_to_e_C00342 (F) 
R00888_c (B) R08639_c (B) R05637_a (B) T_c_to_a_C00129 (B) T_c_to_e_C00407 (B) R00174_c (R) 
R00965_c (B) R09247_c (B) R05688_a (B) T_c_to_a_C00235 (B) T_c_to_e_C00187 (B) R01021_c (R) 
R01658_c (B) R03469_c (B) R08689_a (B) T_c_to_a_C17023 (B) T_c_to_e_C00120 (B) R01799_c (R) 
R01665_c (B) R03005_c (B) R04986_m (B) T_c_to_a_C05198 (B) T_c_to_e_C06453 (B) R02030_c (R) 
R01724_c (B) R00104_c (B) R04989_m (B) T_c_to_a_C16240 (B) T_c_to_e_C00725 (B) R08969_c (R) 
R01802_c (B) R03035_c (B) R04990_m (B) T_c_to_m_C00725 (B) T_c_to_r_C00114 (B) R02240_c (R) 
R01870_c (B) R02018_c (B) R05611_m (B) T_c_to_m_C00013 (B) R07390_c (F) R01321_c (R) 
R01890_c (B) R01663_c (B) R05615_m (B) T_c_to_m_C00019 (B) T_c_to_a_C00022 (F) T_c_to_e_C00343 (R) 
R02003_c (B) R00289_c (B) R06146_m (B) T_c_to_m_C00021 (B) T_c_to_e_C00041 (F)  
R02017_c (B) R02058_c (B) R00127_m (B) T_c_to_m_C00156 (B) T_c_to_e_C00078 (F)  
R02019_c (B) R00291_c (B) R04987_m (B) T_c_to_m_C00129 (B) T_c_to_e_C00114 (F)  
R02024_c (B) R01818_c (B) R04988_m (B) T_c_to_m_C04216 (B) T_c_to_e_C00123 (F)  
R02093_c (B) R02061_c (B) R05614_m (B) T_c_to_m_C16240 (B) T_c_to_e_C00135 (F)  
 
1Reaction names as defined in iPfa. Metabolic reactions are defined with their R-5 digit 
identifier as obtained from the KEGG database. Transport reactions are marked with T_. 
Cellular compartment are defined with the reaction name: _r, endoplasmic reticulum; _c, 
cytosol. 2Reaction directionalities obtained with Thermodynamics-based Flux Variability 
Analysis: (B) blocked, (F) forwards, (R) reverse. In this analysis no growth requirement 
was defined in iPfa. See the S4 Table for the reaction description. 
 
Studies on in silico minimal media (IMM). The IMM analysis was performed following 
the strategy defined before [21]. Here, TFA was applied with the combined metabolomics 
data set integrated in iPfa (see the description of the thermodynamic curation of iPfa to 
know the experimental data that comprised this set). In this analysis, the growth rate was 
set to 0.06 h-1 to study the nutritional requirements of normally growing P. falciparum (see 
the step on the definition of uptakes and secretions in the reconstruction process of iPfa to 
learn about the specific growth rate of P. falciparum). This means that the minimal 
nutritional requirements of iPfa were not underestimated (since a minimal growth was 
required) and were not overestimated (since growth was not allowed to reach extremely 
big and biologically irrelevant values). 
 
The IMM analysis of iPfa suggested that iPfa requires as little as 23 substrates for growth 
and identified 10,032 alternative such IMM. There are 52 substrates that compose the 
alternative IMM and 16 of these substrates appear in all alternative IMM, here referred to 
as constitutive substrates. The remaining 36 substrates, here referred to as non-
constitutive substrates, combine in groups of size seven to form the alternative IMM. In this 
way, each IMM, which is defined by 23 substrates, is composed of 16 constitutive 
substrates and seven non-constitutive substrates. A priori one would expect all the 
combinatorial possibilities of 36 substrates in groups of size seven to form the alternative 
IMM: 36!/((36-7)!*7!) = 8,347,680 combinations. However, the relatively low number of 
alternatives found in the IMM analysis suggests that not all combinations of the 36 
substrates are possible, which indicates that not all substrates can substitute for each 
other. 
 
Identification of groups of substrates that can substitute for each other for growth. 
Given the requirement of minimal utilization of substrates in the IMM studies, one would 
expect that some of the non-constitutive substrates that do not appear in the same IMM 
could substitute for each other. We created groups of non-constitutive substrates that did 
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not belong to the same IMM and found that 26 of the 36 components were substitutable, 
suggesting that each of these components serve a specific biosynthetic requirement. 
However, ten can be substituted by one or more than one substrate in the IMM, which 
indicates that they serve multiple biosynthetic requirements, as discussed for S-adenosyl-
L-methionine in the main text. This result demonstrated that the non-appearance of two 
substrates in the same IMM is a necessary but not sufficient condition to define the 
substrate substitutability. We next looked at the molecular structure of the 36 non-
constitutive substrates and identified the backbone moieties. Substrates were grouped if 
they never appeared in the same IMM and presented a common molecular substructure or 
backbone moiety. 
 
To validate that the substrates with a backbone moiety were able to substitute for each 
other and support growth, we performed the following analysis: First, we tested that iPfa 
could not grow when all substrates in a group were removed from the in silico medium of 
52 metabolites identified in the IMM. Second, we tested that under such conditions, the 
inclusion of each substrate of the group individually allowed simulated growth in iPfa. This 
analysis was also performed in the rich medium of 136 substrates to validate the groups of 
substrates that contained the three backbone moieties (the sources of carbon, phosphate 
and purine) indicated in Fig 3. 
 
The 10,032 alternative IMM can be regenerated by combining all the constitutive 
metabolites with one non-constitutive metabolite from each group reported in Table 2. 
However, the following constraints should be considered: 

• There should be at least one molecule that provides a ribose as source of carbon. 
In the IMM of iPfa, this ribose is provided by some molecules that also serve as 
source of pyridine ring or as source of DNA nucleotides (marked with * in Table 2). 

• The combination between orthophosphate and S-Adenosylmethioninamine is not 
possible. 

 
 
Analysis of thermodynamic infeasibility in iPfa to utilize orthophosphate and S-
Adenosylmethioninamine (SAM) as the only sources of phosphate and purines. 
The TFA of iPfa with metabolomics data integrated suggested that P. falciparum cannot 
utilize orthophosphate and SAM as the only sources of phosphate and purines, 
respectively. 
 
We designed two sets of analyses to investigate the reason for this observation.  

1. Identification of biomass building blocks (BBBs) whose production is impacted and 
limit the parasite’s growth. 

2. Identification of thermodynamic bottlenecks responsible for the thermodynamic 
infeasibility of P. falciparum to grow on orthophosphate and SAM. 

 
In these analyses orthophosphate and SAM were forced to be the only sources of 
phosphate and purines. This was done by blocking the uptake of the remaining substrates 
that are sources of these backbone moieties in the in silico rich medium, which are defined 
in Figure 3. We performed TFA with the combined metabolomics data set. 
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Analysis 1. Identification of biomass building blocks (BBBs) whose production is impacted 
and does not allow growth. 
When orthophosphate and SAM were forced to be the only sources of phosphate and 
purines no biomass growth was predicted. We tested the production of each BBB at a time 
to identify the cellular processes that could not be fueled with these metabolites. 
Interestingly, all BBBs could be individually produced. In this case, no growth was 
predicted because some BBBs could not be produced at the same time in the needed 
stoichiometric amounts. This result suggests that all cellular processes can function 
individually when orthophosphate and SAM are the only sources of phosphate and purine. 
However, the utilization of orthophosphate and SAM does not allow the required 
distribution of resources (e.g., carbon, energy or redox power) between the metabolic 
pathways needed for growth. 
 
We next aimed to quantitatively understand the impact on the BBB production when 
orthophosphate and SAM were utilized. We compared the production of each BBB when 
all sources of phosphate and purine were available (as defined in Figure 3) and when only 
orthophosphate and SAM were used. The maximum production of 22 BBBs was 
considerably reduced in the latter scenario (Table SIV A). The most impacted BBB was 
ATP. This result suggests that P. falciparum might not be able to grow on orthophosphate 
and SAM because these precursors do not allow enough production of ATP for the cellular 
processes required for growth. 
 
 
Table SIV A. BBBs whose production is impacted when orthophosphate and SAM 
are the only sources of phosphate and purines. The maximum production in such 
scenario (MPs) is compared with the maximum production of these BBBs when all sources 
of phosphate and purines are available (MPwt) in iPfa. The percentage of reduction in the 
production of each BBB is calculated as (MPwt - MPs) / MPwt * 100. 
 

Biomass building blocks impacted 

Max. 
Production, 

MPs 
(mmol/gDW/h) 

Max. WT 
production, 

MPwt 
(mmol/gDW/h) 

% Reduction in 
production 

C00002_c ATP 16.7 100.0 83.3 
C00013_c Diphosphate 25.0 100.0 75.0 
C00006_c NADP+ 16.7 50.0 66.7 
C00010_c CoA 16.7 50.0 66.7 
C00044_c GTP 16.7 50.0 66.7 
C00063_c CTP 16.7 50.0 66.7 
C00075_c UTP 16.7 50.0 66.7 
C00131_c dATP 16.7 50.0 66.7 
C00286_c dGTP 16.7 50.0 66.7 
C00458_c dCTP 16.7 50.0 66.7 
C00459_c dTTP 16.7 50.0 66.7 
C01245_c D-myo-Inositol 1,4,5-trisphosphate 16.7 50.0 66.7 
C00003_c NAD+ 25.0 50.0 50.0 
C00016_c FAD 25.0 50.0 50.0 
C00018_c Pyridoxal phosphate 50.0 100.0 50.0 
C00019_c S-Adenosyl-L-methionine 50.0 100.0 50.0 
C00043_c UDP-N-acetyl-D-glucosamine 25.0 50.0 50.0 
C00068_c Thiamin diphosphate 25.0 50.0 50.0 
C00096_c GDP-mannose 25.0 50.0 50.0 
C00325_c GDP-L-fucose 25.0 50.0 50.0 
C00029_c UDP-glucose 25.0 50.0 50.0 
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C00052_c UDP-D-galactose 25.0 50.0 50.0 
C05980_c Cardiolipin 25.0 31.3 20.0 
C16237_a Protein N6-(lipoyl)lysine 0.2 0.2 6.6 
 
We then investigated which BBBs could not be produced at the same time in the needed 
stoichiometric amounts. We developed a MILP formulation in which we aimed to minimize 
the number of BBBs whose production should be abolished to allow stoichiometric 
production of the remaining BBBs. The lower bound for the BBB demand reaction (LB) 
was set to 10% of the maximal production of each BBB (UB) at 0.06 h-1: 
 

Minimize Σ yj 
s.t. 

Σ Sij vj = 0i,  i=1,…M 
vbiomass=0 

LBj ≤ vj ≤ UBj   ∀ j ∈Model 
LBj (1-yj) ≤ vj ≤ UBj (1-yj)  ∀ j ∈Demand BBB reactions 

yj = {0,1}    ∀ j ∈ Demand BBB reactions 
 
We identified three such sets of BBBs (Table IV B). 
 
Table IV B. BBBs whose production should be abolished to allow stoichiometric 
production of the remaining BBBs. All alternative solutions are reported. 
 
Alternative sets BBBs that imbalance production of biomass 
Set 1 ATP       
Set 2 Sphingomyelin       
Set 3 UDP-N-acetyl-D-

glucosamine 
UDP-D-galactose UDP-glucose CTP UTP dCTP dTTP 

 
This result supports the previous observation of ATP limitation when P. falciparum grows 
on orthophosphate and SAM. And it further identifies the BBBs that are mostly impacted 
upon ATP limitation: the production of sphingomyelin, nucleotides and nucleotide sugars. 
The sets identified also indicate the parts of the metabolism that compete for the available 
resources such as ATP. 
 
Furthermore, we identified that an unlimited production of Ubiquinone-8 in the 
mitochondrion or Sphingomyelin in the cytosol would allow growth of P. falciparum on 
orthophosphate and SAM. In this case, the production of ATP and the nucleotides is 
increased and there is stoichiometric production of the BBBs. This result suggests that P. 
falciparum might use the electron transport chain to increase the ATP production.  
 
Note: We also defined the MILP formulation such that the minimal (LB) and maximal (UB) 
bounds of the BBB demands equal the maximum production rate of the BBBs at 0.06 h-1. 
In this case, 24 additional sets appear (compared with the sets defined in Table IV B). ATP 
is a component of all these sets and it is combined with BBBs such as CoA, FAD+, NAD+, 
NADP+, nucleotides, and nucleotide sugars. This result further supports the conclusion 
that there exits ATP limitation to produce biomass when P. falciparum grows on 
orthophosphate and SAM. 
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Analysis 2. Identification of thermodynamic bottleneck that are responsible for the 
thermodynamic infeasibility to grow on orthophosphate and SAM. 
The infeasibility of iPfa to grow on orthophosphate and SAM was predicted with TFA and 
metabolomics data integrated. We applied the analysis of bottleneck metabolites to identify 
the metabolites responsible for the growth limitation. 
 
Six bottleneck metabolites distributed in two sets of five bottleneck metabolites were 
identified (Table IV C). 
 
Table IV C. Bottleneck metabolites that render iPfa infeasible to grow on 
orthophosphate and SAM. All alternative sets of bottleneck metabolites were identified 
as explained in the Materials and Methods section. 
 
Alternative sets Bottleneck metabolites 

Set 1 CTP[c] CDP-choline[c] L-Methionine[c] ATP[c] Choline[c] 
Set 2 CTP[c] CDP-choline[c] L-Methionine[c] ATP[c] UTP[c] 

 
This result indicates that the concentrations of ATP together with other four metabolites 
render thermodynamic bottlenecks that do not allow growth on orthophosphate and SAM. 
The bottleneck metabolites identified participate in the production of phosphatidylcholine, 
sphingomyelin, nucleotides and nucleotide sugars. As suggested in the previous analysis 
(Table IV B), these metabolic processes might compete for the available resources. The 
results here presented further indicate that there might exist a thermodynamic coupling 
between the production of sphingomyelin, nucleotides and nucleotide sugars through the 
concentrations of the six bottleneck metabolites. 
 
We next investigated where the thermodynamic bottlenecks were located in the 
metabolism of P. falciparum. We identified the reactions whose directionality was impacted 
upon integration of the bottleneck metabolite concentrations. We compared the 
directionality of the reactions in iPfa in two conditions: when the generic concentration 
ranges (1 µM - 50 mM) were defined for all intracellular metabolites, and when the 
experimental concentration ranges of the bottleneck metabolites in each set was further 
integrated. The directionality of the reactions was identified through Thermodynamic 
Variability Analysis (TVA) [4] as explained in the Materials and Methods section. Both sets 
of bottleneck metabolites impacted the same reaction directionalities. In these analyses all 
sources of phosphate and purine were available (as defined in Figure 3). 
 
We identified two reactions whose directionality changed upon integration of the bottleneck 
metabolite concentrations (Table IV D). The reactions impacted participate in the 
production of phosphatidylcholine and imply the consumption of ATP. 
 
Table IV D. Reactions in iPfa whose directionality is impacted after integration of the 
bottleneck metabolites concentration ranges. The full description of the reaction (as 
defined in iPfa) is also provided. 
 
Reaction ID1 
(directionality2) 

Enzyme E. C. Reaction description Gene associated 

R01021_c (F) ATP:choline 
phosphotransferase 

2.7.1.32 ATP[c] + Choline[c] <=> 
ADP[c] + Choline phosphate[c] 

(PF3D7_1401800) 

T_c_to_e_C00114 
(R) 

NA NA Choline[c] <=> Choline[e] NA 
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1Reaction names as defined in iPfa. Metabolic reactions are defined with their R-5 digit 
identifier as obtained from the KEGG database. Transport reactions are marked with T_. 
Cellular compartment are defined with the reaction name: _r, endoplasmic reticulum; _c, 
cytosol. 2Reaction directionalities obtained with Thermodynamics-based Flux Variability 
Analysis: (B) blocked, (F) forwards, (R) reverse. 
 
 
Gene essentiality in the IMM. The results on essential genes that can become essential 
upon substrate inaccessibility reported in S5 Table were obtained by defining one-by-one 
the 10,032 alternative in silico minimal media (IMM), which are composed uniquely of 23 
substrates. The composition of all IMM can be derived from the Table 2. The methods 
used for the identification of the essential genes and reactions in these analyses are 
reported in S2, S3 and S5 Tables. The studies on essentiality with TFA follow the same 
principles as with FBA and further account for thermodynamic constraints, which reduce 
the feasible solution space from FBA by allowing only thermodynamically feasible solution 
of fluxes (see the studies on Reduction of Uncertainty). The constraints in the reaction 
directionalities are responsible for the identification of the additional essential genes 
observed with TFA. At the same time, this implies that the genes identified as essential 
with FBA are always a subset of the genes identified as essential with TFA. 
 
Although we expect that most of the genes that TFA predicted to be essential in the in 
silico rich medium (S2 Table) will also be essential in vivo, some of the genes identified as 
non-essential in this study could be essential under certain in vivo conditions. The model 
and the IMM analysis framework presented here can be used to further explore which 
substrates are not accessible by the cell or are not available in sufficient quantities to P. 
falciparum inside the host. For example, a future comparison of in vivo knockout high-
throughput data and this essentiality analysis on the IMM will advance our understanding 
of the substrates that are accessible to the malaria parasite in the host. 
 
Substrate channeling integration within TFA. Substrate channeling between two 
enzymes defines the process in which the intermediate produced by one enzyme is 
transferred to the next enzyme without complete mixing with the bulk phase [57]. This 
process might occur to facilitate the flux through a metabolic pathway. 
The presence of substrate channeling between two enzymes (E1 and E2) was simulated 
within the TFA framework. The reactions R1 and R2 catalyzed by E1 and E2 were lumped 
to define an overall reaction (L= R1+R2). The overall reaction eliminates the common 
intermediates and recycled metabolites, since they are produced in the first reaction R1 
and consumed in the second reaction R2 and vice versa, respectively. For example, if R1 
involves the transformation A + B ! I + C and R2 is defined as I + D ! P + B, the final 
lumped or overall reaction L is defined as A + D ! P + C. The overall reaction L does not 
involve the intermediate metabolite I and the recycled metabolite B. It is important to note 
that reactions R1 and R2 should be first defined in the direction that satisfies mass 
balances and allows flux through the pathway of study. Then the lumped reaction can be 
formed. For example, if the pathway of study contains reactions R1 and R2 and normally 
the starting metabolite is A and the product of the pathway is P, the reactions R1 and R2 
should be defined as A + B ! I + C and I + D ! P + B, respectively, and not as A + B ! I 
+ C and P + B ! I + D. In this study, the reactions of the pyrimidine biosynthesis pathway 
and the Kennedy pathway were defined to allow production of UMP and PE, respectively. 
The overall reaction was then allowed to be bidirectional. Thermodynamic properties were 
calculated for the overall reactions and TFA and Thermodynamic Variability Analysis 
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(TVA) [4] were performed to determine the thermodynamically feasible directionality of the 
overall reactions. Substrate channeling was suggested when the directionality of the 
overall reaction allowed flux through the biosynthetic pathway that would be otherwise 
thermodynamically infeasible. The directionality of the reactions was known from the sign 
of the range in the ∆rG’ obtained from TVA. 
 
We hypothesize that substrate channeling might exist in three pathways (two of which are 
discussed in the main text): 

• The Kennedy pathway: we defined an overall reaction between ethanolamine 
phosphate and PE through the enzymes E.C. 2.7.7.14 and E.C. 2.7.8.1 (R02038_r 
and R02057_r). 

• The pyrimidine biosynthesis pathway: we defined an overall reaction between 
carbamoyl phosphate to (S)-dihydroorotate through the enzymes E.C. 2.1.3.2 and 
E.C. 3.5.2.3 (R01397_c and R01993_c). 

• The multi enzymatic step through S-Adenosyl-L-methionine:(methyl)ethanolamine-
phosphate N-methyltransferase: we defined an overall reaction between 
ethanolamine phosphate and choline phosphate through the enzyme E.C. 2.1.1.103 
(R02037_c, R06868_c, and R06869_c). 

 
It is important to note, that the presence of a channel in the Kennedy pathway, does not 
allow the correct identification of the gene PF3D7_0927900 as essential in iPfa using TFA 
with metabolomics data integrated. Instead, this gene appears in six additional synthetic 
lethal pairs (Table SV). 
 
Table SV. Additional synthetic lethal pairs identified when channeling in the 
Kennedy pathway is simulated. All pairs involve the gene PF3D7_0927900. 
 
Pairs of essential genes in iPfa Metabolic tasks impacted upon knockout of each pair 
PF3D7_1216200 PF3D7_0927900 C00350_r Phosphatidylethanolamine 
PF3D7_1419800.1 PF3D7_0927900 C00350_r Phosphatidylethanolamine 
PF3D7_0923800.2 PF3D7_0927900 C00350_r Phosphatidylethanolamine 
PF3D7_1124600 PF3D7_0927900 C00350_r Phosphatidylethanolamine 
PF3D7_1347700 PF3D7_0927900 C00350_r Phosphatidylethanolamine 
PF3D7_0628300 PF3D7_0927900 C00350_r Phosphatidylethanolamine 
 
The gene PF3D7_0927900 encodes a phosphatidyl serine carboxylase (E.C. 4.1.1.65) 
and has been observed as essential in the blood stages of P. falciparum using drugs [58]. 
We need to simulate different scenarios to identify PF3D7_0927900 as essential while 
channeling is present in the Kennedy pathway. For example, we can consider that there is 
a maximal allowable flux through E.C. 4.1.1.65 and the Kennedy pathway and therefore 
both pathways are required to maintain optimal growth. 
In addition, regulation might exist between these redundant pathways. 
 
In the same way, the presence of a channel in the pyrimidine biosynthetic pathway implies 
that the backbone moiety in orotate and (S)-dihydroorotate can be synthesized by the cell.  
The uptake of this backbone moiety is then non-essential. Experimental studies have 
suggested that orotate uptake of in vitro extracellularly developing malaria parasites are a 
direct measurement of parasites growth [59]. The presence of orotate in the medium has 
been shown to inhibit the function of the DHOase enzyme [60]. This observation can be 
reflected in the model if we define a regulatory loop between orotate uptake and the 
pyrimidine biosynthesis pathway. 
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Using iPfa to study its metabolism in the blood and liver stages. iPfa can be 
implemented to study the metabolism of P. falciparum during the blood and liver stages. 
Here, we suggest some modifications of iPfa that would render better context-specific 
predictions. 
For modeling of blood-stage specific metabolism, the protein N6-(lipoyl)lysine in apicoplast 
(whose metabolite ID in iPfa is C16237_a) should be removed from the biomass. This 
metabolite is a precursor of the lipoyl-ACP, which is a cofactor of the pyruvate 
dehydrogenase complex in apicoplast, and its production requires the fatty acid synthesis 
II (FAS II) pathway in this compartment to be active. This pathway has been 
experimentally observed as dispensable during the blood stages but essential during the 
liver stages [61] (S2 Table). 
For modeling the liver-stage specific metabolism, the uptake of hemoglobin (whose rxn ID 
in iPfa is T_c_to_e_C05781) should be prohibited and the reaction that represents the 
hemoglobin digestion (HBDG_c) should be blocked or erased, since this molecule is not 
supposed to be accessible inside the hepatocyte cell. 
 
Part 3. Comparison between iPfa and the previous models of P. falciparum 
metabolism iTH366 [62] and PlasmoNet [63]. 
The model iPfa was compared at its initial and final reconstruction stages with previous 
models of P. falciparum metabolism. Here we provide the final comparison of the 
metabolic reactions in terms of E.C. identifiers (Fig SIII A), the BBBs (Fig SIII B) and the 
genes included (Fig SIII C). 
 
The comparison of metabolic reactions shows that the models share a big set of enzymatic 
functions, i.e. 230 ECs. The model PlasmoNet involves the highest number of metabolic 
reactions, i.e. 475 ECs, followed by iPfa and iTH366. Since PlasmoNet does not include 
genes, it was not possible to perform a critical evaluation of the missing ECs in iPfa. If the 
unique metabolic reactions to PlasmoNet were not orphan, we would have considered 
their integration in iPfa. The unique metabolic reactions to iTH366 were not included in 
iPfa because they were orphan reactions or they were associated to genes with uncertain 
annotation. 
 
In terms of BBBs, iPfa presents the highest description of metabolic tasks, followed by 
PlasmoNet and iTH366. The metabolic tasks in iTH366 that are not included in iPfa involve 
the production of ferric ions (Fe2+ and Fe3+) and menaquinone. PlasmoNet further requires 
the production of (9Z)-hexadecenoic acid, 3'',5''-Cyclic AMP, active-glutathione-
transferase, active-glyoxalase-II, active-SAH-hydrolase, active-thioredoxin-reductase, 
phosphatidate, protein C-terminal S-farnesyl-L-cysteine methyl ester, Fe-S-protein, 
glycoprotein with the oligosaccharide chain attached by N-glycosyllinkage to protein L-
asparagine, H+-pumped, hemozoin, and protein N6-[(R)-4-amino-2-hydroxybutyl]-L-lysine. 
The metabolic tasks that are unique to iPfa are tetradecanoic acid, biotin, 5-
methyltetrahydrofolate, methylcobalamin, geranylgeranyl diphosphate, UDP-N-acetyl-D-
glucosamine, GDP-L-fucose, UDP-glucose, and UDP-D-galactose. 
 
The genes in iPfa could only be compared with iTH366, since no genes are provided with 
PlasmoNet. The models iPfa and iTH366 share a big set of 245 genes. The previous 
model iTH366 includes 122 genes that were carefully evaluated at the initial stages of the 
reconstruction of iPfa (July-December 2014). These genes were not included in iPfa 
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because they were associated to putative annotations in PlasmoDB and no reference in 
the literature was found to support the suggested annotation. 
 

 

 
 

We further compared iPfa with the previous models in terms of ad hoc reaction 
directionalities, blocked reactions and essential genes (Table SVI). The models iPfa and 
iTH366 share similar characteristics in terms of blocked reactions and essential genes. 
This occurs although iPfa is much more relaxed in terms of substrate availability, 
metabolite transportability and ad hoc reaction directionalities. To this end, iPfa represents 
an ideal scaffold for the integration of context specific information and the identification of 
an increased number of essential genes for specific life stages. 
 
Table SVI. Functional comparison of iPfa with the previous models of P. falciparum, 
PlasmoNet and iTH366. 
 
 PlasmoNet iTH366 iPfa 
No. ad hoc reaction directionalities (%) 0 (0%) 590 (59%) 185 (14%) 
No. Blocked reactions (%) NA 334 (33%) 313 (24%) 
No. Essential genes (%) NA 57 (16%) 55 (17%) 

 
 
 
Part 4. Further information on the materials and methods used in the reconstruction 
and analyses of iPfa 
Software and databases. We solved FBA with the COBRA Toolbox v2.0 [64] and TFA 
using MATLAB (R2014a and R2014b) and CPLEX (ILOG IBM v12.51) as the linear solver. 
For the gap-filling algorithm we specified a CPLEX limit time of 500 seconds. We 
reconstructed and curated the metabolic network of iPfa using the RAVEN Toolbox v1.08 
[1] with mosek v7 in MATLAB (R2014a and R2014b). We obtained the reactions and 
metabolites present in iPfa from the KEGG database (between July 2014 and December 
2015). Marvin was used for drawing, displaying and characterizing the chemical 
substructures, Marvin Beans (16.7.25.0), 2016, ChemAxon (http://www.chemaxon.com) 
with molfiles from the KEGG database [11].  
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