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I. FURTHER EXPLANATION ABOUT THE EXPERIMENTS ON
ADNI

Fig.1 shows the probability densities of the hyper-
parameters used for the ADNI dataset.

List of the SNPs and the corresponding genes are provided
in the Table I.

II. VARIATIONAL BAYES TO APPROXIMATE THE
POSTERIORS

The pseudo-code for our inference algorithm is shown in
Algorithm 1, where γ is a M -dimensional vector of Bayes
Factor computed as follows:

log p(X:m|bm;G, π) =

N∑
n=1

logN (xnm; 0, 1)+

bm

(
log p(X:m|bm = 1;G, π)−

N∑
n=1

logN (xnm; 0, 1)

)
(1)

The computationally difficult term in the equation is the
marginal likelihood, p(xm|bm = 1;G, π). Exact computa-
tion of the marginal likelihood is computationally intractable.
However, it is common to approximate it with a lower bound
of the variational energy [1]–[3]. We follow the variational
mean-field method proposed by Carbonetto et al. [4] with a
slight modification to approximate p(X:m|bm = 1;G, π). To
be self-contained, we first briefly summarize the method in
[4]:
• We descretize the hyper-parameter space of the imaging

part of the model, i.e., π′ := {log10 α, σ
2
0 , σ

2
ω} ⊂

π into uniform grids, namely [α(min), α(max)] ×
[σ2

0(min), σ2
0(max)]×[σ2

ω(min), σ2
ω(max)]. Let us call the

grid points π′(1), · · · , π′(L), where every tuple π′ =
(α(i), σ2

0(i), σ2
ω(i)) is a set of hyper-parameter values.

• Since the space of the hyper-parameters is low dimen-
sional, importance sampling is a simple and effective
way to integrate out the hyper-priors with a reasonably
small number of samples. The proposal distribution is
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chosen to be a uniform distribution over a sufficiently
large range, i.e., p̃(π′(i)) = p̃(π′(1)), where p̃(·) is the
proposal distribution.

• Given a set of hyper-parameter values π′(i), a mean-field
approach is used to approximate the marginal likelihood,
p(xm|bm = 1;G, π′), via the variational lower bound.
Briefly, the mean-field method maximizes the following
objective function:

log p(x|b = 1;G, π′)

≥ F (π′; ς,ν, τ ) ≡ Eq
[
log

p(x,ω,a|G, π′)
q(ς,ν, τ )

]
= −N log (σ0)− ‖x−Gr‖2
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]
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where ς,ν, τ are the parameters of the approximate
posterior, q and r := E[ωq] = τ � ν and Varq[ωk] =
τk(ς2k + ν2k)− (τkνk)

2.
• Finally, the importance weights, ζ(i)’s, are normalized.

For each of ς,ν, τ , a weighted sum over all π′(i) is
computed as an approximation to integrating out the
hyper-parameters.

This procedure needs is run for every brain region. The
pseudo-code of the algorithm is shown in Algorithm 2 [4].

To integrate out the hyper-priors, the main idea in [4] is to
use importance sampling to compute the following integral:

PIP(s,m) =

∫
p(asm = 1|G,xm, π′)p(π′|G,xm)dπ′, (3)

where PIP(s,m) denotes the Posterior Inclusion Probability
for SNP s and region m. Carbonetto et al. [4] suggest to
replace it with the following importance sampling estimate

PIP(s,m) =

∑L
i=1 p(asm = 1|G,xm, π′(i))ζ(π′(i))∑L

i=1 ζ(π′(i))
(4)

where ζ(π′(i)) is the normalized importance weight for π′(i).
According to the importance sampling procedure,

ζ(π′) =
p(xm|G, π′)p(π′)

p̃(π′)
, (5)
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SNP Gene
rs10106827 NECAB1,TMEM55A
rs10487075 C7orf62,STEAP2-AS1
rs10504488 EYA1,XKR9
rs10812555 C9orf11,LINC00032
rs111863968 ATG16L1,INPP5D
rs113814152 CHRNA2,PTK2B
rs114773661 CRBN,SUMF1
rs114956101 KCNK17,KCNK5
rs115815527 ASB5,SPCS3
rs11662059 ACAA2,LIPG
rs117119586 MTDH,TSPYL5
rs117281307 CTTNBP2,NAA38
rs117547283 POM121L1P,PRAME
rs117655211 ATP8B4,DTWD1
rs1178036 GNRH2,PTPRA
rs117984432 ANKRD11,SPG7
rs118091716 GRM3,SEMA3D
rs118192075 IMPACT,OSBPL1A
rs11875667 CETN1,COLEC12
rs12002176 C9orf170,DAPK1
rs12137076 GNG4,LYST
rs12198405 CD2AP,TNFRSF21

SNP Gene
rs12476069 COL6A3,MLPH
rs12535226 EGFR,LANCL2
rs12778247 ANXA8,ZNF488
rs12997264 ATG16L1,INPP5D
rs13040601 CBLN4,DOK5
rs13138250 FGFRL1,IDUA
rs13314819 BBX,CCDC54
rs145767144 MAF,WWOX
rs146373627 ECHDC3,USP6NL
rs146643250 DNAH5,TRIO
rs147030865 ATP8B4,SLC27A2
rs16849237 RHOU,TMEM78
rs17108960 CBX5,SMUG1
rs17781348 GAK,TMEM175
rs1806522 C3orf27,RPN1
rs1834554 MS4A4A,MS4A4E
rs1912718 ATOH1,GRID2
rs2048330 LINC00210,RRP15
rs2048330 LINC00210,RRP15
rs2136987 CCKAR,RBPJ
rs2701623 DTX1,RASAL1
rs79914380 LMO3,MGST1

SNP Gene
rs9393059 FOXQ1,HUS1B
rs2906657 PILRA,ZCWPW1
rs293168 NDUFA4,NXPH1
rs34380708 KIAA0317,LTBP2
rs3764648 ABCA7,HMHA1
rs3779632 CHRNA2,PTK2B
rs4133300 KCNJ3,NR4A2
rs4916928 .,FAM20C
rs56034708 CDC7,TGFBR3
rs57677986 ADAM10,FAM63B
rs59776273 CORIN,NFXL1
rs6020063 B4GALT5,SLC9A8
rs622354 OR10G7,VWA5A
rs62389386 CLK4,COL23A1
rs6571632 EGLN3,SPTSSA
rs6685242 CD46,CR1L
rs6934812 CD2AP,TNFRSF21
rs6949677 C7orf70,CYTH3
rs7027316 IFNE,MTAP
rs7068614 ECHDC3,USP6NL
rs7087150 CCNY,GJD4
rs7129687 EED,PICALM

SNP Gene
rs71327107 EP300,RBX1
rs74322721 DDHD1,FERMT2
rs75340942 HABP2,TCF7L2
rs7536931 CR1,CR1L
rs76222305 LRRTM1,SUCLG1
rs76448372 AMICA1,SCN2B
rs76822114 GC,SLC4A4
rs76978231 CSMD1,MCPH1
rs77271157 CLU,EPHX2
rs77287774 ZEB1-AS1,ZNF438
rs7812465 PLEKHF2,TP53INP1
rs78180796 PTPRM,RAB12
rs79079416 CSNK1G1,KIAA0101
rs792806 CA10,KIF2B
rs8030340 RSL24D1,UNC13C
rs8707 MAP3K12,PCBP2
rs2824734 LINC00320,TMPRSS15
rs28592859 HLA-DQA1,HLA-DQB1
ε3/ε4 APOE

TABLE II: Detected SNPs and the corresponding genes.
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Fig. 1: Prior probability density for different hyper-parameters: (a) Density of α for prior distribution of Beta(1.02, 1). The
prior assigns almost uniform weight to all values. (b) log of PV E density as a function of σω (x-axis) and σ0 (y-axis). PVE
functions as a prior for σω given a value of σ0. (c) log of the density of σ0.

where the numerator is proportional to p(π′|xm,G) and the
denominator is the proposal distribution, a uniform distribution
in our experiments. Since the marginal likelihood p(xm|G, π′)
cannot be computed directly, it is approximated by the highest
lower bound:

log p(xm|G, π′) ≥ F (π′; ς,ν, τ ). (6)

To approximate the p(xm|G), we can apply the following
procedure:

p(xm|G)=

∫
p(xm, π

′|G)dp(π′|G) = Eπ′|G [p(xm, π
′|G)]

≥ Eπ′|G

[
eF (π′;ς,ν,τ )

]
≥ exp

[
Eπ′|G [F (π′; ς,ν, τ )]

]
, (7)

where the last line in Eq. (7) follows from the convexity of
exponential function.

Similar to Eq. (4), the idea is to replace the expectation with
the importance sampling approximation:

Eπ′|G [F (π′; ς,ν, τ )] ≈
∑L
i=1 F (π′; ς,ν, τ )ζ(π′(i))∑L

i=1 ζ(π′(i))
. (8)
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Algorithm 1: Variational Learning to Approximate Poste-
rior Relevance of Brain Regions
Parameters: (a) prior for the regions α , (b) number of

iterations: T
Data: (a) Diagnosis y, (b) Imaging Data X, (c)

Genotype G
Output: Parameters of the posterior distribution: θ

1 Approximate Bayes Factors (γ)
2 for m← 1 to M do
3 Set γm to an approximation of Eq. (1) (see

Algorithm 2)

4 for i← 1 to T do
5 Draw a set from the current estimate of the posterior

distribution: bt ∼ qθ̃t ;
6 Approximate the marginal conditional likelihood

p(y|bt;X, π) ;
7 Set ĝt = b̃t

(
log p(y|bt) + γTbt + |bt| logα

)
;

8 Set Ĉt = b̃t(b̃t)T ;
9 Set gt+1 = (1− w)gt + wg̃t ;

10 Set Ct+1 = (1− w)Ct + wC̃t ;
11 Solve Ct+1θ̃t+1 = gt+1 ;
12 if t > N/2 then
13 Set ḡ = ḡ + ĝt;
14 Set C̄ = C̄ + Ĉt;

15 return the solution of a linear system of equations
C̄θ = ḡ;

Algorithm 2: Variational Learning to Approximate
p(x|b = 1;G)

Data: (a) Imaging features for one region x, (b)
Genotype G

Parameters: Set of hyper-parameters, π′(1), · · · , π′(L)
1 Output
2 (a) Approximate marginal likelihood

γ̂ ≈ log p(x|b = 1;G) ;
3 (b) Variational estimate of posterior inclusion

probability τ̂s := Eq[as|x, b = 1;G], ∀1 ≤ s ≤ S ;
4 (c) Variational estimate of posterior variance

(ς̂ := Eq[ω|x, b = 1;G]) ;
5 (d) Variational estimate of posterior variance

(ν̂ := Varq[ω|x, b = 1;G]) ;

6 for i← 1 to L do
7 Initialize (ςInit,νInit, τInit) randomly ;
8 (ς(i),ν(i), τ (i), Z(i))← Mean-Field(G,x, π′(i)) ;

9 Set (ςInit,νInit, τInit) to the parameters associated with
highest Z ;

10 for i← 1 to L do
11 (ς(i),ν(i), τ (i), Z(i))← Mean-Field(G,x, π′(i)) ;
12 Compute importance weight

ζ(i)← Z(i)p(π′(i))/p̃(π′(i)) ;

13 Normalize importance weights: ζ(i)← ζ(i)/(
∑
i ζ(i)) ;

14 Average Over Hyper-parameters
15 ν̂ ←

∑L
i=1 ζ(i)ν(i) ;

16 ς̂ ←
∑L
i=1 ζ(i)ς(i) ;

17 τ̂ ←
∑L
i=1 ζ(i)τ (i) ;

18 γ̂ ←
∑L
i=1 ζ(i) (logZ(i)) ;

19 return (ν̂, ς̂, τ̂ , γ̂) ;
20

21 Mean-Field Subroutine
Input: (a) Genotype (G) , (b) Response (y), (c)

Hyper-parameters (π′)
22 (ς,ν, τ )← (ςInit,νInit, τInit) ;
23 repeat
24 Choose s ∈ {1, · · · , S} ;
25 ς2s ← σ−20

(
(GTG)ss + 1/σ2

ω

)
;

26 νs ← ς2sσ
−2
0

(
(GTy)s −

∑
j 6=s(G

TG)jsτjνj

)
;

27 τs
1−τs ←

α
1−α ×

ςs
σ0σω

× exp( 1
2ν

2
s/ς

2
s )

28 until Convergence;
29 Set logZ to the approximate lower bound by Eq. (2) ;
30 return ς , ν, τ , Z ;


