Table S1. DNA oligoes used for PCR in this study

Name	Sequence (5'-3')	Used for
1-3F	gggg- <u>ccgcgg</u> (SacII)-AGGTATTCGTTTGTTTACTA (nt -600 of FLO11)	FLO11 promoter dissection
1-3R	atat- <u>cccggg</u> (<i>Xma</i> I)-AGTGTGCGTATATGGATTTT (nt -1 of <i>FLO11</i>)	FLO11 promoter dissection
6F	gggg- <u>ccgcgg</u> (SacII)-AATTAAGGTTTTTTTCTTC (nt -1200 of FLO11)	FLO11 promoter dissection
6R	aagtaaatattagtaaacaaacgaatacct (nt -571 of FLO11)-	FLO11 promoter dissection
	GTCCATTCTTAGCCCCAAAG (nt -1001 of FLO11)	
9-10F	gggg- <u>ccgcgg</u> (<i>Sac</i> II)-ATTCTCATCGAGAGCCGAGC (nt -2000 of <i>FLO11)</i>	FLO11 promoter dissection
9-10R1	aagtaaatattagtaaacaaacgaatacct (nt -571 of FLO11)-	FLO11 promoter dissection
	GATTAGCGCATTCACATTCG (nt -1601 of FLO11)	
9-10R2	ttaagaaaacagaagaaaaaaaccttaatt (nt -1171 of FLO11)-	FLO11 promoter dissection
	GATTAGCGCATTCACATTCG (nt -1601 of FLO11)	
ADH2-F	CGTTCCAGTCAGGAATGTTCCACGTG (nt -800 of ADH2)	ADH2 promoter cloning
ADH2-R	TGTGTATTACGATATAGTTAATAGTTG (nt -1 of ADH2)	ADH2 promoter cloning
ADH2S-F	gggg- <u>ccgcgg</u> (SacII)-CGTTCCAGTCAGGAATGTTC (nt -800 of ADH2)	For P _{ADH2} -URA3 reporter
ADH2X-R	ccat- <u>cccggg</u> (Xmal)-TGTGTATTACGATATAGTTA (nt -1 of ADH2)	For P _{ADH2} -URA3
Flo11ex-F	GAAAGCTGTGCGGGAAAAC (nt -1650 of FLO11)	Replacing FLO11 ORF
Flo11ex-R	GTATTTTCGTTGTAACCGTAT (nt 350 of FLO11)	Replacing FLO11
FLO11-F	cccc- <u>gaattc</u> (<i>Eco</i> rl)-AGTCTTCGTTTCCTATCTCCACATACC (nt -3000 of <i>FLO11</i>)	FLO11 promoter amplification
FLo11-R	atat- <u>ccgcgg</u> (SacII)-AGTGTGCGTATATGGATTTTTGAGGCC (nt -1 of FLO11)	FLO11 promoter amplification
FLO11S-F	gggg- <u>ccgcgg</u> (SacII)-AGTCTTCGTTTCCTATCTCC (nt -3000 of FLO11)	FLO11 promoter dissection
Flo11ura3-R	gtattttcgttgtaaccgtatagttggacggtaccttttggaccagtgac (nt 350 of <i>FLO11</i>)- TAATAACTGATATAATTAAATTG (nt 879 of <i>URA3</i>)	Replacing FLO11 ORF
FLO8F	gcg-tctaga (<i>Xba</i> I)-ATGAGTTATAAAGTGAATAGT (nt 1 of <i>FLO8</i>)	PCR-amplifying FLO8
FLO8R	ccc-cccggg (Xmal)-A-GCCTTCCCAATTAATAAAAT(nt 2397 of FLO8)	PCR-amplifying FLO8
HO-F	CATTTTTGTTTCTTTTGGACAAATGTTG (nt -2000 of HO)	HO promoter amplification
HO-R	TTTAAAGTATAGATAGAATTGATTGCTG (nt -1 of HO)	HO promoter amplification
HOS-F	gggg- <u>ccgcgg</u> (SacII)-CATTTTTGTTTCTTTTGGAC (nt -2000 of HO)	For <i>P_{HO}-URA3</i> reporter
HOX-R	ccat- <u>cccggg</u> (Xmal)-TTTAAAGTATAGATAGAATT (nt -1 of HO)	For <i>P_{HO}-URA3</i> reporter
mCherry-F	acga- <u>cccggg</u> (<i>Xma</i> I)-GACTAGAGGTGAGCAAGGGC	mCherry amlification
mCherry-R	cgcg- <u>ctcgag</u> (<i>Xho</i> I)–CTACTTGTACAGCTCGTC	mCherry amlification
URA3-F	ATGTCGAAAGCTACATATAAGG (nt 1 of URA3)	URA3 ORF amplification
URA3-R	TTAGTTTTGCTGGCCGCATCTTC (nt 804 of URA3)	URA3 ORF amplification

Note: Primers for DNA sequencing are not listed. Capital bases match the template. The lower-case bases are attached sequences with restriction sites underlined. Starting positions (from 5') are indicated in the brackets behind each homologous sequence, with the upstream positions as "-" and the downstream as "+' taking the base A of the start code as 1. In the primer names, "F" and "R" mean forward and reverse, respectively.

Table S2. Plasmids used in this study

Name	Marker	Replicon	Promoter	Used for	Source
p2HGhsp104	HIS3	2 micron	GPD	overexpression of Hsp104	(Li & Lindquist,
					2000)
p413GAL1	HIS3	CEN6/ARSH4	GAL1	empty vector	ATCC
p413GAL1-NQYFP	HIS3	CEN6/ARSH4	GAL1	expression of Swi1 NQ-YFP	this study
p413GAL1-NYFP	HIS3	CEN6/ARSH4	GAL1	expression of Swi1 N-YFP	this study
p413TEF	HIS3	CEN6/ARSH4	TEF1	empty vector	ATCC
p413TEF-NmCherry	HIS3	CEN6/ARSH4	TEF1	expression of Swi1 N-mCherry	this study
p413TEF-NQmCherry	HIS3	CEN6/ARSH4	TEF1	Swi1 NQ-mCherry expression	this study
p413TEF-NQYFP	HIS3	CEN6/ARSH4	TEF1	expression of Swi1 NQ-YFP	this study
p413TEF-NYFP	HIS3	CEN6/ARSH4	TEF1	expression of Swi1 N-YFP	this study
p415ADH2-URA3	LEU2	CEN6/ARSH4	ADH2	expression of Ura3	this study
p415F1369-URA3	LEU2	CEN6/ARSH4	F1369	expression of Ura3	this study
p415F136-URA3	LEU2	CEN6/ARSH4	F136	expression of Ura3	this study
p415F139-URA3	LEU2	CEN6/ARSH4	F139	expression of Ura3	this study
p415F13-URA3	LEU2	CEN6/ARSH4	F13	expression of Ura3	this study
p415F16-URA3	LEU2	CEN6/ARSH4	F16	expression of Ura3	this study
p415F19-URA3	LEU2	CEN6/ARSH4	F19	expression of Ura3	(Du <i>et al.</i> , 2015)
p415FLO11-URA3	LEU2	CEN6/ARSH4	FLO11	expression of Ura3	this study
p415HO-URA3	LEU2	CEN6/ARSH4	НО	expression of Ura3	this study
p415SL	LEU2	CEN6/ARSH4	SUC2-LEU2	empty vector	(Du <i>et al.</i> , 2015)
p415SL-URA3	LEU2	CEN6/ARSH4	SUC2-LEU2	expression of Ura3	(Du <i>et al.</i> , 2015)
p415TEF	LEU2	CEN6/ARSH4	TEF1	empty vector	ATCC
p415TEF-NQYFP	LEU2	CEN6/ARSH4	TEF1	expression of Swi1 NQ-YFP	(Du <i>et al.</i> , 2010)
p416TEF-NQYFP	URA3	CEN6/ARSH4	TEF1	expression of Swi1 NQ-YFP	(Du <i>et al.</i> , 2010)
p416TEF-NYFP	URA3	CEN6/ARSH4	TEF1	expression of Swi1 N-YFP	(Du <i>et al.</i> , 2010)
p416TEF-SWI1YFP	URA3	CEN6/ARSH4	TEF1	expression of Swi1-YFP	(Du <i>et al.</i> , 2008)
p423GAL1	HIS3	2 micron	GAL1	empty vector	ATCC
p423GAL1-NmCherry	HIS3	2 micron	GAL1	expression of Swi1 N-mCherry	this study
p423GAL1-NQmCherry	HIS3	2 micron	GAL1	Swi1 NQ-mCherry expression	this study
p423GAL1-NQYFP	HIS3	2 micron	GAL1	expression of Swi1 NQ-YFP	this study
p423GAL1-NYFP	HIS3	2 micron	GAL1	expression of Swi1 N-YFP	this study
p423GPD	HIS3	2 micron	GPD	empty vector	ATCC
p423GPD-NYFP	HIS3	2 micron	GPD	overexpression of Swi1 N-YFP	this study
p423GPDSSE1	HIS3	2 micron	GPD	overexpression of Sse1	Morano K lab
p425GPD	LEU2	2 micron	GPD	empty vector	ATCC
p425GPD-HSP104	LEU2	2 micron	GPD	overexpression of Hsp104	(Park <i>et al.</i> , 2006)
p425GPD-NQYFP	LEU2	2 micron	GPD	Swi1 NQ-YFP overexpression	this study
p425GPD-NYFP	LEU2	2 micron	GPD	overexpression of Swi1 N-YFP	this study
p425GPD-SSE1	LEU2	2 micron	GPD	overexpression of Sse1	this study
p425GPD-SWI1YFP	LEU2	2 micron	GPD	overexpression of Swi1-YFP	this study
p426GAL1-NQYFP	URA3	2 micron	GAL1	Swi1 NQ-YFP overexpression	(Du <i>et al.</i> , 2015)
p426GPDSSE1	URA3	2 micron	GPD	overexpression of Sse1	Morano K lab
p426GPD-SWI1	URA3	2 micron	GPD	overexpression of Swi1	(Du <i>et al.</i> , 2008)
pCUP1-NMGFP	URA3	CEN6/ARSH4	CUP1	expressing Sup35 NM-GFP	(Park <i>et al.</i> , 2006)
pCUP1-RNQ1GFP	URA3	CEN6/ARSH4	CUP1	expression of Rnq1-GFP	(Sondheimer &
					Lindquist, 2000)
pRS303-FLO8	HIS3		FLO8	expression of Flo8	(Du <i>et al.</i> , 2015)
pRS313-FLO8	HIS3	CEN6/ARSH4	FLO8	expression of Flo8	(Du <i>et al.</i> , 2015)
pRS316CUP1-NMCFP	URA3	CEN6/ARSH4	CUP1	expression of Sup35 NM-CFP	(Du & Li, 2014)
pRS413CUP1-NMGFP	HIS3	CEN6/ARSH4	CUP1	expressing Sup35 NM-GFP	Lindquist lab

Note: all the listed plasmids contain an amplicilin resistant gene (AMP^R) for selection in *E. coli*

Table S3. Yeast strains used in this study

Name	Background	Description	Source
LY422	74D-694	MATa ade1-14 trp1-289 his3-200 ura3-52 leu2-3, 112	(Chernoff <i>et al.</i> , 1995)
LY421	74D-694	MATa ade1-14 trp1-289 his3-200 ura3-52 leu2-3, 112 [PIN⁺]	(Chernoff <i>et al.</i> , 1995)
LY420	74D-694	MATa ade1-14 trp1-289 his3-200 ura3-52 leu2-3, 112 [PSI ⁺][PIN ⁺]	(Chernoff <i>et al.</i> , 1995)
DY902	74D-694	MATa ade1-14 trp1-289::TRP1::P _{TEF1} -RNQ1CFP his3-200 ura3-52	(Crow <i>et al.</i> , 2011)
		leu2-3, 112 [SWI ⁺]	
DY362	74D-694	MATa ade1-14 trp1-289 his3-200 ura3-52 leu2-3, 112 [PSI ⁺]	(Du & Li, 2014)
LY722	74D-694	MATa ade1-14 trp1-289 his3-200 ura3-52 leu2-3, 112 [SWI [*]]	(Du & Li, 2014)
DY587	74D-694	MATa ade1-14 trp1-289 his3-200 ura3-52 leu2-3, 112 [SWI ⁺][PSI ⁺]	(Du & Li, 2014)
LY746	BY4741	MATa his3⊿1 leu2⊿0 met15⊿0 ura3⊿0 flo8 [PIN⁺]	ATCC
DY902	BY4741	MATa his3⊿1 leu2⊿0 met15⊿0 ura3⊿0 flo8	this study
LY720	BY4741	MATa his3⊿1 leu2⊿0 met15⊿0 ura3⊿0 flo8 swi1⊿::KanMX4	(Du <i>et al.</i> , 2008)
LY742	BY4741	MATa his3⊿1 leu2⊿0 met15⊿0 ura3⊿0 flo8 [SWI ⁺]	(Du <i>et al.</i> , 2008)
DY767	BY4741	MATa his3 <u>/</u> 1 leu2/0 met15/0 ura3/0 flo8 flo11/.::P _{F139} -URA3	this study
LY740	BY4741	MATa his3 <u></u> <i>A</i> 1 leu2 <u></u> <i>A</i> 0 met15 <u></u> <i>A</i> 0 ura3 <u></u> <i>A</i> 0 flo8 flo11 <u></u> <i>A</i> ::P _{F139} -URA3	this study
		[SWI ⁺]	
LY741	BY4741	MATa his3⊿1 leu2⊿0 met15⊿0 ura3⊿0 flo8::FLO8::HIS3 [SWI ⁺]	(Du <i>et al.</i> , 2015)
DY759	BY4741	MATa his3⊿1 leu2⊿0 met15⊿0 ura3⊿0 flo8::FLO8::HIS3	this study
		flo11 <i>∆</i> ::P _{F139} -URA3	
LY744	BY4741	MATa his3⊿1 leu2⊿0 met15⊿0 ura3⊿0 flo8::FLO8::HIS3	this study
		flo11 <i>∆</i> ::P _{F130} -URA3 [SWI ⁺]	-
LY737	BY4741	MATa his3_1 leu2_0 met15_0 ura3_0 flo8::FLO8::HIS3	(Du <i>et al.</i> , 2015)
		flo11 <u>/</u> .:/P _{FL011} -URA3 [SWI ⁺]	
DY758	BY4741	MATa his3/1 leu2/0 met15/0 ura3/0 flo8::FLO8::HIS3	(Du <i>et al.</i> , 2015)
		flo11/\.:Pelo11-URA3	
DY755	BY4741	MATa his $3/1$ leu $2/0$ met $15/0$ ura $3/0$ flo8::FLO8::HIS3	(Du <i>et al.</i> , 2015)
		flo1/\::P _{ELQ1} -URA3	
LY735	BY4741	MATa his3/1 leu2/0 met15/0 ura3/0 flo8::FLO8::HIS3	(Du <i>et al.</i> , 2015)
		$f_{01} \wedge P_{E_{1}} \wedge P_{E_{1$	
DY761	BY4741	MATa his 3Λ 1 leu 2Λ 0 met 15Λ 0 ura 3Λ 0 flo8::FLO8::HIS3	(Du <i>et al.</i> , 2015)
-		swi1/···KanMX4	
LY278	CY396	MATalpha swi12::HIS3::SWI2-HA-6xhis::URA3 HO-lacZ	Lindquist Lab

Reference

- Chernoff, Y.O., S.L. Lindquist, B. Ono, S.G. Inge-Vechtomov & S.W. Liebman, (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [*PSI*⁺]. *Science* **268**: 880-884.
- Crow, E.T., Z. Du & L. Li, (2011) A small, glutamine-free domain propagates the [SWI+] prion in budding yeast. *Molecular and cellular biology*.
- Du, Z., E.T. Crow, H.S. Kang & L. Li, (2010) Distinct subregions of Swi1 manifest striking differences in prion transmission and SWI/SNF function. *Molecular and cellular biology* **30**: 4644-4655.
- Du, Z. & L. Li, (2014) Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+]. Genetics 197: 685-700.
- Du, Z., K.W. Park, H. Yu, Q. Fan & L. Li, (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. *Nat Genet* **40**: 460-465.
- Du, Z., Y. Zhang & L. Li, (2015) The Yeast Prion [SWI(+)] Abolishes Multicellular Growth by Triggering Conformational Changes of Multiple Regulators Required for Flocculin Gene Expression. *Cell reports* **13**: 2865-2878.
- Li, L. & S. Lindquist, (2000) Creating a protein-based element of inheritance. *Science* 287: 661-664.
- Park, K.W., J.S. Hahn, Q. Fan, D.J. Thiele & L. Li, (2006) De Novo Appearance and "Strain" Formation of Yeast Prion [PSI+] Are Regulated by the Heat-Shock Transcription Factor. *Genetics* **173**: 35-47.
- Sondheimer, N. & S. Lindquist, (2000) Rnq1: an epigenetic modifier of protein function in yeast. *Molecular cell* **5**: 163-172.

Figure S1. Programmatic illustration of the strategies to create truncated *FLO11* promoters. A bridge-PCR was used to generate P_{F136} and P_{F1369} (**A**), and P_{F139} (**B**). Arrows represent primers used in PCRs. The *FLO11* gene promoter spans a 3-kb upstream sequence that can be divided into 15 0.2-kb sub-regions. The sub-regions of 1-3, 6, and 9-10 include major upstream activation sites (UASs) (also see Figure 1A for details).

Figure S2. Growth of *flo8* (upper) and *FLO8*-repaired (lower) BY4741 strains with the indicated Swi1 prion states on synthetic complete (SC) plates without uracil (-uracil), with 5 FOA (+5FOA), non-selective SC with raffinose as the sole carbon source (raffinose) or with glucose (glucose). As indicated, all cells carry a *CEN*-plasmid expressing *URA3* gene driven by promoters of *SUC2-LEU2* (P_{SL}), *ADH2*, *HO*, or *FLO11* (wild-type and engineered). Arrowheads highlight the distinguishable growths of wild-type [*swi*] and [*SWI*⁺] strains under the tested conditions.

Figure S3. As described in Experimental Procedures, the indicated cassettes containing *URA3* gene driven by wild-type (*Chr::P_{FLO1}-URA3*) or engineered (*Chr::P_{F139}-URA3*) *FLO11* promoter, or wild-type *FLO1* promoter (*Chr::P_{FLO1}-URA3*) were used to replace the *FLO11-* or *FLO1-*ORF including the putative promoter regions at their corresponding chromosomal loci in isogenic [*SWI*⁺] and [*swi*⁻] cells with (*FLO8*) or without (*flo8*) repairing *FLO8*, respectively. Mid-log phase cultures of these strains were properly diluted and spotted for growth assays on glucose-containing SC selective medium (glucose), without uracil (-uracil), or with 5-FOA (+5FOA). Raffinose plate was also used to verify the Swi1 status. Shown are representative images of at least three independent experiments, which were taken 3 days post spotting onto the indicated plates.

Figure S4. Determination of the minimal galactose concentration in a *GAL1*driven *SWI1 N-YFP* expression experiment that can effectively distinguish the aggregation status of [*swi*⁻] and [*SWI*⁺] cells. **(A)** Isogenic 74D-694 [*swi*⁻] and [*SWI*⁺] strains carrying plasmid *p413GAL1-NYFP* (upper) or *p423GAL1-NYFP* (lower) were streaked to SC-his plates containing the indicated amount of galactose. N-YFP aggregation was assayed by fluorescence microscopy after three days of growth. **(B)** Cells containing N-YFP aggregates in (A) were quantified.

74D-694 ([PSI+][PIN+]): p316CUP1-NMCFP

Figure S5. Determination of the minimal amount of the *CUP1* promoter inducer $(CuSO_4)$ that can be used to visualize Sup35 NM-CFP aggregates in a $[PSI^+][PIN^+]$ 74D-694 strain. Overnight SC-ura culture of the strain containing plasmid *p316CUP1-NMCFP* was diluted into the same medium to ~10⁶ cells/mL and grown for 3 h before adding the indicated amounts of CuSO₄. The NM-CFP aggregation was observed after overnight (24 h) of induction.