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Figure S1. Changes in Embryo Volume during Doming, Related to Figure 1 

Quantification of relative (left) and total (right) WT embryo volumes from bright-field embryo images. Vb, 

blastoderm volume; Vy, yolk volume; Vt= Vb + Vy,  total volume. n embryos = 6. Error bars, ± s.d. 

 

  



 
 (legend on next page) 



 

 

Figure S2. Physical Model of Doming, Related to Figures 2 and 3 

(A) Quantification of Tb (red lines) and Ty  (blue lines) and (black lines) as a function of time after 

compression of the embryo by 10% (left panels) and 20% (right panels) of its initial uncompressed height 

during doming. n embryos (10%) = 5; n embryos (20 %) = 15. Error bars, ± s.d. 

(B) Geometry and surface tension model of the zebrafish embryo. The blastoderm, blastoderm-yolk (BYI) 

and yolk interfaces have surface tensions , and , and the ratio of yolk to blastoderm volume is 

conserved.  

(C) Force balance and contact angles at the contact line where the three interfaces shown in (A) meet.  

(D) Schematic of compression experiment. A force with magnitude  is exerted on the embryo through 

compression with the upper plate. The mass density of the embryo  results in an force on the lower plate 

with increased magnitude, | .  

(E) Dynamic model of zebrafish doming, where the blastoderm and EVL are represented by active viscous 

fluids. The angular coordinate around the animal-vegetal axis is denoted , and the embryo is assumed to 

be axisymmetric around the animal-vegetal axis. A coordinate going along the embryo of the surface from 

the animal pole is denoted . , and  are the tangent and normal vectors to the blastoderm surface, 

respectively. The blastoderm flow field is denoted  and the EVL flow field . The stress tensor inside the 

blastoderm is denoted . The active anisotropic part of the stress tensor  is assumed to be radially 

oriented away from the center of the embryo. 

(F and G) Simulated contact angles at the contact line corresponding to simulations shown in Figures 2E and 

2F. Simulations were stopped when the angle between the EVL and the YSL approached a zero value. 

Continuous lines correspond to experimental measurements in WT embryos. In the extreme scenarios 

considered here, simulated and experimental contact angles do not agree (compare with Figures 4D-4F). 

Error bars, ± s.d.

  



 

 

Figure S3. Characterization of Deep Cell-Depleted Embryos and Tissue Explants, Related to Figure 4 

(A) Number of deep cells in WT control and deep cell-depleted embryos. Confocal images of sphere stage (4 

hpf) embryos with nuclei marked by H2A-mCherry expression at the center of the embryo (400×400×300 µm 

volume) were used to count deep cells. Box plots represent 5%, 25%, median, 75% and 95%. ***P < 0.001 

(t-test). n embryos = 3 (control) and 5 (deep cell-depleted). 

(B) Measurement of blastoderm (Tb) and yolk cell surface tension (Ty) in deep cell-depleted WT embryos 

during the course of doming using tissue tensiometry. Embryos were compressed by 20% of their initial 

(legend continued on next page) 



 

uncompressed height. Panels on the left are bright-field images of a deep cell-depleted embryo before (0 

min; top) and after doming (+80 min; bottom). Brackets, contact areas. Kinked line, contact angle. Dashed 

lines, BYI. Panels on the right show quantification of Tb (top, red line) and Ty  (top, blue line) and 

(bottom, black line) as a function of time after compression. n embryos = 7. Error bars, ± s.d. Scale bar, 

100 µm. 

(C) Actin and myosin II localization at the BYI. Two-photon microscopy sections of the BYI region at ~100 

µm depth from the surface of a Tg(actb1:Lifeact-EGFP) embryo at the onset (upper left) and end (upper 

right) of doming. Animal pole is up. EGFP signal intensity within a ~100 µm region of the YSL below the BYI 

of Tg(actb1:Lifeact-EGFP) (red line) and Tg(actb1:Myl12.1-EGFP) (blue line) embryos were quantified during 

doming and normalized by the signal intensity at 0 min (bottom). n embryos = 12 (Lifeact-EGFP) and 6 

(Myl12.1-EGFP). Dotted lines, BYI. Error bars, ± s.d. Scale bar, 100 µm. 

(D) Yolk granule shape in deep cell-depleted WT embryos. Single plane confocal images of yolk granules in 

a deep cell-depleted embryo injected with fluorescent dextran into the yolk at 0 min (left) and +60 min (right) 

of doming. Scale bar, 100 µm.  

(E) Quantification of yolk granule aspect ratio (left) and angle of major axis (right) from -30 to +108 min of 

doming in intact WT (black) and deep cell-depleted embryos. n embryos = 4 (intact) and 6 (deep cell-

depleted). Error bars, ± s.e.m. 

(F) Comparison of WT control with deep cell-depleted embryo shapes (surface area, height and contact 

angles) during doming. Pale red and blue lines show WT control embryos, and dark red and blue lines deep 

cell-depleted embryos. n embryos = 6 (control) and 5 (deep cell-depleted). Error bars, ± s.d. 

(G) Comparison of relative blastoderm height in WT (black line) and deep cell-depleted (red line) embryos 

during doming. The relative height data were taken from the middle panel of Figure S3F (hm/ht) and aligned 

at the onset of doming (0 min) to better illustrate subsequent changes between WT and deep cell-depleted 

embryos during the course of doming. Error bars, ± s.d. 

(H) Measurement of surface tension of blastoderm explants. Fused blastoderm explants were compressed 

by 20% of their initial uncompressed height. Upper panels show the explant before (upper left) and after 

(upper right) compression. Dotted lines, surface position of the upper and lower plates. Lower panel is the 

quantification of the surface tension of the explants.  t = 0 min corresponds to the onset of doming in 

unperturbed control embryos. n = 4. Error bars, ± s.d. Scale bar, 100 µm. 

(I) Fusion of blastoderm explants. Two blastoderm explants consisting of EVL and deep cells were removed 

from 1k-cell stage embryos (3 hpf) and put into contact with each other. Changes in the length of the longest 

axis of the fused explants were monitored as a function of time during fusion. Upper panels are still images 

from a time-lapse movie of fusing explants. Dotted lines, measured long axis length. Lower panel shows the 

quantification of the long axis length, in which pale grey lines show experimental results, while dashed thick 

red lines show the outcome of simulations of this process using a sphere relaxing to its equilibrium shape 

after equatorial deformation as a proxy for the fusion process (see also Methods S1). The first ~ 40 min have 

not been taken into account in the fitting procedure in order to avoid artifacts due to wound healing at early 

stages of explant fusion. The values of the viscosities of deep cell layer and EVL used for the simulation are 

specified in Table S1C. t = 0 min corresponds to about 20-30 min later after the onset of fusion. n explants = 

9. Error bars, ± s.d. Scale bar, 100 µm. 

(J) Calculated ratio of blastoderm to yolk total surface tension in simulations of deep-cell depleted embryos. 

(legend continued on next page) 



 

(K) Experimental measurements and simulations of yolk cell relaxation after compression to determine yolk 

cell viscosity. Yolk explants were obtained from embryos at the 256- and 512-cell stages (2.5 - 2.75 hpf) and 

compressed when unperturbed control embryos had reached the onset of doming. After 30 min of 

compression, the upper plate was removed and the relaxation of the yolk explant height was measured. Pale 

gray line represents the experimental results and red dashed line shows the outcome of the simulations of 

this process. The value of yolk cell viscosity used to fit the simulations to the experimental results = 40 Pa s. 

n explants = 17. Error bars, ± s.d. 

  



 

 
Figure S4. Sensitivity of the Dynamical Doming Model to Changes in Tissue Viscosity, Active Stress, 

and EVL Surface Tension Reduction, Related to Figure 4 

(A-G’’) Simulations of embryo surface areas (A-G), heights (A’-G’) and contact angles (A’’-G’’) as a function 

of time during doming with pale blue and red curves showing the experimental measurements, and dashed 

red and blue thick lines showing simulation results. In (A-A’’) the same parameters as in Figures 4F-4F’’ 

were used for simulations. In (B-B’’) the blastoderm active stress was increased by a factor of 2. In (C-C’’) 

the blastoderm active stress was reduced by a factor of 2. In (D-D’’), the EVL viscosity and blastoderm 

surface tension reduction were both reduced by a factor of 2. In (E-E’’), the EVL viscosity and blastoderm 

surface tension reduction were both increased by a factor of 2. In (F-F’’) the blastoderm surface tension 

reduction was reduced by a factor 2. In (G-G’’) the blastoderm surface tension reduction was increased by a 

factor 2.  

(H-H’’) Simulations of explant relaxation after fusion (see also Figure S3I). Pale grey lines show experimental 

results while red thick dashed lines the outcome of simulations. In (H) the same parameters as in Figure S3I 

were used. In (H’) and (H’’) the blastoderm viscosity was increased or decreased by a factor 2 with respect 

to its value in (H), respectively.  

(I and I’) Simulation of the pressure field in a WT embryo at 10 min (I) and 90 min (I’) after the onset of 

doming. Scale bars show color coding of pressure in Pa.  

Error bars, ± s.d. 

  



 

 
Figure S5. Tissue and Cell Shape Changes and Simulations of the Doming Phenotype in pky Mutants 

and EVL/Surface Cell-Transplanted Embryos, Related to Figures 5 and 6 
(A) Surface area of deep cell-depleted pky embryos. n embryos = 3. Error bars, ± s.e.m. 

(legend continued on next page) 



 

(B) Ratio of the distance between the animal pole and contact line (hb) to the distance between contact line 

and the vegetal pole (hy) as a measurement for the position of the contact line. n embryos = 6 (WT), 3 

(transplantation pky to WT), 4 (pky) and 3 (transplantation WT to pky). Error bars, ± s.d. 

(C) Geometrical parameters of pky embryos during doming with relative surface area, relative height and 

contact angles quantified from bright-field embryo images. n embryos = 4. Error bars, ± s.d. 

(D) Comparison of deep cell radial movements between WT (black line) and pky mutant (red line) embryos. 

n embryos = 4. Error bars, ± s.e.m. 

(E) Comparison of deep cell shape (left panel, aspect ratio; right panel, angle from embryo center) between 

WT and pky mutant embryos. n embryos = 3. Error bars, ± s.e.m. 

(F) Aspect ratio (left) and angle of major axis (right) of yolk granules in intact pky embryos (black line) and 

pky embryos with transplanted WT EVL (red line). t = 0 min corresponds to sphere stage (4 hpf). n embryos 

= 3 for pky and EVL-transplanted pky each. Error bars, ± s.e.m. 

(G) Simulations for the doming defect in pky mutants. A combination of strongly impaired EVL surface 

tension reduction and absent deep cell layer contraction gives rise to embryo shapes resembling pky mutant 

embryos during doming. Right panels are plots of embryo surface area and height as a function of time 

during doming with pale blue and red curves showing the experimental measurements, and dashed red and 

blue thick lines showing simulation results. Simulations parameters are specified in Table S1C. Error bars, ± 

s.d. 

(H and J) Schematic of possible mechanisms involved in rescuing doming by transplanting WT EVL cells on 

pky embryos (H), or inhibiting doming by transplanting pky surface cells on WT embryos (J). 

(I-I’’, K-K’’) Simulation of surface area of the grafted patch in either pky embryo shapes as a result of WT 

EVL transplantations (I-I”) or WT embryo shapes as a result of pky surface cell transplantations (K-K”), 

according to the three mechanisms described in (H) and (J). Pale green curves, experimental measurements, 

dashed green thick lines, simulation results. Error bars, ± s.d.

 
  



 

 
Figure S6. Characterization of Embryo Shapes and Surface Cell Differentiation in the Transplantation 

Experiments, Related to Figure 5 

(A) Schematic of the procedure of EVL/surface cell transplantations. Donor and host embryos are labeled 

with fluorescent proteins or dyes of different color. ≈ 70 EVL/surface cells are taken from the donor embryo 

and nearly the same number of EVL/surface cells was removed from the host embryo (i); donor EVL/surface 

cells are placed on the surface-cell free area of the host embryo (ii and iii).  

(B) Bright-field (upper row) and confocal microscopy images (bottom row) of a WT embryo containing 

transplanted cells from a WT donor embryo at the onset (0 min), middle (60 min) and end of doming (120 

(legend continued on next page) 



 

min). There are only very few deep cells from the donor embryo compared with the number of transplanted 

EVL cells. The plasma membrane and nuclei of the transplanted EVL cells are marked by mem-RFP 

(magenta) and H2A-mCherry (magenta), respectively. The plasma membrane and nuclei of the host cells 

were marked with mem-GFP (green) and H2B-GFP (green), respectively. Red and white dotted lines, BYI. 

Scale bar, 100 µm.  

(C) Tight junction formation, marked by the localization of the tight junction component ZO-1, between 

transplanted WT donor cells and pky mutant host cells (n embryos = 11). ZO-1 (white) is localized to the 

interface between donor (green nuclei; WT) and host cells (cyan nuclei; pky) indicative of tight junction 

formation at the interface between these cells. Scale bar, 20 µm. 

(D-G) Embryos where EVL/surface cells were transplanted from WT to WT embryos (D-E) (n embryos = 3) 

and from pky to pky embryos (F-G) (n embryos = 3). Bright-field images of mosaic embryos before (-30 min) 

and after completion of doming (+90 min) with transplanted cells marked by fluorescent dextran (green; D, D’, 

F and F’). Confocal images with plasma membrane expressing mem-GFP (green), nuclei marked by H2A-

mCherry (magenta) and BYI outlined by fluorescent dextran (white; D’’, D’’’, F’’ and F’’’). Transplanted cells 

were marked by fluorescent dextran (green; D, D’, F and F’) or H2B-GFP (green; D’’, D’’’, F’’ and F’’’). Red 

and white dashed lines, BYI. Changes in relative BYI area (left column) and relative EVL/surface cell area 

(right column) as a function of time during doming in the different transplantation experiments (E and G). 

Error bars, ± s.e.m. Scale bars, 100 µm. 

(H) Ratio of deep-to-surface cells for transplanted RhoA-overexpressing cells as a function of time during 

doming (n embryos = 4). t = 0 min corresponds to the onset of doming. Error bars, ± s.e.m. 

(I) EVL differentiation in RhoA- or Mypt1-overexpressing embryos. RhoA-overexpressing WT EVL cells in 

intact (top row) and transplanted (second row from top) embryos expressing the EVL-differentiation marker 

krt4:EGFP-CAAX. Mypt1-overexpressing pky cells in intact (third row from top) and transplanted embryos 

(bottom row) do not show krt4:EGFP-CAAX expression. H2A-mCherry mRNA was co-injected with RhoA or 

mypt1 mRNA into one-cell stage embryo to mark the injected cells. Dotted lines, embryo outline. Scale bar, 

100 µm. 

  



 

 

Figure S7. Estimation of Embryo Center Position and Measurement of EVL Surface Projections, 

Related to STAR Methods 
(A and B) Estimation of embryo center position. Side views of the animal pole hemisphere were obtained 

from two perpendicular directions in the two-photon microscope stack as maximum intensity projections (A). 

A circle was fitted along the arc of this hemisphere projection (red dotted line), and the center of the fitted 

circle was used to estimate the embryo center (B). 

(C-K) Image processing of EVL surface projections. Z-stack images obtained by two-photon microscopy 

were first processed by binarization (C and D). The outline of each image slice was detected and its size was 

reduced by the expected thickness of surface cells (E and F). The detected and reduced outline was applied 

to the original image slice, and the inner area of this outline was filled with black color (G and H). After 

processing the entire stack with this method, they were superimposed by maximum intensity projection (I). 

The resultant projection image shows clearer surface cell outlines compared to a projection image from an 

unprocessed stack. (J-K’). White rectangle regions in (J) and (K) are magnified in (J’) and (K’), respectively. 
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Table S1. Values from Experimental Measurements and Lists of Parameters Used in The Simulations, 

Related to Figures 2, 4, 6, S2, S3, S4 and S5 

(A) Measurements of geometrical properties of embryos, averaged over 10 minutes prior to the onset of 

doming. Errors are standard deviations. WT, wild-type control embryos (n = 6); Depleted, deep cell-depleted 

embryos (n = 5, see main text for details). 

(B) Experimental measurement of embryo sinking velocity in Danieau’s medium at 23 ºC. The density of 

Danieau’s medium was determined by weighting 1L of medium, and its viscosity was assumed to be equal to 

the viscosity of water at the same temperature. WT, wild-type control embryos; Depleted, deep cell-depleted 

embryos (see main text for details). 

(C) Parameter list for finite element simulations of doming. t = 0 corresponds to the onset of doming. In these 

simulations the friction coefficient ξ is taken to be equal to 0. Simulations shown in Figures 2E and 2F are 

performed for illustrative purposes. WT, wild-type control embryos; Depleted, deep cell-depleted embryos. 

The yolk surface tension for pky embryos was determined from compression experiments as described in 

section 2 (data not shown), and the ratio of surface tensions prior to doming were assumed to be identical in 

pky mutant and WT embryos. 

(D) Parameter list for finite element simulations of the grafting experiments. 
  



 

Supplemental Movie Legends 

 

Movie S1. Embryo Doming, Related to Figure 1 

Bright-field time-lapse movie of a WT zebrafish embryo from pre-doming stage (-30 min) to the end of 

doming (+90 min). 120 min total with 10 min time intervals. Animal, top and vegetal, bottom. Scale bar, 100 

µm. 

 

Movie S2. Simulations of Embryo Doming, Related to Figure 2 

Simulations of embryo doming for the two different scenarios hypothesized in Figure 2 where either reduced 

blastoderm surface tension (i; Figure 2E) or increased deep cell layer contraction (ii; Figure 2F) drive doming.  

160 (i) and about 80 (ii) min total with 2 min and 1 min time intervals, respectively. 

 

Movie S3. Deep Cell Movement and Polarization during Doming, Related to Figure 3 

Confocal time-lapse movie of deep cells directly below the EVL near the animal pole region of a 

Tg(actb1:lifeact-GFP) embryo during doming. 90 min total with 1 min time intervals. Asterisks, EVL cells. 

Animal (EVL cells), top and vegetal, bottom. Scale bar, 10 µm. 

 

Movie S4. Doming of Deep Cell-Depleted Embryo, Related to Figure 4 

(i) Bright-field time-lapse movie of a deep cell-depleted embryo from pre-doming stage (-30 min) to the end 

of doming (+90 min). 120 min total with 10 min time intervals. Animal, top and vegetal, bottom. Scale bar, 

100 µm. 

(ii) Single-plane confocal time-lapse movie of a deep cell-depleted WT embryo from pre-doming stage (-39 

min) until after completion of doming (+210 min). Plasma membrane and nuclei are labeled by mem-GFP 

(green) and H2A-mCherry (magenta), respectively, and BYI is marked by fluorescent dextran (white). 249 

min total with 6 min time intervals. Animal, top and vegetal, bottom. Scale bar, 100 µm.  

(iii and iv) Simulations movies of embryo doming respectively for deep-cell depleted embryos (iii) and WT 

control embryos (iv). 160 min total with 2 min time intervals  

 

Movie S5. Doming in EVL/surface Cell Transplanted Embryos, Related to Figures 5 and 7 

Time-lapse movies with overlay of bright-field (gray, donor embryo) and fluorescent (green, transplanted 

cells) images of mosaic embryos where pky surface cells were transplanted in WT (i), WT EVL cells 

overexpressing RhoA in WT (ii) and WT EVL cells in pky embryos (iii). 120 min total with 10 min time 

intervals for each sample. Animal, top and vegetal, bottom. Scale bar, 100 µm. 

 

Movie S6. Simulations of Doming in EVL/surface Cell Transplanted Embryos, Related to Figure 6 

Simulations of doming in WT embryos on which a patch of expansion-defective  pky mutant surface cells 

was transplanted (i; Figure 6B”), and of pky mutant embryos on which a patch of expansion-competent WT 

EVL cells was transplanted (ii; Figure 6D”). 80 min (i) and 180 min (ii) total with 2 min time intervals.  

 



SUPPLEMENTARY THEORY

We propose a theoretical description of the shape, shape changes and cellular flows occurring

during doming in the zebrafish embryo. In this description, deep cells are modelled as a 3D

incompressible active viscous fluid, the EVL epithelium as a thin layer of active, 2D compressible

viscous fluid, under surface tension. Such an active fluid description captures the viscous resistance

to flow of the tissue as well as autonomous cellular force generation within the tissue [Prost et al.,

2015, Ranft et al., 2010, Etournay et al., 2015, Behrndt et al., 2012]. The yolk cell is described

as a membrane with a surface tension, filled with a fluid of negligible viscosity compared to other

dissipation processes occurring during doming.

In the first part of the these supplements, we calculate static equilibrium shapes of the embryo

predicted by this description. We then describe compression experiments of zebrafish embryos and

how surface tensions can be extracted from force measurements of compressed embryos. In the

last part, we propose a dynamic description of doming, taking into account the viscosities of the

blastoderm and EVL, and internal autonomous active stresses in the blastoderm and EVL. We

then describe finite element simulations of the dynamical equations.

1. Surface tension description of the zebrafish embryo

We start by discussing the equilibrium shape of a model of the Zebrafish embryo based on surface

tensions. We consider here that the blastoderm and yolk have a fixed volume. The blastoderm and

yolk have interfaces with the external medium, with respective surface tension Tb and Ty (Figure

S2B). The surface tension of the blastoderm corresponds to the surface tension of the enveloping

layer (EVL), a thin epithelium covering the blastoderm. In addition, the blastoderm and yolk

have a common interface, denoted blastoderm-yolk interface (BYI) with interfacial tension Tbyi.

The pressures within the blastoderm and the yolk are uniform and are denoted Py and Pb. The

law of Laplace then implies that these interfaces are portions of sphere, and the overall shape has

rotational symmetry around an axis of symmetry joining the poles of the blastoderm (animal pole)

and of the yolk (vegetal pole).

1.1. Force balance equations. The mechanical work of the surface tension-based model can be

written

W = TySy + TbSb + TbyiSbyi − Py(Vy − V 0
y )− Pb(Vb − V 0

b ) (1)

1
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with Sy the surface area of the yolk/medium interface, Sb the surface area of the blastoderm/medium

interface, Sbyi the surface area of the BYI, Vy the volume of the yolk, Vb the volume of the blas-

toderm, V 0
y the preferred volume of the yolk and V 0

b the preferred volume of the blastoderm.

To find the equilibrium shape, we note that the shape of the embryo can be described in terms

of 4 lengths: the heights hb, hc and hy and the radius of the contact circle rc where the yolk,

blastoderm and BYI meet (Figure S2B). The surface areas and volumes relate to these lengths

according to

Sy = π(r2c + h2
y) (2)

Sb = π(r2c + h2
b) (3)

Sc = π(r2c + h2
c) (4)

Vy =
π

6

[
hy(3r

2
c + h2

y) + hc(3r
2
c + h2

c)
]

(5)

Vb =
π

6

[
hb(3r

2
c + h2

b)− hc(3r
2
c + h2

c)
]

(6)

Plugging these expressions in the mechanical work Eq. 1 and differentiating with respect to rc,

hy, hb and hc, one obtains the force balance equations

2(Ty + Tb + Tbyi) = Py(hy + hc) + Pb(hb − hc) (7)

Py = 2Ty
2hy

r2c + h2
y

(8)

Pb = 2Tb
2hb

r2c + h2
b

(9)

Py − Pb = 2Tbyi
2hc

r2c + h2
c

(10)

where the three last equations correspond to the law of Laplace expressed at different interfaces, as

can be seen from the expression of the radii of curvature Ry = (r2c+h2
y)/(2hy), Rb = (r2c+h2

b)/(2hb),

and Rc = (r2c + h2
c)/(2hc). Eliminating the pressure in equations 7 and 10 yields the two force

balance equations:

Ty

r2c − h2
y

r2c + h2
y

+ Tb
r2c − h2

b

r2c + h2
b

+ Tbyi
r2c − h2

c

r2c + h2
c

= 0, (11)

Tb
hb

r2c + h2
b

− Ty
hy

r2c + h2
y

+ Tbyi
hc

r2c + h2
c

= 0. (12)

Fixing in addition the volume of the yolk and the blastoderm in Eqs. 5 and 6 then yields a system

of 4 equations which can be solved for the 4 unknowns hb, hc, hy and rc.
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We note that the three contact angles at the contact line separating the EVL, yolk surface and

BYI are related to the geometrical parameters hb, hy, hc and rc by ϕb = θb − θc, ϕy = θy + θc,

ϕ = 2π − θb − θy with

cos θb =
r2c − h2

b

r2c + h2
b

, sin θb =
2hbrc
r2c + h2

b

(13)

cos θy =
r2c − h2

y

r2c + h2
y

, sin θy =
2hyrc
r2c + h2

y

(14)

cos θc =
r2c − h2

c

r2c + h2
c

, sin θc =
2hcrc
r2c + h2

c

(15)

One can then verify that the balance equations 11 and 12 are equivalent to

Ty + Tbyi cosϕy + Tb cosϕ = 0, (16)

Tbyi sinϕy − Tb sinϕ = 0, (17)

which correspond to the balance of surface tensions at the contact line (Figure S2C).

1.2. Solutions for embryo equilibrium shapes. To solve Eqs. 11-12, we introduce a charac-

teristic length Rt, verifying 4
3
πR3

t = Vb + Vy the total volume of the embryo. We then define the

adimensional lengths h̄y = hy/Rt, h̄b = hb/Rt, h̄c = hc/Rt, r̄c = rc/Rt, and the volume fractions

of the blastoderm and of the yolk vb = Vb/(Vb+Vy) and vy = 1−vb. Solving the volume equations

Eqs. 5 and 6 for the heights h̄y and h̄b then yields the solution

h̄y = r̄c × g

(
8vy − h̄c(3r̄

2
c + h̄2

c)

r̄3c

)
(18)

h̄b = r̄c × g

(
8vb + h̄c(3r̄

2
c + h̄2

c)

r̄3c

)
(19)

with

g(x) = (−2 + 21/3
(
x+

√
4 + x2

)2/3

)/(22/3
(
x+

√
4 + x2

)1/3

) (20)

a mathematical function. Imposing the value of vb = 1 − vy, as well as the tension ratios Tb/Ty

and Tbyi/Ty, and plugging Eqs. 18 and 19 in the force balance equations 11 and 12, we then solve

numerically for the values of rc and hc. The corresponding solutions are plotted for vb = 0.235 in

Figure 2B in the main text, as a function of the tension ratios Tb/Ty and Tbyi/Ty.

Above critical values of the tension ratios Tb/Ty and Tbyi/Ty, no solution can be found. These

situation correspond to three extreme cases:

• (i) Ty > Tb + Tbyi: engulfment of the yolk in the blastoderm.

• (ii) Tb > Ty + Tbyi: engulfment of the blastoderm in the yolk.
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• (iii) Tbyi > Tb + Ty: separation of the yolk and blastoderm.

Condition (i) can be found by noting that Eqs. 11 and 12 can be combined to yield

Ty = Tb
h2
b − r2c + 2hbhy

h2
b + r2c

+ Tbyi
h2
c − r2c + 2hyhc

h2
c + r2c

. (21)

Letting rc → 0 and hy → 0 in the equation above, corresponding to vanishing of the interface

between yolk and the external medium, yields the condition Ty = Tb + Tbyi.

Similarly, condition (ii) is obtained from the relation arising from Eqs. 11 and 12

Tb = Ty

h2
y − r2c + 2hbhy

h2
y + r2c

+ Tbyi
h2
c − r2c − 2hbhc

h2
c + r2c

. (22)

Letting rc → 0 and hb → 0 in the equation above, corresponding to vanishing of the interface

between blastoderm and the external medium, yields the condition Tb = Ty + Tbyi.

Finally, condition (iii) is obtained from the relation

Tbyi = Ty

h2
y − r2c + 2hchy

h2
y + r2c

+ Tb
h2
b − r2c − 2hchb

h2
b + r2c

(23)

Letting rc → 0 and hc → 0 in the equation above, corresponding to vanishing of the interface

between blastoderm and yolk, yields the condition Tbyi = Tb + Ty.

1.3. Comparison with experimental data. Prior to doming, the zebrafish embryo assumes

a roughly steady shape during about 10 minutes (Figures 1K-N). Measurements of the embryo

shape during this stage are listed in Table S1A. To fit the shape prediction of the previous section

to embryo shapes, we impose the value of vb measured experimentally, solve the predicted shape

calculated above, and minimise the following objective function

S

(
Tb

Ty

,
Tbyi

Ty

)
= (h̄t

y − h̄e
y)

2 + (h̄t
b − h̄e

b)
2 + (h̄t

c − h̄e
c)

2 + (r̄tc − r̄ec)
2

+

(
1 +

Tb

Ty

cosϕe +
Tbyi

Ty

cosϕe
y

)2

+

(
Tb

Ty

sinϕe − Tbyi

Ty

sinϕe
y

)2

(24)

where the t and e indexes respectively stand for theoretical and experimental values. Theoretical

values are obtained by solving Eqs. 11 and 12. The last two terms are included in the objective

function 24 to ensure that force balance at the contact line is taken into account in the fitting

procedure, as the shape of interfaces in the embryo are not perfect portions of sphere. Minimization
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of the objective function yields the tension ratio

(WT) Tb/Ty � 0.94± 0.13 , Tbyi/Ty � 0.11± 0.24 (25)

(Depleted) Tb/Ty � 0.94± 0.16 , Tbyi/Ty � 0.09± 0.24 (26)

2. Analysis of compression experiments

In this section, we use the surface tension model introduced in section 1 to analyze experiments

where the embryo is compressed between two plates and subjected to a constant vertical force

F (Figure S2D). The surface tensions of the upper and lower part of the embryo are determined

by quantifying the shape taken by the embryo following compression. Because the embryo has a

large enough mass that its shape is affected by gravity, we also take into account here the effect

of gravitational forces.

2.1. Determination of surface tensions. Following compression between two plates separated

by a distance h, a circular surface of contact forms between the embryo and the upper plate, with

radius ru and surface Su = πr2u. Similarly, a circular region of contact forms with the lower plate

with radius rl and surface Sl = πr2l . The embryo is embedded in Danieau’s medium, a fluid with

density ρ0 close to the density of water. As a result the external medium is under a gradient of

external pressure P0(z) = P0u − ρ0gz, where P0u is the pressure of the fluid in contact with the

upper plate. We denote P0l = P0u − ρ0gh the pressure of the fluid in contact with the lower plate.

The force exerted by the embryo on the upper plate F and on the lower plate Fl can be written

F = (Pu − P0u)Su − Tb2πru sinϕu, (27)

Fl = (Pl − P0l)Sl − Ty2πrl sinϕl, (28)

where we denote here Pu the pressure in the blastoderm near the upper plate and Pl the pressure

in the yolk near the lower plate.

The pressures within the yolk and the blastoderm are related to the surface tensions Tb and Ty

by the law of Laplace applied to a section of the surface near the plane of contact:

Pu − P0u =
2Tb

Ru

, (29)

Pl − P0l =
2Ty

Rl

, (30)

where 1/Ru and 1/Rl denotes the mean curvature of the surface of the embryo near the planes of

contact. For simplicity and because changes of curvature across the surface of the blastoderm or
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the yolk can not be resolved experimentally with enough precision, we calculated the curvatures

from segmentations of the entire blastoderm and yolk surfaces.

Using Eqs. 27-30 and eliminating the pressures, one finds the two relations

2Tb

Ru

=
F

πr2u(1−Ru/ru sinϕu)
, (31)

2Ty

Rl

=
Fl

πr2l (1−Rl/rl sinϕl)
. (32)

We now relate the force exerted on the lower plate Fl to the force exerted on the upper plate F .

Denoting ρ the mass density of the embryo, Archimedes’ principle states that

Fl − F = (ρ− ρ0)gV (33)

where V is the volume of the embryo.

Combining these equations, we obtain finally

2Tb

Ru

=
F

πr2u(1−Ru/ru sinϕu)
(34)

2Ty

Rl

=
F + (ρ− ρ0)gV

πr2l (1−Rl/rl sinϕl)
(35)

By measuring the force F , the radii of contact ru and rl, the contact angles ϕu and ϕl, the

density of the embryo relative to the medium ρ/ρ0, the mean radii of curvature of the yolk and

blastoderm Ru and Rl, Eqs. 34 and 35 yield the surface tensions Tb and Ty.

2.2. Determination of the mass of the embryo. To measure the mass of the embryo m = ρV ,

we performed sinking experiments and recorded the steady-state sinking velocity of the embryo.

The Reynolds number is defined as

Re =
2ρ0RU

η0
(36)

with ρ0 the medium density, η0 the medium viscosity, R the radius of the embryo and U its sinking

velocity. Using experimental measurements listed in Table S1B, we find that the Reynolds numbers

are respectively Re = 9.56 for WT embryo and Re = 9.21 for deep cell depleted embryos. As a

result, the sinking of embryos does not occur at low Reynolds number, and the sinking velocity

can be related to the mass density of the embryo through

U =

√
8gR

3Cd

ρ− ρ0
ρ0

(37)

with Cd the drag coefficient [Clift et al. (2005)]. For a sphere, the drag coefficient is a function of

the Reynolds number; using the approximate formula of [Clift et al. (2005)] we find respectively
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Cd � 4.39 for WT embryos and Cd � 4.5 for deep-cell depleted embryos. Using Eq. 37, we then

obtain

ρWT = 1055.59 kg/m3 (38)

ρDepleted = 1053.44 kg/m3 (39)

3. Fluid dynamic description of zebrafish doming

In this section, we propose a dynamic description of zebrafish doming where the blastoderm and

EVL are described as active fluids (Figures 2 and S2E).

3.1. General equations.

3.1.1. Blastoderm flow and stress tensors. We label a position in the blastoderm X(x1, x2, x3) by

the curvilinear coordinates x1, x2, x3 (Figure S2E). In the following, 3D coordinates are denoted by

greek indices, lower (resp. upper) indices correspond to covariant (resp. contravariant) coordinates,

and Einstein summation is implied. The associated local 3D basis is denoted eα = ∂αX. We denote

the associated metric as gαβ = eα · eβ and the metric determinant as g = det gαβ. In practice, in

simulations, we use cylindrical coordinates r, φ, z around the animal-vegetal axis of the embryo.

The blastoderm is described as an active, incompressible fluid with velocity field v = vαeα. The

incompressibility condition imposes that

(∂αv) · eα = 0 (40)

The constitutive equation for the stress in the fluid σαβ is given by

σαβ = 2ηvαβ − Pgαβ + ζαβ (41)

where η is the shear viscosity of the fluid, vαβ = 1
2
((∂αv) ·eβ+(∂βv) ·eα) is the symmetric gradient

of velocity, the pressure P ensures incompressibility of the fluid, and ζαβ is a symmetric traceless

tensor corresponding to an active internal anisotropic stress. The form of ζαβ depends on internal

polarised cellular processes driving autonomous tissue deformations. In the following we assume

that the active stress is oriented radially, away from the centre of the embryo:

ζαβ = ζ

(
nαnβ − 1

3
gαβ

)
, (42)

with n a unit vector characterising the orientation of the anisotropic active stress. Using the

cylindrical coordinates r, z, φ around the animal-vegetal axis, we choose the orientation (Figure

7



S2E):

n =
1√

r2 + (z − z0)2
(rer + (z − z0)ez) . (43)

where z0 = (za + zv)/2 is a position along the animal-vegetal axis, with za and zv the positions of

the animal and vegetal poles. Because the embryo has roughly the shape of a sphere, this choice

ensures that the vector n is approximately orthogonal to the surface of the embryo.

Force balance in the blastoderm reads

∂α(
√
gσαβeβ) = 0. (44)

Plugging the constitutive equation 41 in the force balance equation 44 yields an equation for the

velocity field v. To solve this equation, boundary conditions for the stress at the surface of the

blastoderm must be specified. In the next section, we describe the constitutive equations for the

surface tension of the blastoderm.

3.1.2. Blastoderm surface flow and tension tensor. We now give constitutive equations for the flows

at the surface of the blastoderm, in the EVL. We assume that the normal velocities of the EVL

and blastoderm at the surface coincide, but the EVL and blastoderm can have different tangential

velocities. We express covariant constitutive equations using the framework of differential geometry

for surfaces [Deserno (2004)].

The surface S enclosing the blastoderm is labelled by the vector X̄(s1, s2), where s1 and s2 are

two coordinates going along the surface. In the following, coordinates on the surface are denoted

by latin indices i, j, k, l, lower (resp. upper) indices correspond to covariant (resp. contravariant)

coordinates, and Einstein summation is implied. The tangent and normal vectors to the surface

are defined by

ēi = ∂iX̄, (45)

n̄ =
ē1 × ē2
|ē1 × ē2| . (46)

Coordinates are chosen such that the normal vector points outward the blastoderm. The curvature

tensor Cij can then be obtained from Cij = ēi · ∂jn̄, the metric tensor reads ḡij = ēi · ēj and the

metric determinant is denoted by ḡ = det ḡij. We denote the covariant derivative on the surface

∇̄i, defined by its application on a tangent vector v through (∂iv) · ēj = ∇̄iv
j.

The surface is flowing according to a velocity field v̄ (Figure S2E), which can be separated in a

tangential and normal part:

v̄ = v̄iēi + v̄nn̄. (47)
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For convenience we also introduce the difference between the bulk surface flow and the EVL

flow:

u = v̄ − v. (48)

Because the normal velocities of the blastoderm and its surface coincide, u is a tangential vector

field. We also impose that the blastoderm and EVL move at the same velocity at the contact line;

therefore

u
∣∣
C = 0. (49)

Two surfaces enclose the blastoderm: the EVL surface Sb with surface tension tensor tib = tijb ej

and the blastoderm-yolk interface Sbyi with uniform isotropic surface tension tibyi = Tbyie
i (Figure

S2E). We assume here that the viscosity of the BYI is negligible. The surface tension tensor of

the EVL is given by the constitutive equation

tijb = tbḡ
ij,

tb = Tb + η̄(∂jv̄) · ēj. (50)

where we have introduced the active tension of the blastoderm surface Tb, and the surface viscosity

of the EVL η̄. The force balance equation of the EVL and BYI read, taking into account the force

exerted by the blastoderm as well as the external fluid pressure P0 and Py:

∇̄it
i
b + f − P0n̄ = 0, (51)

∇̄it
i
byi + f − Pyn̄ = 0, (52)

where we have introduced the force f exerted by the fluid blastoderm on the surface. The force f

is related to the bulk blastoderm stress tensor according to

fα = −σβαn̄β. (53)

We assume that a friction force acts at the boundary between the volume and the surface with

friction coefficient ξ at the EVL interface, and we assume that there is no friction acting at the

BYI. Decomposing the force exerted by the blastoderm on the EVL into its parallel and normal

contributions f = f iei + fnn̄ and using the force balance equation 51,

fn = P0 + tbCk
k, (54)

fi = ξ(vi − v̄i) = −ξui = −∇̄itb. (55)

9



In the following, we set the external reference pressure P0 to be equal to 0. Similarly, one obtains

at the BYI

fn = Py + TbyiCk
k, (56)

fi = 0, (57)

where we have chosen here to neglect the friction of the blastoderm against the BYI.

Finally, the surfaces Sb, Sbyi and Sy meet on a contour line denoted C (Figure S2E). Force balance

on the contour C implies

tibνb,i = −Tbyiνbyi − Tyνy, on the contour C (58)

where νb, νbyi and νy are the vectors tangent to the surface Sb, Sbyi and Sy respectively, and are

all normal to the contour C (Figures S2C and E).

3.2. Shape of the yolk. The viscosity of the yolk is taken to be negligible compared to other

dissipative processes. The shape of the yolk surface is therefore a spherical cap with radius of

curvature Ry. Volume conservation of the yolk imposes

Vy =
π

6
hy(3r

2
c + h2

y) +

∫
S0

dSz, (59)

where the volume of the yolk has been decomposed as the volume of a spherical cap and the

volume contained between Sbyi and the planar region S0 perpendicular to the animal-vegetal axis

(z = 0), contained within the contact line. Eq. 59 can be solved for hy, and yields then the radius

of curvature Ry through the relation Ry = (r2c + h2
y)/2hy. The yolk pressure is then imposed by

the law of Laplace

Py =
2Ty

Ry

. (60)

3.3. Parameter list. Eqs. 44, 51, 56 and 58-60 form a system of equations which can be solved

for the velocity of the blastoderm, the velocity of the EVL and the shape of the yolk, once surface

tensions, active stresses and viscosities are specified. The corresponding physical parameters are

listed in Table S1C. The surface tension of the yolk Ty is determined from compression experiments

described in section 2.

3.4. Finite element simulations. We now describe the Galerkin method [Zienkiewicz et al.

(1977)] we used to perform finite element simulations for the blastoderm bulk and surface flows,

according to the equations described above.

10



3.4.1. Bulk flow. To ensure the force balance condition in bulk Eq. 44, we introduce a test vector

field w and write the weak formulation as an integral over the volume V :

∫
V
dx1dx2dx3w · ∂α(√gσαβeβ) = 0. (61)

Performing an integration by part, Eq. 61 can be rewritten

−
∫
V
dV (∂αw) · (σαβeβ) +

∫
S
dSn̄αwβσ

αβ = 0. (62)

where we have introduced the volume element dV =
√
gdx1dx2dx3, the surface element dS =

√
ḡds1ds2, and S denotes the union of Sb and Sbyi. Using the constitutive equation 41 for the

stress tensor σαβ, the definition of the boundary force f given in Eq. 53, and the force balance

equation on the surface 51, we obtain

−
∫
V
dV 2η(∂αw) · eβvαβ +

∫
V
dV P (∂αw) · eα −

∫
V
dV (∂αw) · eβζαβ

+

∫
Sb

dSw · (∇̄it
i
b − P0n̄) +

∫
Sbyi

dSw · (∇̄it
i
byi − Pyn̄) = 0. (63)

Performing an integration by part of the surface terms and setting the reference pressure P0 = 0,

one obtains

−
∫
V
dV 2η(∂αw) · eβvαβ +

∫
V
dV P (∂αw) · eα −

∫
V
dV (∂αw) · eβζαβ

−
∫
Sb

dS(∂iw) · tib −
∫
Sbyi

dS(∂iw) · tibyi −
∫
Sbyi

dSPyw · n̄

+

∫
C
dlνb,iw · tib +

∫
C
dlνbyi,iw · tibyi = 0, (64)

where we have introduced the infinitesimal line element dl on the contour C. Using the constitutive

equations 50 and the force balance equation 58 on the contour C,

−
∫
V
dV 2η(∂αw) · eβvαβ +

∫
V
dV P (∂αw) · eα −

∫
V
dV (∂αw) · eβζαβ

−
∫
Sb

dS(∂iw) · ēi(Tb + η̄(∂jv̄) · ēj)− Tbyi

∫
Sbyi

dS(∂iw) · ēi

−
∫
Sbyi

dSPyw · n̄− Ty

∫
C
dlw · νy = 0. (65)
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The velocity, pressure, active stress, surface tension fields are decomposed on a set of basis

function {ψa(x)}, {χb(x)}, χ̃a(x)} and {χc
s(x)}:

v(x) =
∑
a

va,αeαψ
a(x) (66)

w(x) =
∑
a

wa,αeαψ
a(x) (67)

u(x) =
∑
a

ua,j ējψ
a(x) (68)

P (x) =
∑
b

P bχb(x) (69)

ζαβ(x) =
∑
a

ζa,αβχ̃a(x) (70)

Tb(x) =
∑
c

T c
bχ

c
s(x). (71)

Note that the surface flow u and surface tension Tb only take non-zero values on elements at the

surface of the blastoderm. Using this decomposition, eq. 65 takes the form of a matrix equation

wa,α

[
−M1

(a,α),(a′,β)v
a′,β +M2

(a,α),bP
b −M3

(a,α),(a,β,γ)ζ
a,βγ

−M4
(a,α),cT

c
b −M5

(a,α),(a′,β)v
a′,β − M̄2

(a′,i),(a,α)u
a′,i −M6

(a,α)Tbyi −M7
(a,α)Py −M8

(a,α)Ty

]
= 0, (72)

with the coefficients

M1
(a,α),(a′,β) =

∫
V
dV η (∂γ(ψ

aeα) · eδ)
(
∂γ(ψa′eβ) · eδ + ∂δ(ψa′eβ) · eγ

)
(73)

M2
(a,α),b =

∫
V
dV ∂γ(ψ

aeα) · eγχb (74)

M3
(a,α),(a,β,γ) =

∫
V
dV ∂β(ψ

aeα) · eγχ̃a (75)

M4
(a,α),c =

∫
Sb

dS∂i(ψ
aeα) · ēiχc

s (76)

M5
(a,α),(a′,β) =

∫
Sb

dSη̄∂i(ψ
aeα) · ēi∂j(ψa′eβ) · ēj (77)

M6
(a,α) =

∫
Sbyi

dS∂i(ψ
aeα) · ēi (78)

M7
(a,α) =

∫
Sbyi

dSψaeα · n̄ (79)

M8
(a,α) =

∫
C
dlψaeα · νy. (80)
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and M̄2
(a′,i),(a,α) is defined in Eq. 91. Because Eq. 3.4.1 must be valid for all test functions w, the

velocity field obeys the matrix equation

(
M1

(a,α),(a′,β) +M5
(a,α),(a′,β)

)
va

′,β + M̄2
(a′,i),(a,α)u

a′,i = M2
(a,α),bP

b

−M3
(a,α),(b,β,γ)ζ

b,βγ −M4
(a,α),a′T

a′
b −M6

(a,α)Tbyi −M7
(a,α)Py −M8

(a,α)Ty. (81)

To ensure incompressibility (Eq. 40), we write the weak form formulation:∫
V
dV ws(∂αv) · eα = 0. (82)

Decomposing the test function ws on the basis function χb,

ws(x) =
∑
b

wb
sχ

b(x), (83)

Eq. 82 can be rewritten

M2
(a,α),bv

a,α = 0 (84)

where M2
(a,α),b is defined in Eq. 74.

3.4.2. Surface flow. We now derive an equation for the flow on the surface Sb. We introduce a

test vector field w̄ tangent to the surface, and write the weak formulation as an integral over the

surface Sb: ∫
Sb

dSw̄ · (∇̄it
i
b + f) = 0. (85)

where dS =
√
ḡds1ds2 is the surface element on Sb. Integration by part then yields the modified

equation

−
∫
Sb

dS(∂iw̄) · tib +
∫
Sb

dSw̄ · f +
∫
C
dlνb,iw̄ · tib = 0 (86)

where νb is the unit vector tangent to Sb and normal to the contour C. Using the constitutive

equation for the surface tension 50, one obtains

−
∫
Sb

dSη̄((∂iw̄) · ēi)((∂ju) · ēj)−
∫
Sb

dSη̄((∂iw̄) · ēi)((∂jv) · ēj)

−
∫
Sb

dSTb(∂iw̄) · ēi −
∫
Sb

dSξw̄iui +

∫
C
dlw̄ · (T c

b νb) = 0 (87)

where T c
b is the surface tension at the contact point. Discretizing the fields u and Tb on the surface

(Eq. 68 and 71) as well as the field w̄:

w̄(x) =
∑
a

w̄a,iēiψ
a(x), (88)
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Eq. 87 takes the form

w̄a,i(−M̄1
(a,i),(a′,j)u

a′,j − M̄2
(a,i),(a′,α)v

a′,α − M̄3
(a,i),(a′,j)u

a′,j − M̄4
(a,i),a′T

a′
b + M̄5

a,i) = 0, (89)

with the following coefficients

M̄1
(a,i),(a′,j) =

∫
Sb

dSη̄((∂k(ψ
aēi)) · ēk)((∂l(ψa′ ēj)) · ēl) (90)

M̄2
(a,i),(a′,α) =

∫
Sb

dSη̄((∂k(ψ
aēi)) · ēk)((∂l(ψa′eα)) · ēl) (91)

M̄3
(a,i),(a′,j) =

∫
Sb

dSξψaψa′δij (92)

M̄4
(a,i),(a′) =

∫
Sb

dS((∂k(ψ
aēi)) · ēkψa′ (93)

M̄5
(a,i) =

∫
C
dlψaēi · (νbT

c
b ) (94)

Eq. 89 must be valid for all test functions w̄ and can therefore be rewritten

(M̄1
(a,i),(a′,j) + M̄3

(a,i),(a′,j))u
a′,j + M̄2

(a,i),(a′,j)v
a′,j = −M̄4

(a,i),a′T
a′
b + M̄5

a,i. (95)

T c
b can be seen as a Lagrange multiplier enforcing condition 49.

3.4.3. Flow near the contact line. Stokes flow solutions near a corner can exhibit divergences of

the pressure and gradient of flow (Moffatt (1964), De Gennes (1985), Huh and Scriven (1971)).

The continuum description of tissue flow we propose here however does not apply on length scales

smaller than a cell diameter lc ∼ 15− 20µm, effectively setting a cut-off near the contact line. In

our finite-element simulations, this is ensured by the finite size of the elements. As a result, the

force balance equation at the contact line becomes

tibνb,i + Tbyiνbyi + Tyνy = tD, (96)

with tD a tension dependent on lc. This correction arises from forces acting on a length lc and

contributing a force near the contact line.

3.5. Implementation. Eqs. 81, 84 and 95 form a system of linear equations which can be solved

for the vectors of bulk velocities va,α, relative surface velocities ua,j and bulk pressure P b.

To implement the finite element simulation, we choose a mesh consisting of N = 384 quadri-

laterals made from 8 triangles with a common vertex. The shape functions ψa for the velocity

field are chosen as linear functions on triangles, the shape functions χb for the pressure are taken

constant on quadrilaterals, and the shape functions χ̃a are taken as constant on triangles. The
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shape function for the surface tension Tb, χc
s, are taken constant on surface elements. We use

cylindrical coordinates (r, φ, z) and assume axisymmetry, such that the stresses and velocity fields

do not depend on φ. The basis vectors eα are therefore given by

er = cosφex + sinφey , eφ = r(− sinφex + cosφey) , ez (97)

with ex, ey, ez the unit vectors of a right-handed cartesian coordinate system (Figure S2E). On

the surface, we take coordinates (s, φ) such that point on the surface is given by

X̄(s, φ) = r(s) cosφex + r(s) sinφey + z(s)ez. (98)

with z(s) and r(s) two functions characterising the shape of the surface. Because of axisymmetry,

the surface velocities only have one non-zero component, v̄s, us.

The overall velocity of the embryo is specified by external forces that we do not take into account

here. We therefore set the velocity component vz of the vertex with maximum z to 0. In addition,

radial velocities vr = 0 of vertices located on the axis of symmetry are set to 0. Eq. 49 is enforced

by imposing that the velocity us vanishes at the vertex located on the contact line.

At each time step t, the components of the bulk and surface velocity fields v and u are calculated

by inverting eqs. 81 and 95. The mesh is then updated at t + dt by moving the mesh points

according to the bulk velocity field v. In addition, the radius of the curvature of the yolk Ry is

updated to take into account the volume conservation of the yolk, Eq. 59. This results in a change

of yolk pressure according to Eq. 60.

Doming is simulated in WT embryos by assuming that at t = 0, the EVL surface tension is

reduced by a constant factor (Table S1C) and that the active stress ζ, which vanishes for t < 0,

takes a constant non zero value for t > 0. The computed pressure field is shown in Figures S4I-I’.

Deep-cell depleted and pky embryos are simulated similarly with different parameters (Table S1C).

To simulate grafting experiments described in Figure 5, we perform simulations with a profile

of surface tension Tb(s):

s < sr : Tb(s) = T r
b (99)

s > sr : Tb(s) = T 0
b (100)

with T 0
b the initial surface tension before rescue, and T r

b the surface tension in the grafted patch

of EVL. sr is updated in time according to the surface flow.

When considering a corresponding rescue of active stress within the blastoderm(scenario 3,

Table S1D), we define the radius rr = r(sr) with r(s) the radial profile of the EVL prior to doming
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defined in Eq.98, and introduce a spatial profile of active stress ζ(r, z):

r < rr : ζ(r, z) = ζr (101)

r > rr : ζ(r, z) = ζ0 (102)

with ζ0 the blastoderm active stress before rescue, and ζr the blastoderm active stress in the region

below the grafted EVL patch. We take a fixed value of rr for simplicity.

To test the effect of a friction force between the blastoderm and EVL (Figure 6), we have to

specify a physically realistic value of friction coefficient ξ in simulations. To have a significant

effect on blastoderm flows, the friction coefficient must be large enough, η/ξ < R. With values for

WT embryos (Table S1C), this imposes ξ > 2.6 Pa.s/µm. We also note that EVL flows are spread

over the entire EVL [Behrndt et al., 2012], implying that the hydrodynamic length l =
√

η̄/ξ can

not be much smaller than the radius of the embryo R. Taking this into account, we performed

simulations choosing a friction coefficient in the upper range of possible values, ξ = 150 Pa.s/µm,

corresponding to a hydrodynamic length l = 72µm, of the same order of magnitude than the radius

of the embryo.

3.6. Simulation of fusion experiment. In order to determine the viscosity of the blastoderm,

ηb, we implemented finite elements simulations reproducing the fusion experiment of two WT

explants, described in “Methods details - Embryo compression and relaxation experiments”. We

first relaxed a sphere with fixed volume V and fixed the equatorial radius re to a value of re/V 1/3

set by experimental observations of initial conditions of fusion. We then relaxed the constraint on

the radius and calculated the pressure and velocity field as given by Eq. 81 and 95, without the

terms describing the yolk and blastoderm-yolk interface, and without active stress. The mesh was

then deformed over time according to the velocity field. The surface tension of the explant was set

according to values measured from compression experiments (Tb � 94pN/µm, the surface tension

of explants was found to be different from the surface tension of embryos). We then adjusted the

viscosity η and kept the ratio of η̄/η equal to the WT value given in Table S1C. We computed the

length of the long axis of the two explants and compared the result to experimental measurement

(Figure S3I).

3.7. Simulation of compression-release experiment. In order to determine the viscosity of

the yolk, ηy, we implemented finite elements simulations reproducing the compression-release ex-

periment on one yolk explant as explained in “Methods details - Embryo compression and relaxation

experiments”.
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Using the measurement of the initial distance between the two plates, we initialised the mesh

and relaxed it by keeping its volume constant and constraining the vertices in contact with the

plates (compression phase). We then removed the constraint and let the entire mesh relax to its

equilibrium shape (release phase), setting the viscosity of the fluid represented by the mesh to

ηy. We set the yolk surface tension as in the experimental measurements obtained from the same

compression experiments (Ty = 146 pN·µm−1). We adjusted the viscosity of the yolk ηy. At each

time step in the simulation, we computed the distance between the Animal and Vegetal poles and

compared it with the experimental measurements (Figure S3K). This allowed us to obtain a value

of the yolk viscosity equal to ηy = 40 Pa·s, around 24 times smaller than the one obtained for the

blastoderm viscosity (Table S1C).
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