Title: The identification of D-tryptophan as a bioactive substance for postembryonic ovarian development in the planarian *Dugesia ryukyuensis*

Authors: Kazuya Kobayashi^{a,*}, Takanobu Maezawa^b, Hiroyuki Tanaka^c, Hiroyuki Onuki^{d,1}, Yurie Horiguchi^e, Hiroshi Hirota^{d,2}, Tetsuo Ishida^{c,3}, Kihachiro Horiike^c, Yasutoshi Agata^c, Manabu Aoki^f, Motonori Hoshi^f and Midori Matsumoto^f

Author affiliations:

^aDepartment of Biology, Faculty of Agriculture and Life Science, Hirosaki University,3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan

^bAdvanced Science Course, Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, 624-1 Numa, Tsuyama, Okayama 708-8509, Japan

^cDepartment of Biochemistry and Molecular Biology, Shiga University of Medical Science, Tsukiwa-cho, Seta, Ohtsu, Shiga 520-2192, Japan

^dRIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan

^eCenter for Integrated Medical Research, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan

^fDepartment of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan

*Corresponding authors:

Kazuya Kobayashi

Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University,

3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan

Tel & Fax: 81-172-39-3587 E-mail: kobkyram@hirosaki-u.ac.jp

1

Supplementary Information:

Fig. S1 Legend of Fig. S1

Fig. S2 Legend of Fig. S2

Fig. S3 Legend of Fig. S3

Table S1

Materials and Methods

Fig. S1

Α

В

С 20 ۱ 40 h 60 1 . .. · · · . . . 1 1 " 1 8 . ٩ 80 o^p . . 100 8 . . . -120 . ррп 5 4 6 ppm 7 3 Ţ

1	Fig. S1. Spectral data of compound 1 from Q1 obtained using RESOURCE Q. (A) ¹ H NMR
2	spectrum of compound 1 in H ₂ O-D ₂ O (9:1), (B) ¹ H NMR spectra of compound 1 and
3	commercially available L-Trp in D ₂ O. δ 10.17 (br), 7.75 (d, 1H, J = 8 Hz), 7.54 (d, 1H, J = 8
4	Hz), 7.31 (s, 1H), 7.29 (dd, 1H, <i>J</i> = 8, 8 Hz), 7.20 (dd, 1H, <i>J</i> = 8, 8 Hz), 4.04 (dd, 1H, <i>J</i> = 8,
5	5 Hz), 3.42 (dd, 1H, J = 15, 5 Hz), 3.24 (dd, 1H, J = 15, 8 Hz); (C) Hetero-nuclear multiple
6	quantum coherence (HMQC) spectrum of compound 1 in D_2O , (D) Hetero-nuclear
7	multiple-bond connectivity (HMBC) spectrum of compound 1 in D_2O . ¹³ C NMR (D_2O)
8	δ176.0 (s), 136.7 (s), 127.3 (s), 125.5 (d), 123.0 (d), 120.4 (d), 118.6 (d), 112.8 (d), 108.4 (s),
9	54.8 (d), 26.4 (t); (E) CD spectra of compound 1 and commercially available L-Trp. CD
10	(H ₂ O) 223 nm ($\Delta \varepsilon$ + 6.4); (F) Electrospray ionization–mass spectrometry (ESI-MS)/MS
11	spectra of compound 1 and commercially available L-Trp. ESI-MS/MS <i>m</i> / <i>z</i> 205, 188, 146.
12	

Fig. S2

1	Fig. S2. Expression of <i>Dr-nanos</i> and <i>Drpiwi-2</i> in tissue surrounding ovary development
2	sites in asexual worms. (A–D) Tissue areas encompassed by the red line are cell masses of
3	female PGCs (ovarian primordia). The dorsal sides are located at the top of images. In:
4	intestine. Scale bar: 50 μ m. Two successive serial paraffin sections were used for staining
5	with HE and <i>in situ</i> hybridization with each other. (A, C) HE staining. (B) In situ
6	hybridization of Dr-nanos. (D) In situ hybridization of Drpiwi-2. The ovarian primordia
7	displaying in situ hybridization signal are indicated by magenta arrowheads. Drpiwi-2 is
8	expressed in neoblasts as well as in germline cells ⁴⁰ . In asexual worms, equal levels of
9	Drpiwi-2 expression are detected in both ovarian primordia and neoblasts (indicated by
10	black arrowheads). Typical ovarian primordia were not identified in the HE image (C).

Α P < 0.05*P* < 0.01 1600000 Expression of Dryg 1400000 1169540.0 1200000 1000000 800000 600000 400000 200000 31502.4 1.0 0 Sexuals Asexuals Cocoons

Β

1	Fig. S3.	Ouantitative re	verse transcription	polymerase cl	hain reaction (aRT	-PCR)
_		x				,

2 analysis of *Dryg* and *Dr-DAO* expression in asexual worms, sexual worms, and cocoons

- 3 of *D. ryukyuensis*. qRT-PCR of (A) *Dryg*, a marker gene for yolk gland cells was
- 4 performed in asexual worms of the OH strain, sexual worms of the OH strain, and their
- 5 cocoons just after deposition, and **(B)** *Dr-DAO*, a *DAO* (D-amino acid oxidase) homolog
- 6 gene was also analyzed. Expression values are represented as the average of three asexual
- 7 worms, three sexual worms, and three cocoons, respectively (\pm S.E.). The results represent
- 8 relative expression in the asexual worms. Statistical significance was calculated using a
- 9 *t*-test.
- 10

Amino acid	Relative area			Sovuel/Acovuel	Coccept/Accepted
Amino aciu	Asexual	Sexual	Cocoons	Sexual/Asexual	COCOONS/ASEXUAI
Trp	1.40E-02	2.30E-01	6.10E-01	16.4	43.6
Tyr	2.20E-02	1.60E-01	6.50E-02	7.3	3.0
Cys	1.10E-03	3.00E-03	N.D.*	2.7	N.D.*
Gln	4.10E-02	7.30E-02	1.20E-02	1.8	0.3
Asp	1.30E-01	2.00E-01	9.50E-02	1.5	0.7
Thr	2.60E-02	3.60E-02	4.20E-02	1.4	1.6
Ala	1.30E-01	1.80E-01	2.60E-02	1.4	0.2
Asn	3.20E-02	4.10E-02	2.30E-02	1.3	0.7
Pro	2.40E-02	3.00E-02	1.20E-02	1.3	0.5
lle	6.60E-02	7.60E-02	1.70E-02	1.2	0.3
His	9.00E-02	1.00E-01	7.80E-02	1.1	0.9
Phe	4.80E-02	5.20E-02	8.10E-02	1.1	1.7
Lys	8.90E-02	9.40E-02	4.60E-02	1.1	0.5
Ser	5.50E-02	5.70E-02	3.50E-02	1.0	0.6
Gly	2.10E-02	2.20E-02	6.10E-03	1.0	0.3
Leu	9.10E-02	9.20E-02	1.80E-02	1.0	0.2
Val	8.30E-02	8.10E-02	1.50E-02	1.0	0.2
Arg	8.50E-02	7.60E-02	2.40E-02	0.9	0.3
Glu	2.40E-01	1.90E-01	2.70E-02	0.8	0.1
Met	1.60E-02	9.30E-03	1.60E-03	0.6	0.1

Table S1. Relative amounts of each proteinogenic amino acid in asexual worms, sexual worms, and cocoons.

*Not detected.

1

Materials and Methods

$\mathbf{2}$ 3 Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) Besides the visual evaluation of sex-inducing activity, we used qRT-PCR to analyze 4 $\mathbf{5}$ the expression of marker genes required for sexual induction. qRT-PCR was 6 performed using the 7300 Real-Time PCR System (Applied Biosystems, Foster City, 7 CA). Each reaction mixture (25 µL) contained 12.5 µL of Power SYBR Green PCR 8 Master mix (Applied Biosystems, Foster City, CA), 0.4 µM of gene-specific primers, 9 and 0.5 µL of the cDNA template. The PCR reaction was as follows: 50°C for 2 min 10and 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. 11 Measurements were normalized to the expression levels of the elongation factor 1 12alpha homolog (Dr-efla). The gene-specific primers used were as follows: 13Dr-efla/DrC 00434, 5' -TTGGTTATCAACCCGATGGTG-3' and reverse, 5'-TCCCATCCCTTGTACCATGAC-3' ⁶⁴; *Dr-DAO* forward, 5' 14-TCGCTACCAATCCAAAGCATC-3' and reverse, 5' 15-CGGCTGTTTCCCACAATTTC-3['] ⁵⁰; *Drvg* forward, 5['] 1617-AAATCTATCGTTGCCCGATG-3' and reverse, 5'-TCGCATCGTTTTGATGTTTG-3' 47. 18

19

20 Quantitative analysis of amino acids

Asexual worms, sexual worms, and fresh cocoons of *Dugesia ryukyuensis* were used for quantitative analysis of proteinogenic amino acids (Human Metabolome Technologies Inc., Tsuruoka, Japan). Asexual worms (30 mg wet weight, 5 worms), sexual worms (36 mg wet weight, 3 worms), and fresh cocoons (30 mg wet weight, 10 cocoons) were used. Frozen samples were transferred into 1,500 μL of 50% aqueous acetonitrile (v/v) containing 20 μM of the external standard. After 27homogenization using BMS-M10N21 equipment (BMS, Tokyo) at 1,500 rpm for 28120 s on ice performed three times, the suspensions were centrifuged at 2,300 g for 5 29min at 4°C. The resultant supernatants were ultrafiltered using a Millipore 30 Ultrafree-MC PLHCC HMT Centrifugal Filter Device, 5 kDa (Millipore, Billerica, 31MA). The filtrates were then dried and dissolved in 50 μ L of ultrapure water. The 32samples obtained were then subjected to capillary electrophoresis time-of-flight 33 mass spectrometry (CE-TOFMS) analysis using the Agilent CE-TOFMS system (Agilent Technologies, Santa Clara, CA) at 4°C. The detected peaks were aligned 3435 according to their m/z values and normalized migration times. The peaks were 36 mean-centered and scaled using their standard deviations on a per-peak basis as a 37 pretreatment. The relative area, m/z, and retention time (RT) of each peak were 38 obtained using the software MasterHands ver.2.16.0.15 (Keio University, Japan). 39 Each peak corresponding to a proteinogenic amino acid was identified on the basis 40 of m/z and RT. The relative area of each peak corresponding to a proteinogenic 41 amino acid was used for comparison of the asexual worms, the sexual worms, and 42the fresh cocoons.

43