Supplemental Material

Supplemental material and methods

Whole genome sequencing

For next generation sequencing with the Illumina MiSeq (Illumina Netherlands BV, Eindhoven, The Netherlands), whole genome DNA was isolated using the Purelink® Genome DNA Mini kit (Thermo Fischer Scientific, Dreieich, Germany). An Illumina Nextera XT library (Illumina Netherlands BV, Eindhoven, The Netherlands) was produced and sequencing was performed with 2x300 bp paired-end reads. For the Illumina sequencing, 4,597,732 paired-end reads with a mean read length of 175 nt (mean coverage 137x) were obtained. For long-read singlemolecule real-time (SMRT) sequencing (Pacific Biosciences, MenloPark, CA), DNA was isolated using the method described by Pitcher et al (1). A SMRTbellTM template library was prepared according to the instructions from Pacific Biosciences, Menlo Park, CA, USA, following the Procedure & Checklist - 10 kb Template Preparation Using BluePippin[™] Size-Selection System. Briefly, for the preparation of 15kb libraries 8µg genomic DNA was sheared using g-tubesTM from Covaris, Woburn, MA, USA according to the manufacturer's instructions. DNA was end-repaired and ligated overnight to hairpin adapters applying components from the DNA/Polymerase Binding Kit P6 from Pacific Biosciences, Menlo Park, CA, USA. Reactions were carried out according to the manufacturer's instructions. BluePippinTM Size-Selection to 4000 kb and 15000 kb was performed according to the manufacturer's instructions (Sage Science, Beverly, MA, USA). Conditions for annealing of sequencing primers and binding of polymerase to purified SMRTbell[™] template were assessed with the Calculator in RS Remote, Pacific Biosciences, Menlo Park, CA, USA. SMRT sequencing was carried out on the PacBio RSII (Pacific Biosciences, Menlo Park, CA, USA) taking one 240-minutes movie for each SMRT cell. In total 3 SMRT cells were run. A total of 198,383 reads with a mean read length of 9,430 nt were generated. Assembly of PacBio reads was performed using RS_HGAP_Assembly.3 included in the SMRT Portal 2.3.0. To obtain a high quality genome sequence, mapping of paired-end reads from Illumina sequencing was performed using Burrows–Wheeler Aligner [BWA, (2)].

In-silico analyses

The multi-locus sequence type of *E. coli* NRZ14408 was identified using MLST 1.8 implementing the scheme of Wirth et al. (3, 4). Serotypes were identified using SeroTypeFinder (9). The insertion sequences were investigated using ISFinder (10) and blastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Bacteriophages were analyzed using PHAST (11). Plasmidfinder was used to investigate the incompatibility groups of the plasmids (12). Database search for *mcr-1* encoding IncHI2 plasmids was performed using blastn with p14408_M as a reference (http://blast.ncbi.nlm.nih.gov/Blast.cgi; date of database search: 15th August 2016). The presence of acquired antibiotic resistance genes and virulence genes was assessed using ResFinder and VirulenceFinder (7, 8). Analysis of operons involved in the iron acquisition was performed using blastn (http://blast.ncbi.nlm.nih.gov/Blast.cgi) with the sequences presented in supplementary table S5. For comparative analyses, EasyFig and BRIG were used (5, 6).

Е. of coli sequence type ST362 were identified using Enterobase (https://enterobase.warwick.ac.uk/). The contig sequences of all isolates for which the isolation date was known, were downloaded. In addition, the data from NCTC 3000 Project (Public https://www.phe-culturecollections.org.uk/collections/nctc-3000-Health England, project.aspx) analyzed using the MLST package provided was on https://github.com/tseemann/mlst for the presence of E. coli ST362. One E. coli ST362 was identified (*E*. coli NCTC9014; accession number ERS701895: ftp://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000/datalinks_manual/ERS701895.gff).

Supplementary Tables

Supplementary Table S1: Properties of the plasmids and phages. ^a not 100% identity on DNA sequence level, ^btwo copies are present on different plasmids, ^ctwo copies present on the same plasmid, n.a. not applicable (no plasmid), n.t.: not typeable using conventional methods (no incompatibility group), MLS= Macrolide, Lincosamide and Streptogramin B. Genes which are marked red are present in two copies on different plasmids.

	Name	p14408_M	p14408_1	p14408_2	phage 1	phage 2	p14408_3
	Size [bp]	238,073	137,186	88,196	41,305	19,226	11,988
	Incompatibility group	IncHI2	IncFII, IncFIB	IncN	n.a.	n.a.	n.t.
	Aminoglycosides	aac(3)-IIa, aadA1, aadA2, aph(3')-Ic ^a , strA ^b , strB ^b	aac(3)-IId ^b	aac(3)-IId ^b , strA ^b , strB ^b			
	Beta-lactams	bla _{TEM-1A}	$bla_{ m KPC-2}{}^{ m b},\ bla_{ m OXA-1}{}^{ m b},\ bla_{ m TEM-1B}{}^{ m b}$	$bla_{\text{KPC-2}}^{b},$ $bla_{\text{OXA-1}}^{b},$ $bla_{\text{TEM-1B}}^{b}$			
Genes encoding	Colistin	mcr-1					
resistance to:	Fluoroquinolones		aac(6')Ib-cr ^b	aac(6')Ib-cr ^b , qnrB2			
	MLS		$mph(A)^{b}$	$mph(A)^{b}$			
	Phenicols	cmlA1	catA1, catB3 ^b	catB3 ^b			
	Rifampicin		arr-3 ^b	arr-3 ^b			
	Sulphonamides	sul3	sul1 ^b	sul1 ^{b,c}			
	Tetracyclines	tet(A)					
	Trimethoprim			dfrA18			

Supplementary Table S2: Distribution of antibiotic resistance genes among the plasmids p14408_M, pHNSHP45-2, pSA26-MCR-1 and pS38. All genes depict an identity of >95% and >98% coverage, unless stated differently. ^a1x 100% coverage, second truncated (75%) MLS= Macrolide, Lincosamide and Streptogramin B

	Aminoglycoside												acta	m	Colistin	Fluoroquinolone		Fosfomycin	М	LS	Phenicol				Sulphonamide		Tetracycline	Trimethoprim		
plasmid	aadA2	aadAIa	aadA1b	strA	strB	aph(3')-Ia	aph(3')- Ic	aac(3)-IIa	aph(4)-Ia	aac(3)-IVa	$bla_{ m TEM-1B}$	$bla_{ m TEM-1A}$	bla _{CTX-M-1}	bla _{CTX-M-14}	mcr-1	oqxB	oqxA	fosA	mph(A)	mef(B)	cmlAI	floR	cml	sul3	sull	sul2	tet(A)	dfrAI	dfrA12	dfrA14
p14408_M1	+	+		+	+		+	+				+			+						+			+		+	+		+	
pSA26-MCR-1	+	+		+	+	+					+				+				+			+	+	+		+	+			+
pHNSHP45-2	$+^{a}$	+	+ + +											+	+	+	+	+			+	+		+	+	+			+	
pS38	+ + +												+							+				+	+		+	+		

Supplementary Table S3: Virulence genes present in the chromosome of *E. coli* NRZ14408. ^a*astA* was present in twelve copies, ^b present in two copies. n.a.: not applicable. The iron metabolism operons were identified using blastn and the references presented in Supplementary Table S3, the virulence genes were assessed using VirulenceFinder (8).

Genes	Operon	Function	category	NRZ14408
astA	n.a.	Toxin	not known	$+^{a}$
iha	n.a.	Adherence	Adherence	+
gad	n.a.	Acid resistance	Acid resistance	+ ^b
air, eilA	<i>selC</i> -B pathogenicity island	Adherence	Adherence	+
iss	n.a.	Serum resistance	Serum resistance	+
chuA, chuS, chuT, chuU, chuW, chuX, chuY	chu	Hemin uptake system	Iron metabolism	+
iucA, iucB, iucC, iucD, iutA	aerobactin	Aerobactin	Iron metabolism	+
fhuA, fhuB, fhuC, fhuD	fhu	ferrichrome uptake DH10B	Iron metabolism	+
feoA, feoB, feoC	feo	ferrous iron uptake	Iron metabolism	+

Supplementary	Table S4	: Properties	of additional E.	coli ST362 included	l into the study. AB	. antibiotic
J I I I I I I I I I I I I I I I I I I I		· · · · · · · · ·				,

Isolate	Accession	AB-resistance	Source	Collection	Country	Serotype	No. of virulence	Beta-Lactamase
	number	genes?		Year			genes	Genes
NCTC9014	ERS701895	no	Human	1952	Denmark	:H6	6	None
MOD1-EC6899	SRS1529503	yes	Livestock	1975	unknown	O7:H6	10	No beta-lactamase
MOD1-EC5512	SRS1594124	yes	Livestock	1976	United States	O7:H6	10	bla _{TEM-1B}
MOD1-EC5501	SRS1594118	yes	Human	1992	India	O7:H6	11	bla _{OXA-1}
MOD1-EC5465	SRS1594016	no	Poultry	1993	United States	O7:H6	6	None
MOD1-EC6950	SRS1590224	yes	Livestock	1997	United States	O15:H1	9	bla _{TEM-1B}
HVH 6 (3-8296502)	SRS402207	yes	Human	2004	Denmark	O86:H28	12	bla _{TEM-1B}
HICF113	SRS1221335	yes	Human	2010	United Kingdom	O7:H6	5	bla _{CTX-M-15} , bla _{OXA-1} ,
								bla _{TEM-1B}
KTE78	SRS410376	no	Human	2010	Denmark	O7:H6	4	None
KTE79	SRS410371	no	Human	2010	Denmark	O7:H6	4	None
AZ_TG77018	SRS876455	yes	Poultry	2014	United States	O7:H6	13	No beta-lactamase
AZ_TG77102	SRS893459	yes	Poultry	2014	United States	O15:H1	14	bla _{TEM-1B}
sam_103239	ERS1164728	yes	Livestock	2014	Denmark	O11:H9	9	bla _{CTX-M-1} , bla _{TEM-1B}

Supplementary Table S5: Iron acquisition operons investigated in the study

			Database		
Operon	function	Source	accession	position	length
			number		
flore	forrichromo unteko	Escherichia coli str. K12 substr.	CD000048 1	1/1500 1/75/0	5061 hp
jnu		DH10B	CF000948.1	141300-147340	5901 Up
fhu	ferrichrome uptake	Escherichia coli APEC O78	CP004009.1	869099-875005	5907 bp
feo	Ferrous iron uptake	Escherichia coli CFT073	AE014075.1	3967027-3969592	2566 bp
chu	heme iron-utilization	Escherichia coli CFT073	AE014075.1	4084996-4093181	8186 bp
aerobactin	iron acquisition	Plasmid pAPEC-O2-ColV	NC_007675.1	98089-106117	8029 bp
salmochelin	iron acquisition	Plasmid pAPEC-O2-ColV	NC_007675.1	141336-150894	9559 bp
yersiniabactin	iron acquisition	Yersinia pestis CO92 chromosome	NC_003143.1	2140840-2169669	28830 bp
sit	iron ABC transport system (Fe2+)	Plasmid pAPEC-O1-ColBM	DQ381420.1	152749-156198	3450bp
fec	iron(III) dicitrate ABC transporter	Plasmid pKPN_CZ	NC_019390.1	22157-29701	7545 bp
eit	putative ABC iron transport system	Plasmid pAPEC-O2-ColV	NC_007675.1	176416-180456	4041 bp
ets	putative ABC iron transport system	Plasmid pAPEC-O2-ColV	NC_007675.1	119488-123176	3689 bp
no name	putative ABC iron transport system	Plasmid pEC14_114	GQ398086.1	6106-13149	7044 bp

Supplementary Figure S1: Comparison of the *bla*_{KPC-2} encoding plasmids of *E. coli* NRZ14408.

Gene	sul2	aph(3)-lc	blaTEM-IB	strA	aap	strB	tet(A)	aar	aatA	aac(3)-IVa	agg3A	agg3B	agg3C	agg3D	aph(4)-la	bla _{CTX-M-15}	dfrA14	qnrB66	aac(3)-Ha	aac(6')Ib-cr	aadA1	aadB	bla _{0XA-1}	catAJ	catB3	dfrA18	sull	tet(B)	capU	orf3	orf4	dispersin	AAF/III 3002 D	aggK	etsABC esmP	fecRIABCDE	iss	sit	air	astA	chu	eilA	feoABC	fhuABC_DH10B	gad	iha · ·	ureA A	mcmA	yersiniabacun aerohactin	eit	iroN	salmochelin	tsh	
plasmid																																																						
chromosome																																																						
not defined																																																						

Supplementary Figure S2: Depiction of the location of antibiotic resistance genes (red) and virulence genes (yellow) in the investigated ST362

isolates. Black = presence of genes, white = absence of genes.

Supplementary Figure S3: Number of virulence determinants per isolate subdivided according to isolates harboring antibiotic resistance genes and those not harboring those.

Supplementary References

- Pitcher DG, Saunders NA, Owen RJ. 1989. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156.
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.
- Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MCJ, Ochman H, Achtman M. 2006. Sex and virulence in *Escherichia coli*: an evolutionary perspective. Mol Microbiol 60:1136–51.
- Larsen M V., Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak
 L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus
 sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361.
- Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–10.
- Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402.
- Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644.
- Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic *Escherichia coli*. J Clin Microbiol 52:1501–10.
- Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. 2015. Rapid and easy in silico serotyping of *Escherichia coli* isolates by use of whole-genome sequencing data. J Clin Microbiol 53:2410–26.

- 10. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32-6.
- 11. **Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS**. 2011. PHAST: a fast phage search tool. Nucleic Acids Res **39**:W347-52.
- Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–903.