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1. Supplementary information introduction 

There are totally 8 supplementary files in Supplementary information. The Supplementary file 1 

lists the disease-miRNA associations that we used to construct the DGR tripartite networks. 

Supplementary file 2 mainly introduces the details of optimizing our disease-miRNA association 

prediction models and the comparison of it with the other existing methods. There are several 

Supplementary Tables which list the results of the case studies of the disease-miRNA association 

prediction model, the top 50 candidate multi-disease associated co-functional miRNA pairs for 

cancer related DGR tripartite network and the non-cancer disease related DGR tripartite network. 

In Supplementary file 3, we provide the related codes and datasets of our methods. As the data 

files of the similarities between 2802 diseases and the similarities between 551 miRNAs are too 

big, if someone need these datasets, please contact Hui Peng (email: hui.peng-

2@student.uts.edu.au). Supplementary file 4 shows the three data sets that applied by chen’s 

method, xu’s method and jiang’s method, which we used them to make comparison with these 

three existing methods. In Supplementary file 5 and Supplementary file 6, we list the disease-

gene associations and miRNA targets that we adopted to compute the disease similarities, miRNA 

similarities and find co-function miRNA pairs. Supplementary file 7 contains the GSE accession 

ids from the GEO database, which we used to obtain the reliable negative disease-miRNA 

association samples. The final samples of disease-miRNA associations from different databases 

are listed in Supplementary file 8 including the mapped disease DO ids, mature miRNA ids, the 

negative sample set according to the analysis of the miRNA expression level fold changes, and 

four positive sample sets. 

The five matlab code files such as ComKerMat.m, PreDisRNA.m, DMMD.m, CoFunScore.m and 

CoFunScoreAll.m are the codes that implemented our methods. We paste all the codes at the 5th 

section of this supplementary file. The first two code files are used for predicting disease-miRNA 

associations while the later three code files are for prioritizing the multi-disease associated co-

functional miRNA pairs. The input data can be found from the Supplementary files. The node in 
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the code files have illustrated the meaning of the inputs, outputs and data structures. For prediction 

of disease-miRNA associations, the PreDisRNA.m is the main interface. The CoFunScoreAll.m is 

the main interface for prioritizing the multi-disease associated co-functional miRNA pairs.   

2. The optimal precomputed kernel matrix and the prediction performance 

During the optimization of our method and the comparison of different prediction methods, the 

following seven performance metrics were computed: specificity, recall (or sensitive), precision, 

accuracy, F1 and AUC (area under the ROC curve). The definition of mcc is given by: 

mcc =
𝑇𝑃×𝑇𝑁 − 𝐹𝑃×𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

where TP, TN, FP and FN represent true positive, true negative, false positive and false negative 

respectively. 

There are a weight parameter α and a kernel matrix type KMT which can be properly set to build 

an optimal prediction model in this work. Parameter α is used to mediate the similarities between 

diseases and the similarities between miRNAs, while KMT selects a kernel matrix type for support 

vector machine (SVM) to make accurate classification. Detailed explanation of and KMT can be 

found in Methods. Experiments for the proper selection of and KMT were conducted under three 

steps: (1) construction of training data. We extracted 1487 known disease-miRNA associations 

between 107 diseases and 276 miRNAs from the miR2Disease database, and used them as the set 

of positive training samples (denoted as positive_miR). We also constructed a set of 4638 negative 

samples between 53 diseases and 538 miRNAs after a comprehensive analysis of the GSE 

accessions (denoted as negative_expression). We randomly selected 1487 negative samples from 

negative_expression to construct a balanced training data set; (2) prediction model construction. 

This step has two layers of loops. The outer loop changes the value of α from 0 to 1 with a step of 

0.1, while the inner loop sets KMT = 1, 2, or 3, which represent the three different types of kernel 

matrices (i.e., the average type, the squared root type and the center distance type). A prediction 

model was constructed with each α and KMT; (3) performance evaluation. We implemented 10-

fold cross-validation on the balanced data set with different α and KMT and the seven performance 

metrics (Specificity, Recall, Precision, Accuracy, F1, mcc and AUC) were computed. We ran the 

experiment 100 times. The averages of the seven indices were taken over the 100 times. Supp. Fig. 

1. shows the AUC values and F1 scores. 

The squared root type of KMT outperforms the other two types. When α increases, the AUC and 

F1 score increase first but then drop down, suggesting that the integration of different types of 

similarities can improve the prediction performance. Furthermore, when α = 0 or α = 1, the average 

type and the squared root type can still achieve the AUC values around 0.92 and F1 scores about 

0.9. It means that our precomputed kernel matrix method can have a good prediction performance 

even with just one kind of similarity information. Comparing the curves in Supp. Fig. 1, it can be 

seen when α is around 0.8, the curves achieve better AUCs and F1 scores. Thus, we chose the 

squared root type of KMT and set α = 0.8 for our prediction model.  



 

Supp. Fig. 1. Performances of the predictions under different precomputed kernel matrix and alpha. 
We mainly compare the AUC values and the F1 scores of each model with different parameters. K1, K2 

and K3 represent the three kernel matrix types such as the average type, the squared root type and the center 

distance type respectively. The results indicate that the model with the squared root type of kernel matrix 

and alpha=0.8 achieves better performance. 

To evaluate whether our prediction performance was obtained by chance, we conducted a 

permutation test as Jiang et al. [3] did. We did not use the true labels of the samples (positive 

samples and negative samples) but distributed the labels randomly. Then, we implemented the 10-

fold cross-validation and observed the changes of the performance. The positive_miR data set was 

adopted as the positive samples and balanced training data sets were built. The normal predictions 

(true labels) were considered as the control group while the permutation tests were regarded as the 

test group. All these two groups of experiments were repeated 10 times. The ROC curves of the 

test group and control group are shown in Supp. Fig. 2. The ROC curve of the test group is nearly 

overlapped with the random lines while the ROC curve of the control group can achieve an AUC 

value of 0.97, which indicates that the performance of our prediction model was not produced 

occasionally but contains biological significance. 

3. Effect of the size of the negative samples on the prediction performance 

To investigate whether the number of negative samples affects the performance of our predictions, we fixed 

the size of positive samples as the size of the positive_miR data set, and changed the number of negative 

samples in the training data set. All the negative samples were randomly selected from the 

negative_expression data set. We varied the number of negative samples from 3 times the number of 

positive samples to 2 times, to equal size, and to 80% of the size of positive samples, 60%, 40% and 20%. 

In addition, the positive samples from the positive_HMDD (totally 4041positive samples which were 

extracted from the HMDD database) excluding those samples already in the data set of positive_miR were 

adopted to build the validation data set. There are 3484 positive samples in this validation data set. Again, 

10-fold cross-validation was implemented on the training data. The prediction model was then tested on the  



 

Supp. Fig. 2 The ROC curves of the permutation test. The experiment includes the test group and the 

control group parts. The test group part used the permutated labels for the training samples while the control 

group part uses the original labels of the same training dataset. Both two parts of the experiment adopts our 

optimal prediction model. 

validation data set. As the samples in the validation data set are all positive samples, we just computed the 

accuracy but not other metrics. All the experiments were repeated 100 times. The average performances 

are depicted in Supp. Fig. 3 to show the changes of AUC and mcc values of the cross-validation 

experiments and the accuracy based on the validation dataset when the size of negative samples changes 

(the size ratio between the negative and positive samples is displayed on the x-axis). 

 

Supp. Fig. 3 Performances of the prediction models with different size ratio of negative and positive 

samples. The prediction model was trained on the sample sets with different ratio of negative and positive 

samples. The x-axis shows the ratios. AUC and mcc values were computed based on 10-fold cross 

validation. The Accuracy is the percentage that the samples in the validation dataset (a dataset with just 

positive samples but does not overlap with the training sample sets) are predicted correctly. 



 

We can find that the AUC values have nearly no changes under different size ratios between negative and 

positive samples. However, the accuracy of the prediction on the validation data set drops when the size of 

negative samples increases. But, the mcc value increases till the size of negative samples is equal to that of 

positive samples. Then, it keeps at the same level even more negative samples are added. As mcc is a more 

comprehensive performance index than accuracy, we suggest that a balanced training data set of positive 

and negative samples should be adopted to infer new disease-miRNA associations as we did in this work. 

4. Performance comparison when changing the approach of selecting negative samples 

The negative samples of disease-miRNA relationship randomly selected from the negative expression data 

set were used by this work for the training of the prediction model. There are other ways for the construction 

of negative data sets, such as by random selection from the unconnected disease-miRNA pairs. We 

compared the performances of our prediction model when the approach to select negative samples was 

changed. The positive samples were always the same, i.e., the data set positive_miR containing 1487 known 

disease-miRNA associations. 

The negative data set formed by a random selection from those unconnected disease-miRNA pairs is named 

negative_random (there are total 26704 disease-miRNA pairs). We conducted two experiments. In the first 

experiment, we used all the 1487 positive samples from positive_miR and 1487 negative samples randomly 

selected from the negative_expression data set to build the training data set. The second experiment is 

similar to the first one with the only difference that the 1487 negative samples were randomly selected from 

negative_random. 10-fold cross-validation was conducted on the training data sets. To get a test 

performance, we also used the above validation data set to test the prediction models. All these experiments 

were repeated 100 times, and the average performance was taken to reduce the bias of the predictions (Supp. 

Tab. 1).  

Supp. Tab. 1 The prediction performances based on different approaches to select negative samples 

negative  10-fold cross validation 

specificity recall precision accuracy F1 mcc AUC Accuracy 

expression 0.9194 0.9107 0.9191 0.9151 0.9147 0.8306 0.9704 0.7315 

random 0.7719 0.7808 0.7746 0.7764 0.7773 0.5534 0.7315 0.5077 

 

It is clear that the 10-fold cross-validation performance of selecting negative samples from 

negative_expression significantly outperformed another approach. For the 3484 samples of the validation 

data set, 73.15% of them can be correctly predicted by the model when the negative samples were selected 

from negative_expression, while the negative_random based model could only accurately predict 50.77% 

of the 3484 disease-miRNA associations. This comparison indicates that the approach for the selection of 

negative samples has significant impact on the prediction performance. The best choice is to select negative 

samples based on the analysis of expression data. 

 

5. Comparing with other’s methods 

As several methods have been proposed to infer the disease-miRNA relationships, it’s necessary for us to 

make comparison of our prediction model with those existing methods. Here we choose the representative 

non-machine learning method based and two machine learning method based prediction models for the 



comparisons. The first model is the RLSMDA that proposed by Chen et al. [1]. As the author didn’t provide 

the source code of their prediction model, we adopted the data they provided and the algorithm they 

introduced in their paper, and implemented their model. Chen et al. reported that they had done the local 

leave-one-out cross validation (local LOOCV) and global leave-one-out cross validation (global LOOCV) 

on their dataset with 1395 known disease-miRNA associations, including 271 miRNAs and 137 diseases. 

We mapped the diseases and miRNAs to DO and miRBase v21, and finally obtained 1184 disease-miRNA 

pairs. We also mapped these 1184 disease-miRNA pairs to our data set. We implemented the global 

LOOCV on RLSMDA and our prediction method. We randomly selected 1184 disease-miRNA pairs from 

negative_expression as the reliable negative samples. The LOOCV was repeated 10 times for our model so 

that we selected 10 different negative sample sets. The indices were the average values of those 10 runs. 

The ROC curves of our method and the RLSMDA is showed in Supp. Fig. 4. 

According to Supp. Fig. 4, our prediction model can achieve better performance than the RLSMDA based 

on the same positive samples and the leave-one-out cross-validation (AUC value = 0.9896 for our model 

and AUC value=0.9475 for RLSMDA). 

 

Supp. Fig. 4 The ROC curves of our model compared with RLSMDA based on the same positive samples 

 

There are other two SVM based prediction models such as the method proposed by Xu et al. [2] and Jiang 

et al. [3]. Both two methods adopted the traditional idea that using the feature vectors of the disease-miRNA 

pairs as the input and then training and testing the samples. However, the feature vectors of Xu’s method 

are hard to collect as they used the topological properties of the miRNA target–dysregulated network and 

the fold-change of the miRNA expression level. This method is hard to predict different kinds of diseases 

relate miRNAs simultaneously. They applied the 37 prostate cancer miRNAs as the positive samples and 

selected another 44 tissue-specific miRNAs with low expression levels as the negative samples. To compare 

with this method, we used these 37 prostate cancer miRNAs as the positive samples and randomly selected 

37 disease-miRNAs from the negative-expression as the negative samples and then implemented the 5-fold 

cross-validation. As the sample size is small, we repeated the 5-fold cross-validation 1000 times, thus, we 

randomly selected 1000 negative sample sets, and the final evaluation indices are the average values of the 

1000 runs. The ROC curves are listed in Supp. Fig. 5. The ROC curves of Xu’s method are also showed in 

the right part of Supp. Fig. 5 (the curves were obtained from the Ref. [2]). 



According to the Supp. Fig. 5, based on the same positive samples and the 5-fold cross-validation, our 

model can achieve the AUC value of 0.9854 which is better than that of Xu’s method of 0.9189. Though, 

this experiment is based on a small sample set with less than 100 samples and just a kind of disease, we can 

draw the conclusion that our model can achieve better performance on this special dataset. We didn’t 

implement Xu’s method, thus it’s impossible for us to make comparisons of our model with Xu’s based on 

more diseases. 

To compare with Jiang’s method in Ref. [3], we also downloaded the positive samples that they adopted to 

evaluate the performance of their model. There are 270 disease-miRNA pairs in this positive sample set. 

 

Supp. Fig. 5 The ROC curves of our model and Xu’s based on the same positive sample set and 5-

fold cross validation 

 

After mapping the diseases to DO and mapping the miRNAs to miRBase v21, there are 263 disease-miRNA 

pairs that can finally mapped to our disease and miRNA sets. We adopted these 263 disease-miRNA pairs 

as the positive samples and randomly selected 263 negative samples from negative-expression as the gold 

standard data set. 10-fold cross-validation was implemented on this data set for 100 times. The ROC curve 

of our method and Jiang’s (the curves were obtained from Ref. [3]) are showed in Supp. Fig. 6. The indices 

are listed in Supp. Tab. 2 as comparison of the two prediction methods.  

Supp. Tab. 2 The comparison of our method and Jiang’s method in Ref. [3] based on their positive sample 

set with the 10-fold cross-validation 

Method Recall Specificity Accuracy AUC 

Our method 0.8982 0.9274 0.9128 0.9871 

Jiang’s PITA based 0.7338 0.9125 0.8232 0.8884 

 

From Supp. Tab. 2 and Supp. Fig. 6, we can find that based on the same positive sample set, all the 

evaluation index of our model is higher than that of Jiang’s method. Furthermore, their negative samples 

were randomly selected from the disease-miRNA pairs that excluded the positive samples, which are not 

reliable enough in fact. 

Above all, we can draw the conclusion that our method can achieve better performance than the existing 

methods for inferring the disease-miRNA relationships based on the cross-validations with different sample 



 

Supp. Fig. 6 The ROC curves of our method and Jiang’s method based on their positive sample set. 

The right part of the figure was obtained from the corresponding published article.  

sets. All the datasets for cross-validations can be found in the Supplementary file 3. 

6. The details of the predicted and confirmed predictions 

Supp. Tab. 3 The predict breast cancer-miRNAs with known breast cancer miRNA associations and the 

confirmation source  

miRNA possibility evidence miRNA possibility evidence miRNA possibility evidence 

miR-223-3p 0.9995 # a miR-212-3p 0.9929 [13] miR-520h 0.9594 # 

miR-29c-3p 0.9994 * c,#,$ b miR-26b-5p 0.9929 #,$ miR-33b-5p 0.9572 [30] 

miR-92a-3p 0.9994 #,$ miR-148a-3p 0.9926 *,#,$ miR-421 0.9520 [31] 

miR-195-5p 0.9993 *,#,$ miR-130b-3p 0.9926 [14] miR-216a-5p 0.9514 [24] 

miR-15b-5p 0.9993 [4] d miR-148b-3p 0.9923 # miR-216b-5p 0.9514 $ 

miR-16-5p 0.9992 #,$ miR-95-5p 0.9923 [5] miR-208a-3p 0.9473 
 

miR-92b-3p 0.9992 [5] miR-133b 0.9923 # miR-494-5p 0.9469 $ 

miR-181a-5p 0.9991 *,#,$ miR-96-5p 0.9920 *,#,$ miR-217 0.9457 $ 

miR-106a-5p 0.9990 [6] miR-128-3p 0.9919 #,$ miR-598-5p 0.9450 
 

miR-24-3p 0.9989 #,$ miR-198 0.9914 e miR-365a-3p 0.9442 *,# 

let-7b-5p 0.9988 #,$ miR-363-3p 0.9912 [15] miR-382-5p 0.9365 [32] 

miR-124-3p 0.9988 #,$ miR-340-5p 0.9910 # miR-154-5p 0.9365 
 

miR-32-5p 0.9987 [5] miR-484 0.9908 [16] miR-377-3p 0.9360 
 

miR-18b-5p 0.9987 *,# miR-184 0.9902 [17] miR-532-5p 0.9344 [33] 

miR-101-3p 0.9983 # miR-33a-5p 0.9900 [18] miR-658 0.9339 
 

let-7e-5p 0.9982 $ miR-30e-5p 0.9898 [19] miR-423-3p 0.9289 #,$ 

miR-203a-3p 0.9978 *,#,$ miR-135a-5p 0.9887 #,$ miR-152-5p 0.9284 #,$ 

miR-122-5p 0.9975 #,$ miR-197-3p 0.9882 #,$ miR-583 0.9278 
 

miR-150-5p 0.9974 $ miR-186-5p 0.9881 [5] miR-136-5p 0.9266 * 

let-7c-5p 0.9974 #,$ miR-211-5p 0.9878 $ miR-328-5p 0.9258 # 

miR-31-5p 0.9974 *,#,$ miR-140-5p 0.9873 #,$ miR-371a-3p 0.9241 
 

miR-27a-3p 0.9973 *,#,$ miR-663a 0.9864 # miR-431-5p 0.9206 
 



miR-107 0.9972 #,$ miR-615-3p 0.9863 [20] miR-498 0.9205 [34] 

miR-128-2-5p 0.9971 [7] miR-130a-3p 0.9851 $ miR-337-3p 0.9178 [35] 

miR-193b-3p 0.9968 *,#,$ miR-520a-3p 0.9838 # miR-512-5p 0.9155 [36] 

miR-30a-5p 0.9968 #,$ miR-449b-5p 0.9832 [21] miR-208b-5p 0.9151 
 

miR-192-5p 0.9967 [5] miR-520b 0.9827 # miR-660-5p 0.9139 [37] 

miR-424-5p 0.9966 [8] miR-144-3p 0.9823 [22] miR-455-5p 0.9072 
 

miR-497-5p 0.9966 *,#,$ miR-520c-3p 0.9811 #,$ miR-526b-5p 0.9057 $ 

miR-27b-3p 0.9964 [9] miR-301b-3p 0.9808 # miR-376c-3p 0.9015 # 

miR-98-5p 0.9963 *,$ miR-520e 0.9801 [23] miR-525-5p 0.9010 
 

miR-126-3p 0.9962 *,#,$ miR-342-3p 0.9801 # miR-187-3p 0.9008 # 

miR-183-5p 0.9961 #,$ miR-378a-5p 0.9801 $ miR-411-5p 0.8933 [38] 

let-7g-5p 0.9956 #,$ miR-99b-5p 0.9797 [5] miR-299-3p 0.8933 # 

miR-23b-3p 0.9954 # miR-301a-3p 0.9788 # miR-652-3p 0.8878 [39] 

miR-181d-5p 0.9954 * miR-324-5p 0.9777 # miR-561-3p 0.8878 
 

miR-224-5p 0.9952 #,$ miR-137 0.9770 # miR-28-5p 0.8841 [5] 

miR-181c-5p 0.9951 [10] miR-330-3p 0.9761 [24] miR-432-5p 0.8796 
 

miR-375 0.9949 [11] miR-454-3p 0.9758 [25] miR-514a-3p 0.8793 
 

miR-100-5p 0.9949 #,$ miR-139-5p 0.9749 # miR-642a-5p 0.8756 
 

miR-99a-5p 0.9944 $ miR-185-5p 0.9739 $ miR-376a-3p 0.8733 [40] 

miR-22-3p 0.9942 *,#,$ miR-372-5p 0.9738 [5] miR-381-3p 0.8710 $ 

miR-182-5p 0.9941 *,#,$ miR-23a-3p 0.9737 #,$ miR-190a-5p 0.8678 [36] 

miR-191-5p 0.9938 *,#,$ miR-331-3p 0.9734 
 

miR-370-5p 0.8633 [41] 

miR-373-3p 0.9938 *,#,$ miR-448 0.9730 [26] miR-300 0.8546 $ 

miR-449a 0.9937 [12] miR-433-5p 0.9663 [27] miR-654-5p 0.8521 
 

miR-142-5p 0.9935 $ miR-129-5p 0.9657 #,$ miR-539-5p 0.8519 
 

miR-199b-5p 0.9932 # miR-134-5p 0.9614 [28] miR-486-5p 0.8457 [42] 

miR-26a-5p 0.9931 *,#,$ miR-491-5p 0.9601 [29] miR-608 0.8451 # 

miR-335-5p 0.9930 *,#,$ miR-452-5p 0.9600 # miR-557 0.8378 [43] 

Note: 

a:  # represents this association has been confirmed by the HMDD database; 

b:  $ represents this association has been confirmed by the miRCancer database; 

c:  * represents this association has been confirmed by miR2Disease database. 

d: [1] represents that this predicted association has been confirmed by Ref. [1]. 

e:  if the column is blank, it means the prediction has not been confirmed 

 

Supp. Tab. 4 The predict prostate cancer-miRNAs with known prostate cancer miRNA associations and 

the confirmation source 

miRNA possibility evidence miRNA possibility evidence miRNA possibility evidence 

miR-18a-5p 0.9995 $ miR-181d-5p 0.9903 $ miR-186-5p 0.9759 [66] 

miR-155-5p 0.9994 $ miR-34b-5p 0.9899 #,$ miR-151a-3p 0.9753 # 



miR-20b-5p 0.9991 
 

miR-181c-5p 0.9899 $ miR-615-3p 0.9743 [67] 

miR-143-3p 0.9988 $ miR-338-3p 0.9897 [56] miR-211-5p 0.9741 
 

miR-29c-3p 0.9986 [44] miR-7-5p 0.9896 $ miR-520e 0.9734 
 

miR-195-5p 0.9986 *,#,$ miR-99a-5p 0.9892 *,# miR-339-5p 0.9726 
 

miR-15b-5p 0.9986 #,$ let-7d-5p 0.9892 * miR-196b-5p 0.9718 # 

miR-29a-3p 0.9984 *,# miR-215-5p 0.9892 [54] miR-130a-3p 0.9715 # 

miR-92a-3p 0.9982 *,# miR-100-5p 0.9890 *,#,$ miR-149-5p 0.9712 * 

miR-19a-3p 0.9982 [45] miR-133b 0.9889 # miR-663a 0.9704 
 

miR-19b-3p 0.9980 * miR-224-5p 0.9887 *,#,$ miR-144-3p 0.9703 [68] 

miR-34a-5p 0.9979 *,#,$ miR-204-5p 0.9884 $ miR-449b-5p 0.9695 [69] 

miR-181a-5p 0.9979 $ miR-451a 0.9881 [57] miR-10a-5p 0.9692 * 

miR-92b-3p 0.9976 [46] miR-142-5p 0.9876 
 

miR-219a-5p 0.9672 [70] 

miR-1-3p 0.9973 # miR-22-3p 0.9876 [58] miR-10b-5p 0.9672 * 

miR-124-3p 0.9973 #,$ miR-449a 0.9874 *,#,$ miR-342-3p 0.9645 [71] 

miR-125b-5p 0.9973 *,#,$ miR-133a-5p 0.9867 #,$ miR-99b-5p 0.9643 # 

miR-200b-3p 0.9973 $ miR-210-5p 0.9866 [59] miR-301b-3p 0.9640 #,$ 

let-7b-5p 0.9971 *,# miR-26a-5p 0.9866 $ miR-488-5p 0.9637 # 

miR-18b-5p 0.9970 
 

miR-30d-5p 0.9864 #,$ miR-383-5p 0.9610 
 

miR-200a-3p 0.9969 # miR-26b-5p 0.9863 *,$ miR-301a-3p 0.9607 [72] 

miR-200c-3p 0.9966 # miR-302a-3p 0.9863 $ miR-378a-5p 0.9602 # 

miR-141-3p 0.9959 *,#,$ miR-335-5p 0.9860 # miR-137 0.9567 [73] 

let-7a-5p 0.9959 *,# miR-148a-3p 0.9859 *,# miR-139-5p 0.9563 [74] 

miR-196a-5p 0.9956 [47] miR-199b-5p 0.9857 *,$ miR-372-5p 0.9559 
 

miR-103a-3p 0.9955 * miR-212-3p 0.9850 [60] miR-454-3p 0.9548 
 

let-7e-5p 0.9955 [48] miR-130b-3p 0.9848 #,$ miR-23a-3p 0.9546 *,$ 

miR-150-5p 0.9953 [49] miR-148b-3p 0.9848 
 

miR-330-3p 0.9524 *,#,$ 

miR-107 0.9948 # miR-95-5p 0.9843 [61] miR-324-5p 0.9522 
 

miR-203a-3p 0.9947 $ miR-302b-3p 0.9843 
 

miR-433-5p 0.9501 
 

miR-31-5p 0.9942 *,#,$ miR-320a 0.9840 * miR-185-5p 0.9501 # 

miR-122-5p 0.9941 # miR-302c-3p 0.9835 
 

miR-448 0.9499 
 

miR-497-5p 0.9938 * miR-198 0.9821 *,# miR-129-5p 0.9418 [75] 

miR-128-2-5p 0.9937 [50] miR-128-3p 0.9814 $ miR-331-3p 0.9417 $ 

miR-424-5p 0.9937 [51] miR-96-5p 0.9812 *,#,$ miR-520h 0.9410 
 

let-7c-5p 0.9936 *,#,$ miR-296-5p 0.9809 *,# miR-452-5p 0.9363 # 

miR-126-3p 0.9929 [52] miR-206 0.9808 
 

miR-134-5p 0.9317 
 

miR-27a-3p 0.9927 *,# miR-302d-3p 0.9805 
 

miR-491-5p 0.9285 
 

miR-218-5p 0.9927 *,#,$ miR-484 0.9798 [62] miR-33b-5p 0.9227 
 

miR-30a-5p 0.9926 *,$ miR-184 0.9791 * miR-421 0.9212 $ 

miR-193b-3p 0.9925 [53] miR-197-3p 0.9786 [63] miR-216a-5p 0.9209 [76] 

miR-9-5p 0.9922 [54] miR-520a-3p 0.9777 
 

miR-216b-5p 0.9157 
 

miR-98-5p 0.9921 # miR-340-5p 0.9776 [64] miR-217 0.9128 
 

miR-30b-5p 0.9914 *,$ miR-135a-5p 0.9775 * miR-598-5p 0.9114 [77] 

miR-429 0.9914 [55] miR-367-3p 0.9772 [65] miR-532-5p 0.9034 
 

let-7f-5p 0.9912 * miR-33a-5p 0.9771 
 

miR-365a-3p 0.9007 
 



miR-27b-3p 0.9910 *,# miR-153-3p 0.9767 #,$ miR-377-3p 0.8977 [78] 

miR-183-5p 0.9905 *,#,$ miR-520b 0.9762 
 

miR-499a-5p 0.8926 
 

miR-125a-5p 0.9905 * miR-140-5p 0.9761 
 

miR-658 0.8923 
 

miR-375 0.9904 *,# miR-30e-5p 0.9759 $ miR-423-3p 0.8895 [79] 

 

Supp. Tab. 5 The predict breast cancer-miRNAs without known breast cancer miRNA associations and 

the confirmation source 

miRNA possibilit

y 

evidenc

e 

miRNA possibilit

y 

evidenc

e 

miRNA possibilit

y 

evidence

3 

miR-21-5p 0.9997 *,#,$ let-7c-5p 0.9826 #,$ miR-22-3p 0.9518 *,#,$ 

miR-17-5p 0.9986 #,$ miR-203a-3p 0.9812 *,#,$ miR-320a 0.9511 *,# 

miR-20a-5p 0.9979 *,#,$ miR-107 0.9807 #,$ miR-194-5p 0.9510 # 

miR-18a-5p 0.9978 *,#,$ miR-192-5p 0.9804 [5] miR-148a-3p 0.9507 *,#,$ 

miR-106b-5p 0.9974 # miR-34c-5p 0.9799 #,$ miR-204-5p 0.9506 *,#,$ 

miR-155-5p 0.9973 *,#,$ miR-146b-5p 0.9782 *,#,$ miR-95-5p 0.9505 [5] 

miR-146a-5p 0.9972 $ miR-98-5p 0.9781 *,$ miR-210-5p 0.9498 # 

miR-223-3p 0.9968 # miR-497-5p 0.9775 *,#,$ miR-484 0.9493 [16] 

miR-29b-3p 0.9966 *,#,$ let-7f-5p 0.9772 *,#,$ miR-199b-

5p 

0.9490 # 

miR-29c-3p 0.9965 *,#,$ miR-122-5p 0.9770 #,$ miR-142-5p 0.9490 $ 

miR-20b-5p 0.9964 #,$ miR-150-5p 0.9770 $ miR-373-3p 0.9461 *,#,$ 

miR-221-3p 0.9961 *,#,$ miR-30c-5p 0.9766 [80] miR-212-3p 0.9459 [13] 

miR-92a-3p 0.9961 #,$ miR-218-5p 0.9763 #,$ miR-148b-

3p 

0.9458 # 

miR-15a-5p 0.9961 #,$ miR-424-5p 0.9763 [8] miR-130b-

3p 

0.9454 [14] 

miR-143-3p 0.9960 *,#,$ miR-128-2-

5p 

0.9759 [7] miR-367-3p 0.9442 # 

miR-195-5p 0.9958 *,#,$ miR-27a-3p 0.9752 *,#,$ miR-198 0.9426 
 

miR-93-5p 0.9957 # miR-127-3p 0.9750 $ miR-128-3p 0.9402 #,$ 

miR-15b-5p 0.9955 [4] miR-9-5p 0.9746 # miR-363-3p 0.9367 [15] 

miR-29a-3p 0.9946 #,$ miR-30a-5p 0.9744 #,$ miR-340-5p 0.9362 # 

miR-222-3p 0.9945 *,#,$ miR-193b-3p 0.9743 *,#,$ miR-197-3p 0.9337 #,$ 

miR-16-5p 0.9943 #,$ miR-126-3p 0.9736 *,#,$ miR-135b-

5p 

0.9335 # 

miR-145-5p 0.9941 *,#,$ miR-375 0.9729 [11] miR-33a-5p 0.9325 [18] 

miR-24-3p 0.9939 #,$ miR-215-5p 0.9725 # miR-96-5p 0.9318 *,#,$ 

miR-19a-3p 0.9938 #,$ let-7d-5p 0.9723 *,#,$ miR-30e-5p 0.9273 [19] 

miR-92b-3p 0.9938 [5] miR-205-5p 0.9723 *,#,$ miR-196b-

5p 

0.9260 [81] 

miR-34a-5p 0.9938 #,$ miR-30b-5p 0.9708 # miR-615-3p 0.9234 [20] 

miR-181a-5p 0.9934 *,#,$ miR-181c-5p 0.9694 [10] miR-153-3p 0.9217 #,$ 

miR-19b-3p 0.9932 #,$ miR-429 0.9693 *,#,$ miR-296-5p 0.9170 # 

miR-106a-5p 0.9921 [6] miR-27b-3p 0.9688 [9] miR-140-5p 0.9156 #,$ 

let-7b-5p 0.9917 #,$ miR-181d-5p 0.9688 * miR-186-5p 0.9147 [5] 

miR-181b-5p 0.9915 *,#,$ let-7g-5p 0.9686 #,$ miR-302a-3p 0.9105 # 

miR-1-3p 0.9904 #,$ miR-183-5p 0.9684 #,$ miR-151a-3p 0.9097 # 



miR-200a-3p 0.9903 *,#,$ miR-133b 0.9674 # miR-135a-5p 0.9096 #,$ 

miR-124-3p 0.9903 #,$ miR-23b-3p 0.9647 # miR-206 0.9090 *,#,$ 

miR-32-5p 0.9903 [5] miR-7-5p 0.9645 *,#,$ miR-449b-

5p 

0.9018 [21] 

miR-200b-3p 0.9901 *,#,$ miR-34b-5p 0.9609 #,$ miR-144-3p 0.9005 [22] 

miR-199a-5p 0.9900 # miR-26b-5p 0.9590 #,$ miR-211-5p 0.8997 $ 

miR-25-3p 0.9895 # miR-224-5p 0.9585 #,$ miR-130a-3p 0.8989 $ 

miR-101-3p 0.9892 # miR-125a-5p 0.9585 #,$ miR-302b-

3p 

0.8962 # 

miR-132-3p 0.9891 #,$ miR-338-3p 0.9582 # miR-302c-3p 0.8915 # 

let-7a-5p 0.9887 *,#,$ miR-133a-5p 0.9580 #,$ miR-663a 0.8894 # 

miR-18b-5p 0.9885 *,# miR-26a-5p 0.9576 *,#,$ miR-301b-

3p 

0.8886 # 

miR-141-3p 0.9884 *,#,$ miR-449a 0.9566 [12] miR-302d-

3p 

0.8837 # 

miR-200c-3p 0.9882 *,#,$ miR-99a-5p 0.9563 $ miR-149-5p 0.8831 *,#,$ 

miR-125b-5p 0.9878 *,#,$ miR-30d-5p 0.9562 # miR-301a-3p 0.8776 # 

let-7e-5p 0.9867 $ miR-191-5p 0.9550 *,#,$ miR-10b-5p 0.8740 *,#,$ 

miR-196a-5p 0.9860 *,#,$ miR-182-5p 0.9549 *,#,$ miR-342-3p 0.8726 # 

miR-214-3p 0.9844 # miR-100-5p 0.9545 #,$ miR-520a-3p 0.8639 # 

miR-31-5p 0.9841 *,#,$ miR-335-5p 0.9529 *,#,$ miR-339-5p 0.8626 #,$ 

miR-103a-3p 0.9835 # miR-451a 0.9525 #,$ miR-330-3p 0.8423 [24] 

 

Supp. Tab. 6 The predict prostate cancer-miRNAs without known prostate cancer miRNA associations 

and the confirmation source 

miRNA possibility evidence miRNA possibility evidence miRNA possibility evidence 

miR-21-5p 0.9999 *,#,$ miR-192-5p 0.9942 [83] miR-26b-5p 0.9833 *,$ 

miR-17-5p 0.9995 *,# miR-31-5p 0.9941 *,#,$ miR-142-5p 0.9831 
 

miR-18a-5p 0.9994 $ miR-34c-5p 0.9940 #,$ miR-191-5p 0.9826 *,# 

miR-155-5p 0.9993 $ miR-203a-3p 0.9937 $ miR-199b-5p 0.9825 *,$ 

miR-20a-5p 0.9992 *,#,$ miR-107 0.9935 # miR-210-5p 0.9821 [59] 

miR-146a-5p 0.9992 *,#,$ miR-146b-5p 0.9933 # miR-451a 0.9819 [57] 

miR-106b-5p 0.9990 # miR-27a-3p 0.9931 *,# miR-367-3p 0.9817 [65] 

miR-223-3p 0.9989 *,#,$ miR-98-5p 0.9931 # miR-212-3p 0.9812 [60] 

miR-29b-3p 0.9989 $ miR-122-5p 0.9928 # miR-148a-3p 0.9810 *,# 

miR-221-3p 0.9988 *,#,$ miR-193b-3p 0.9927 [53] miR-130b-3p 0.9809 #,$ 

miR-15a-5p 0.9988 *,#,$ miR-497-5p 0.9924 * miR-22-3p 0.9809 [58] 

miR-143-3p 0.9988 $ let-7f-5p 0.9923 * miR-95-5p 0.9806 [61] 

miR-92a-3p 0.9987 *,# miR-215-5p 0.9923 [54] miR-148b-3p 0.9805 
 

miR-29c-3p 0.9987 [44] miR-218-5p 0.9921 *,#,$ miR-128-3p 0.9804 $ 

miR-195-5p 0.9986 *,#,$ miR-424-5p 0.9920 [51] miR-198 0.9803 *,# 

miR-15b-5p 0.9986 #,$ miR-30a-5p 0.9920 *,$ miR-373-3p 0.9802 # 

miR-20b-5p 0.9986 
 

miR-30c-5p 0.9919 *,#,$ miR-363-3p 0.9796 [84] 

miR-145-5p 0.9984 *,#,$ miR-205-5p 0.9917 *,#,$ miR-484 0.9792 [62] 

miR-16-5p 0.9984 *,#,$ miR-150-5p 0.9916 [49] miR-184 0.9785 * 

miR-222-3p 0.9983 *,#,$ miR-128-2-5p 0.9914 [50] miR-96-5p 0.9766 *,#,$ 



miR-93-5p 0.9983 # miR-27b-3p 0.9910 *,# miR-33a-5p 0.9755 
 

miR-34a-5p 0.9982 *,#,$ let-7d-5p 0.9906 * miR-197-3p 0.9755 [63] 

miR-92b-3p 0.9982 [46] miR-126-3p 0.9906 [52] miR-296-5p 0.9727 *,# 

miR-24-3p 0.9982 [82] miR-429 0.9905 [55] miR-135b-5p 0.9724 # 

miR-29a-3p 0.9982 *,# miR-183-5p 0.9904 *,#,$ miR-186-5p 0.9721 [66] 

miR-181a-5p 0.9979 $ miR-9-5p 0.9902 [54] miR-615-3p 0.9721 [67] 

miR-19a-3p 0.9978 [45] miR-30b-5p 0.9899 *,$ miR-206 0.9717 
 

miR-19b-3p 0.9976 * miR-375 0.9899 *,# miR-30e-5p 0.9705 $ 

let-7b-5p 0.9974 *,# let-7g-5p 0.9899 * miR-340-5p 0.9703 [64] 

miR-106a-5p 0.9973 *,# miR-181d-5p 0.9896 $ miR-153-3p 0.9699 #,$ 

miR-181b-5p 0.9972 *,#,$ miR-127-3p 0.9891 *,# miR-196b-5p 0.9693 # 

miR-124-3p 0.9972 #,$ miR-181c-5p 0.9891 $ miR-10a-5p 0.9681 * 

miR-32-5p 0.9970 *,# miR-23b-3p 0.9885 *,#,$ miR-151a-3p 0.9667 # 

miR-200b-3p 0.9970 $ miR-34b-5p 0.9875 #,$ miR-140-5p 0.9662 
 

miR-1-3p 0.9968 # miR-7-5p 0.9873 $ miR-449b-5p 0.9658 [69] 

miR-200a-3p 0.9968 # miR-125a-5p 0.9868 * miR-302a-3p 0.9650 $ 

miR-199a-5p 0.9967 *,# miR-449a 0.9868 *,#,$ miR-10b-5p 0.9647 * 

miR-125b-5p 0.9967 *,#,$ miR-338-3p 0.9859 [56] miR-130a-3p 0.9644 # 

miR-132-3p 0.9966 # miR-182-5p 0.9858 *,#,$ miR-135a-5p 0.9640 * 

miR-25-3p 0.9965 *,#,$ miR-26a-5p 0.9858 $ miR-149-5p 0.9629 * 

miR-101-3p 0.9964 *,#,$ miR-224-5p 0.9857 *,#,$ miR-211-5p 0.9623 
 

miR-18b-5p 0.9964 
 

miR-100-5p 0.9855 *,#,$ miR-339-5p 0.9617 
 

let-7a-5p 0.9963 *,# miR-99a-5p 0.9848 *,# miR-144-3p 0.9610 [68] 

miR-200c-3p 0.9963 # miR-133b 0.9846 # miR-302b-3p 0.9598 
 

miR-141-3p 0.9962 *,#,$ miR-30d-5p 0.9845 #,$ miR-219a-5p 0.9596 [70] 

let-7e-5p 0.9958 [48] miR-133a-5p 0.9844 #,$ miR-302c-3p 0.9582 
 

miR-196a-5p 0.9952 [47] miR-320a 0.9840 * miR-301b-3p 0.9577 #,$ 

miR-103a-3p 0.9947 * miR-335-5p 0.9839 # miR-663a 0.9572 
 

let-7c-5p 0.9945 *,#,$ miR-204-5p 0.9837 $ miR-342-3p 0.9540 [71] 

miR-214-3p 0.9943 *,# miR-194-5p 0.9834 # miR-301a-3p 0.9532 [72] 

 

7. The detail of the co-functional pairs and their confirmed common targets 

Supp. Tab. 7 The top 50 candidate cross-cancer associated co-functional miRNA pairs and their validate 

common targets for the original network and our reconstructed network 

Original network 
  

Reconstructed network 
  

miRNA1 miRNA2 targets literature miRNA1 miRNA2 targets literature 

miR-17-5p miR-20a-5p CDKN1A (p21) [85] miR-17-5p miR-20a-5p CDKN1A (p21) [85] 

miR-200b-3p miR-200c-3p AP-2α [86] miR-200b-3p miR-200c-3p AP-2α [86] 

miR-29a-3p miR-29b-3p LOXL2 [87] miR-15a-5p miR-195-5p Raf1 [94] 

let-7d-5p let-7g-5p 
  

miR-19a-3p miR-19b-3p CtIP [88] 

miR-19a-3p miR-19b-3p CtIP [88] miR-15b-5p miR-195-5p BCL2 [102] 

miR-200b-3p miR-429 AP-2α [86] miR-17-5p miR-106b-5p E2F [103] 

let-7f-5p let-7g-5p 
  

miR-20a-5p miR-106b-5p TIMP-2 [109] 



let-7c-5p let-7g-5p 
 

[89] miR-15a-5p miR-15b-5p E2F1 [115] 

let-7c-5p let-7f-5p PGC [90] miR-93-5p miR-106b-5p CIC [93] 

let-7a-5p let-7c-5p HMGA2 [89] miR-29a-3p miR-29c-3p LOXL2 [87] 

let-7d-5p let-7f-5p 
  

miR-141-3p miR-200a-3p p38α [96] 

let-7a-5p let-7f-5p MYC [91] miR-200b-3p miR-429 AP-2α [86] 

miR-200c-3p miR-429 AP-2α [86] miR-29b-3p miR-29c-3p LOXL2 [87] 

let-7a-5p let-7g-5p 
  

miR-20a-5p miR-20b-5p RB1CC1/FIP200 [116] 

let-7c-5p let-7d-5p 
  

miR-20a-5p miR-93-5p MICA/B [99] 

miR-17-5p miR-93-5p ABCA1 [92] miR-17-5p miR-93-5p ABCA1 [92] 

let-7e-5p let-7g-5p 
  

miR-424-5p miR-497-5p 
  

miR-93-5p miR-106b-5p CIC [93] miR-103a-3p miR-107 CDK5R1 [113] 

miR-15a-5p miR-195-5p Raf1 [94] miR-29a-3p miR-29b-3p LOXL2 [87] 

let-7b-5p let-7c-5p Akt2 [95] miR-27a-3p miR-27b-3p retinoid X receptor α [117] 

miR-141-3p miR-200a-3p p38alpha [96] miR-93-5p miR-20b-5p STAT3 [118] 

miR-181a-5p miR-181b-5p RASSF1A [97] let-7a-5p let-7c-5p HMGA2 [89] 

let-7d-5p let-7e-5p 
  

miR-15a-5p miR-16-5p Bmi-1 [105] 

let-7a-5p let-7b-5p p53 [98] miR-106b-5p miR-20b-5p 
  

miR-29b-3p miR-29c-3p LOXL2 [87] let-7d-5p let-7g-5p 
  

let-7a-5p let-7d-5p 
  

miR-17-5p miR-20b-5p Ephrin-B2 and EPHB4 [119] 

miR-20a-5p miR-93-5p MICA/B [99] miR-200c-3p miR-429 AP-2α [86] 

let-7e-5p let-7f-5p MMP11 [100] miR-195-5p miR-424-5p 
  

let-7c-5p let-7e-5p Cox4i1 [101] let-7c-5p let-7e-5p Cox4i1 [101] 

miR-29a-3p miR-29c-3p LOXL2 [87] miR-181a-5p miR-181b-5p RASSF1A [97] 

miR-15b-5p miR-195-5p BCL2 [102] miR-15a-5p miR-424-5p 
  

miR-17-5p miR-106b-5p E2F [103] miR-16-5p miR-195-5p 
  

let-7a-5p let-7e-5p IL-13 [104] miR-195-5p miR-497-5p Raf-1 and Ccnd1 [111] 

miR-15a-5p miR-16-5p Bmi-1 [105] miR-16-5p miR-15b-5p BCL2 [120] 

miR-146a-5p miR-146b-5p TRAF6 and IRAK1 [106] let-7f-5p let-7g-5p 
  

miR-16-5p miR-195-5p 
  

let-7a-5p let-7b-5p p53 [98] 

let-7b-5p let-7e-5p 
  

miR-15b-5p miR-424-5p 
  

let-7f-5p miR-98-5p 
  

miR-15b-5p miR-497-5p Bcl-2 [121] 

miR-221-3p miR-222-3p ARID1A [107] let-7a-5p let-7e-5p IL-13 [104] 

let-7b-5p let-7f-5p 
  

let-7d-5p let-7f-5p 
  

miR-34b-5p miR-34c-5p α-syn [108] let-7c-5p let-7f-5p PGC [90] 

miR-20a-5p miR-106b-5p TIMP-2 [109] let-7b-5p let-7c-5p Akt2 [95] 

let-7b-5p let-7g-5p AKT2 [110] miR-20a-5p miR-106a-5p TIMP-2 [109] 

miR-195-5p miR-497-5p Raf-1 and Ccnd1 [111] let-7e-5p let-7f-5p MMP11 [100] 

let-7a-5p miR-98-5p 
  

miR-199a-5p miR-199b-5p CLTC [114] 

miR-34a-5p miR-34c-5p p53 [112] miR-221-3p miR-222-3p ARID1A [107] 

miR-103a-3p miR-107 CDK5R1 [113] let-7a-5p let-7f-5p MYC [91] 

miR-181b-5p miR-181c-5p 
  

miR-15a-5p miR-497-5p 
  

miR-199a-5p miR-199b-5p CLTC [114] miR-106a-5p miR-106b-5p IL-10 [122] 

miR-98-5p let-7g-5p 
  

miR-146a-5p miR-146b-5p TRAF6 and IRAK1 [106] 

 



Supp. Tab. 8 The candidate multi-non-cancer-disease associated co-functional miRNA pairs and their 

validate common targets for the reconstructed network 

miRNA1 miRNA2 targets literature miRNA1 miRNA2 targets literature 

hsa-miR-29a-3p hsa-miR-29b-3p LOXL2 [87] hsa-miR-21-5p hsa-miR-29b-3p IL6 [125] 

hsa-miR-17-5p hsa-miR-20a-5p CDKN1A (p21) [85] hsa-miR-146a-5p hsa-miR-155-5p Histone3 [126] 

hsa-miR-29b-3p hsa-miR-29c-3p LOXL2 [87] hsa-miR-21-5p hsa-miR-29a-3p 
 

hsa-miR-29a-3p hsa-miR-29c-3p LOXL2 [87] hsa-miR-17-5p hsa-miR-21-5p STAT3 [127] 

hsa-miR-15a-5p hsa-miR-15b-5p E2F1 [115] hsa-miR-20a-5p hsa-miR-21-5p TGF-b [128] 

hsa-miR-21-5p hsa-miR-155-5p SHIP-1 [123] hsa-miR-1-3p hsa-miR-155-5p 
 

hsa-miR-21-5p hsa-miR-146a-5p EBNA2 [124] 
    

 

8. Supplementary codes 

This supplementary file contains five matlab functions such as ComKerMat.m, PreDisRNA.m, DMMD.m, 

CoFunScore.m and CoFunScoreAll.m. ComKerMat.m and PreDisRNA.m are used to predict disease-

miRNA associations. The PreDisRNA.m is the main interface. The other three functions can be used to 

prioritizing the multi-disease associated co-functional miRNA pairs. The CoFunScoreAll.m is the main 

interface. One can copy these five functions to five matlab code files. 

 

 

Function 1: ComKerMat.m 

 

%% this function is to compute the kernel matrixes 

Function [train_model, test_kernel_matrix] = ComKerMat(ds, ms, train_data, train_label, test_data) 

% train_model-- train_model  is the training model of the SVM; 

% test_kernel_matrix-- test_kernel_matrix is the output kernel_matrix of the testing dataset; 

% ds--the similarity matrix of diseases, the data has not been submitted as the data file is so big  

%      (more than 100M is the excel file), one can contact Hui Peng  

%     (email:hui.peng-2@student.uts.edu.au); 

% ms--the similarity matrix of miRNAs, the data has not been submitted; 

% train_data--train_data is the training dataset; 

% train_label--train_label is the training labels; 

% test_data--test_data is the testing dataset. 

train_disease=train_data(:,1); 

train_rna=train_data(:,2); 

[L1,a]=size(train_data); 

test_disease=test_data(:,1); 

test_rna=test_data(:,2); 

[L2,a]=size(test_data); 

K1=zeros(L1,L1); 

K2=zeros(L2,L1); 

for i=1:L1 

    for j=i:L1 

        disease1=train_disease(i,1); 

        rna1=train_rna(i,1); 

        disease2=train_disease(j,1); 

        rna2=train_rna(j,1); 

        K1(i,j)=sqrt(ms(rna1,rna2)*ds(disease1,disease2)); 



        K1(j,i)=K1(i,j); 

    end 

end 

K11=[(1:length(train_disease))',K1]; 

train_model=svmtrain(train_label,K11,'-t 4 -b 1 -q 1'); 

for i=1:L2 

    for j=1:L1 

        K2(i,j)=sqrt(ds(test_disease(i,1),train_disease(j,1))*ms(test_rna(i,1),train_rna(j,1))); 

    end 

end 

test_kernel_matrix=[(1:length(test_disease))',K2]; 

 

 

 

 

Function 2: PreDisRNA.m 

 

%% this function is to predict disease related miRNA 

Function [predict_rna,probability] = PreDisRNA(ds, ms, positive_samples, negative_samples, 

test_disease, test_RNAs) 

% input: % ds--the similarity matrix of diseases, the data has not been submitted as the data  

%              file is so big (more than 100M is the excel file), one can contact Hui Peng 

%             (email:hui.peng-2@student.uts.edu.au); 

%          ms--the similarity matrix of miRNAs, the data has not been submitted; 

%        positive_samples--the positive samples for training dataset,four main positive  

%                          samples such as positive_miR, positive_hmdd, positive_miRcancer  

%                          and positive_pool can be found in Supplementary file 2; 

%        negative_samples--the negative samples for training dataset, the negative samples such  

%                          as negative_expression can be found in Supplementary file 2; 

%        test_disease--the disease that need to predict its related miRNAs, disease ids 

%                      are listed in Supplementary file 2 

%        test_RNAs--the miRNAs list, the ids can be found in the Supplementary file 2 

% output: predict_rna--predicted disease-miRNA, the first column is the id of the diseases and 

%                      the second column is the miRNA id, we default output no more than  

%                      100 predicted associations of a given disease 

%         probability --the probalities of the predicted disease-miRNA association. If  

%                    the probability is 1, then this association is a known association in 

%                    the training dataset, or the association is a newly predicted one. 

  

%% create the testing dataset the number of the diseases for test 

[L1,a]=size(test_disease); 

% the number of miRNAs for test 

[L2,a]=size(test_RNAs); 

% construct the disease-miRNA pairs 

k=1; 

for i=1:L1 

    for j=1:L2 

        dis_miR(k,1:2)=[test_disease(i,1),test_RNAs(j,1)]; 

        k=k+1; 

    end 

end 



% find the known associations in the training dataset 

known_associations_p=intersect(positive_samples,dis_miR,'rows'); 

known_associations_n=intersect(negative_samples,dis_miR,'rows'); 

% find the unknown associations pairs to construct the testing dataset 

known=[known_associations_p; known_associations_n]; 

test_dataset=setdiff(dis_miR,known,'rows'); 

[L3,a]=size(test_dataset); 

test_label=zeros(L3,1); 

labels=zeros(L3,100); 

decs=zeros(L3,1); 

%% prediction for 100 times as we will select the same number  

%  of negative_samples with positve_samples to construct balanced training set 

for i=1:100 

    [L4,a]=size(negative_samples); 

    [L5,a]=size(positive_samples); 

    train_positive=positive_samples; 

    train_negative=negative_samples(randperm(L4,L5),:); 

    label_p(1:L5,1)=1; 

    label_n(1:L5,1)=0; 

    training_data=[train_positive;train_negative]; 

    training_label=[label_p;label_n]; 

    [train_model,test_kernel_matrix]=ComKerMat(ds,ms,training_data,training_label,test_dataset); 

    [predict_label_P, accuracy_P, dec_values_P] = svmpredict(test_label, test_kernel_matrix, train_model,' 

-b 1 -q 1'); 

    labels(:,i)=predict_label_P; 

    decs=decs+dec_values_P(:,1); 

end 

predict_results=[]; 

predict_rna=[]; 

decs=decs/100; 

m=1; 

for i=1:L3 

    s=sum(labels(i,:)); 

    dec=decs(i,1); 

    if s>99 

        predict_results(m,1:2)=test_dataset(i,:); 

        predict_results(m,3)=dec; 

        m=m+1; 

    end 

end 

  

[N,a]=size(predict_results); 

[L6,a]=size(known_associations_p); 

if L6==0 

    known_pair=[]; 

    known_probability=[]; 

else 

    known_pair=known_associations_p; 

    known_probability(1:L6,1)=1; 

end 

  



if N==0 

    predict_rnas=[]; 

    probability=[]; 

elseif N<=100 

    predict_results=sortrows(predict_results,-3); 

    predict_rnas=predict_results(:,1:2); 

    probability=predict_results(:,3); 

else 

    predict_results=sortrows(predict_results,-3); 

    predict_rnas=predict_results(1:100,1:2); 

    probability=predict_results(1:100,3); 

end 

predict_rna=[known_pair;predict_rnas]; 

probability=[known_probability;probability]; 

 

 

 

 

Function 3: DMMD.m 

 

%% this function is to find all the disease related miRNAs and the miRNA associated diseases 

function [disease_miR,miRNA_dis]=DMMD(dismir) 

% dismir is the known disease-miRNA associations 

d=unique(dismir(:,1)); 

m=unique(dismir(:,2)); 

[L1,a]=size(d); 

[L2,a]=size(m); 

for i=1:L1 

    disease=d(i,1); 

    index=find(dismir(:,1)==disease); 

    disease_miR{i,1}=disease; 

    disease_miR{i,2}=dismir(index,2); 

    disease_miR{i,3}=length(index); 

end 

  

for i=1:L2 

    mirna=m(i,1); 

    index=find(dismir(:,2)==mirna); 

    miRNA_dis{i,1}=mirna; 

    miRNA_dis{i,2}=dismir(index,1); 

    miRNA_dis{i,3}=length(index); 

end 

 

 

 

 

Function 4: CoFunScore.m 

 

%% this function is to compute the co_function score 

function [score, P, common_dis] = CoFunScore(RNA_target, Dg_map, pair, disease_miR, 

miRNA_dis,L1) 



% RNA_target--RNA_target is the miRNA targets where the first column is the miRNA ids the 

%                       second column is the miRNA target gene entrez ids. This data set can be found in 

%                       the Supplementary file 7; 

% Dg_map--Dg_map is the diseases and their related genes, where the first column is the disease Do 

%                 id while the second column are their related genes. This data set can be found in  

%                 the Supplementary file 6;   

% pair--pair is the miRNA pair that composed of two unique miRNAs 

% disease_miR, miRNA_dis--disease_miR and miRNA_dis can be computed with the  

%                                             function 'DMMD.m' 

% L1--L1 is the total diseases in the network  

% score--score stores the cfscore of the miRNA pair 

% P--P stores the common genes of the miRNA pair and the possibility 

% common_dis--common_dis is the common diseases that associated with both of the two miRNAs. In  

%             our codes, the common diseases should have  at least one disease gene which is also a 

%             target for the miRNA pair 

num=0; 

rnas=miRNA_dis(:,1); 

for i=1:length(rnas) 

    RNAs(i,1)=rnas{i,1}; 

end 

rnas=[]; 

rnas=RNAs; 

for i=1:L1 

    dis_mir=disease_miR{i,2}; 

    index=intersect(dis_mir,pair); 

    if length(index)==2 

        num=num+1; 

    end 

end 

  

rna1=pair(1,1); 

rna2=pair(1,2); 

index1=find(rnas==rna1); 

index2=find(rnas==rna2); 

  

dis_set1=miRNA_dis{index1,2}; 

dis_set2=miRNA_dis{index2,2}; 

L3=length(dis_set1); 

L4=length(dis_set2); 

d_genes=[]; 

  

disease_sets=intersect(dis_set1,dis_set2); 

  

set1=union(dis_set1,dis_set2); 

set2=intersect(dis_set1,dis_set2); 

  

f1=(length(set2)/length(set1))*(length(set2)/L1); 

gene1=RNA_target{rna1,2}; 

gene2=RNA_target{rna2,2}; 

set3=union(gene1,gene2); 

set4=intersect(gene2,gene1); 



f2=length(set4)/length(set3); 

  

common_dis=[]; 

common_gene=[]; 

for i=1:length(disease_sets) 

    dis=disease_sets(i,1); 

    dis_gene=Dg_map{dis,3}; 

    c_g=intersect(dis_gene,set4); 

    if length(c_g)>0 

        common_dis=[common_dis;dis]; 

        common_gene=[common_gene;c_g]; 

    end 

end 

  

if length(common_gene)==0 

    score=0; 

    P=[]; 

else 

    common_gene=unique(common_gene); 

    P=zeros(length(common_gene),2); 

     

    for i=1:length(common_gene) 

        gene=common_gene(i,1); 

        P(i,1)=gene(1,1); 

        com_dis_num=length(common_dis); 

        if com_dis_num==0 

            P(i,2)=0; 

        else 

            gene_num=0; 

            for j=1:com_dis_num 

                dis=common_dis(j,1); 

                dis_gene=Dg_map{dis,3}; 

                index=find(dis_gene==gene); 

                if length(index)==1 

                    gene_num=gene_num+1; 

                end 

            end 

            P(i,2)=gene_num/com_dis_num; 

        end 

    end 

     

    P=sortrows(P,-2); 

    set5=union(common_gene,set4); 

    set6=intersect(common_gene,set4); 

     

     

    f3=length(set6)/length(set5); 

    score=f1*f2*f3; 

end 

 

 



 

 

 

Function 5: CoFunScoreAll.m 

 

%% this function is to compute all the CoFunScore 

function [Scores, Genes, Disease] = CoFunScoreAll(dis_mir, RNA_target, Dg_map, t) 

% dis_mir--dis_mir is the disease-miRNA associations in the DGR network, where the first column is the 

%                disease id and the second column is the miRNA id, in our experiment, the disease-miRNA 

%                associations in the DGR network are stored in the Supplementary file 4. 

% RNA_target--RNA_target is the miRNA targets where the first column is the miRNA id the  

%                       second column is the miRNA target gene entrez id. This data set can be found in the  

%                       Supplementary file 7. 

% Dg_map--Dg_map is the diseases and their related genes, where the first column is the disease Do  

%                 id while the second column is disease name. The disease genes are stored in the third  

%                 column. This data set can be found in the Supplementary file 6. 

% t--t is the threshold of the number of diseases that the co-functional pair associated with. We set t=10 in  

%    our experiments. 

% Scores--Scores stores the output multi-disease associated co-functional miRNA pairs. The first 

%               two columns are the miRNA ids while the last column is the cfScores of these pairs. 

% Genes--Genes stores the potential common targets of the co-functional miRNA pairs. The first  

%              column is the potential genes of the miRNA pair, the second column is the cfScore of 

%              the corresponding miRNA pair. 

% Disease--Disease stores the miRNA-pairs associated diseases. The first column is the diseases and 

%                the second column is the cfScore of the corresponding miRNA pairs. 

  

[disease_miR,miRNA_dis]=DMMD(dis_mir); 

[L1,a]=size(disease_miR); 

[L2,a]=size(miRNA_dis); 

k=1; 

rnas=[]; 

for i=1:L2 

    if miRNA_dis{i,3}>=t 

        rnas(k,1)=miRNA_dis{i,1}; 

        k=k+1; 

    end 

end 

if length(rnas)>0 

    Pairs_all=combntns(rnas,2); 

    [N,a]=size(Pairs_all); 

    m=1; 

    for i=1:N 

        pair=Pairs_all(i,:); 

        [score,gene,diseases]=CoFunScore(RNA_target,Dg_map,pair,disease_miR,miRNA_dis,L1); 

        if length(diseases)>=t 

            Scores(m,1:2)=pair; 

            Scores(m,3)=score; 

            Genes{m,2}=score; 

            Genes{m,1}=gene; 

            Disease{m,1}=diseases; 

            Disease{m,2}=score; 



            m=m+1; 

        end 

    end 

     

    if length(Scores)==0 

        Scores=[]; 

        Genes=[]; 

        Disease=[]; 

    else 

        Scores=sortrows(Scores,-3); 

        Genes=sortrows(Genes,-2); 

        Disease=sortrows(Disease,-2); 

    end 

else 

    Scores=[]; 

    Genes=[]; 

    Disease=[]; 

end 
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