Supplementary Information for:

Influenza A virus hemagglutinin and neuraminidase act as novel motile machinery

Tatsuya Sakai, Shin I. Nishimura, Tadasuke Naito, and Mineki Saito

Supplementary Methods

Supplementary Figures S1 and S2

Supplementary Tables S1 and S2

Supplementary Movies S1–S8

Supplementary Methods

Plasmid construction and reverse genetics. Plasmids for PR8 mutant viruses were provided by Yoshihiro Kawaoka (University of Tokyo). Mutations in the NA catalytic site (R103K or R278K) were introduced into the plasmid containing the wild-type NA coding sequence (pPol1-NAwt) by site-directed mutagenesis. To construct the plasmid containing the NA R103K mutant-coding sequence (pPol1-NA-R103K), two DNA fragments corresponding to the NA-coding sequence were amplified by PCR using 5'-CGTATTGGTCTCAGGGAGCRAAAGCAGG-3' (Bsa-Uni-F) and 5'-CGTTTTTGTCATAAAAGAGCCCTTTATT-3' or 5'-CGATATGGTCTCGTATTAGTAGAAACAAGG-3' (Bsa-Uni-R) and 5'-AATAAAGGGCTCTTTTATGACAAAAACG-3' primers and pPol1-NAwt as the PCR template. To construct pPol1-NA-R278K, two DNA fragments corresponding to the NA-coding sequence were amplified by PCR using Bsa-Uni-F and 5' -ATGTGTGTGTGCAAAGACAATTGGCAT-3' or Bsa-Uni-R and 5' primers. Full length NA (R103K) -ATGCCAATTGTCTTTGCACACACACAT-3' and NA (R278K) genes were amplified by PCR using Bsa-Uni-F and Bsa-Uni-R

primers. PCR products were digested with *Bsa*I and cloned into a *Bsm*BI-digested pPol1 plasmid. The appropriate plasmids were transfected into 293T cells, and recombinant viruses were recovered as described previously⁴⁰. Transfected 293T cells were incubated at 37 °C in OPTI-MEM (Thermo Fisher Scientific, Yokohama, Japan), and then the supernatant was harvested at 48 h post-transfection. The NA R103K virus was generated in the presence of 200 μ l/ml of *C. perfringens* NA.

Supplementary Figures

Supplementary Fig. S1. Frequency distribution of virus displacements. Because virus motion with relatively long displacements (>0.3 μ m/s) occur rarely, the tail of the function, which is the frequency distribution of the long displacements, fluctuates irregularly. ECCDF is suitable for analysis of such noisy tails.

Supplementary Fig. S2. NA expression of wild-type and mutant PR8 viruses.

Representative blots of viral proteins separated by SDS-PAGE (CBB) and NA proteins detected by western blotting (WB) are shown. The corresponding relative NA expression levels evaluated by the fluorescence intensities of NA bands and standardised by M1 band intensities are summarised in Table 1.

Supplementary Tables

Supplementary Table S1. Affinities of different receptors for their specific ligands prior to endocytosis.

Ligand	Receptor	Dissociation coefficient (M)	Reference	
(Virus)	•			
Hemagglutinin	Sialyloligosacharida	$1.4.6.5 \times 10^{-3}$	Sauter 1989 ¹¹	
(Influenza virus)	Starytongosacchartue	1.4-0.3 ^ 10	Sauter 1992 ¹²	
G protein	I DL recentor family	10×10^{-9}	Finkelshtein 2013 ¹³	
(Vesicular stomatitis virus)	LDL receptor family	10 ^ 10		
E2 protein	MHC class I	40×10^{-9}	Helenius 1978 ¹⁴	
(Semliki Forest virus)	WITE class I	10 ^ 10		
Transferrin	Transferrin receptor	$7 imes 10^{-9}$	Dautry-Varsat 1983 ¹⁵	
Low density lipoprotein	LDL receptor	3.2×10^{-9}	Wathne 1989 ¹⁶	
Epidermal growth factor	EGF receptor	$1-10 \times 10^{-9}$ (95–98%) $10-100 \times 10^{-12}$ (2–5%)	Lax 1989 ¹⁷	
Insulin	Insulin receptor	$50-75 \times 10^{-12}$	Cuatrecasas 1971 ¹⁸	

Receptor	Cell	Diffusion coefficient	Mobile fraction	Defense	
		$ imes 10^{-2} (\mu m^2 \; s^{-1})$	(%)	Keterence	
Transferrin receptor	Mouse epithelial cell	0.78	65	Kusumi 1993 ²²	
		0.44	24		
LDL receptor	Human fibroblast	0.05–0.2 (10 °C)	<20	Barak 1982 ²³	
LDL receptor	Human fibroblast	0.45 (29.90)	(0	Barak 1982 ²³	
(Internalization-defective mutant)	(J.D. cell)	0.45 (28 °C)	60		
EGF receptor	Mouse fibroblast	0.1–1.0	<10	Schlessinger 1978 ²⁴	
Insulin receptor	Mouse fibroblast	0.1–1.0	<10	Schlessinger 1978 ²⁴	
Influenza virus					
-Aich2	Fetuin-coated glass	1.1	~100	This study	
-PR8	surface	0.72	~100		

Supplementary Table S2. Lateral diffusion of receptors involved in endocytosis.

Supplementary Movie Legends

Supplementary Movie S1. Influenza virus particle movement on a fetuin-coated glass surface. Green line indicates the Aichi2 virus trajectory. This video plays at $20 \times$ speed (scale bar = 1 µm).

Supplementary Movie S2. Movement of virus particles on a fetuin-coated glass surface. Coloured lines in the last frame indicate Aichi2 virus particle trajectories. This video plays at $100 \times$ speed (scale bar = 1 µm).

Supplementary Movie S3. Aichi2 virus particles on a fetuin-coated glass surface in the presence of zanamivir. This video plays at $100 \times$ speed (scale bar = 1 µm).

Supplementary Movie S4. Wild-type PR8 virus movement on a fetuin-coated glass surface. This video plays at $50 \times$ speed (scale bar = 1 µm).

Supplementary Movie S5. NA R278K mutant PR8 virus movement on a

fetuin-coated glass surface. This video plays at 50× speed (scale bar = 1 μ m).

Supplementary Movie S6. NA R103K mutant PR8 virus movement on a

fetuin-coated glass surface. This video plays at 50× speed (scale bar = 1 μ m).

Supplementary Movie S7. Virus particles on erythrocyte surfaces in the absence of zanamivir. The first frame is a bright field image of erythrocytes fixed to a glass surface. Virus particle brightness fluctuates and the virus is slightly out of focus, implying that viruses move in three dimensions along the erythrocyte surface. This video plays at $100 \times$ speed (scale bar = 10μ m).

Supplementary Movie S8. Virus particles on erythrocyte surfaces in the presence of zanamivir. The first frame is a bright field image of erythrocytes fixed to a glass surface. This video plays at $100 \times$ speed (scale bar = 10μ m).