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Elliptic Fourier analysis of outlines and colorimetric analysis of Pecten maximus from nine populations
collected along the Northern Ireland coastline are documented.

1 Elliptic Fourier analysis: outline extraction

The input data for the morphometric analysis of outlines is a set of (x;y) pixel coordinates sampled on each
of the image outline. The images preparation can be summarised in the following steps:

1. Photographs of the lateral view of flat (left) valves for each individual were obtained with an high-
resolution digital camera (Nikon D3300);

2. Images were prepared with an image software (Adobe Photoshop CS6) in order to get grey-level masks
(depicting the outlines of the shells) 8-bit mode in .jpg formats with no level of compression;

3. The images were centred so that all the masks were aligned to the same point and stored in the same
folder;

4. Only the outlines of intact scallops shells were retained for following analysis (10 outlines out of 180
were excluded).

To summarise, for each shell photo a black mask on a white background was obtained for each shape to be
analysed .

# Loading the Momocs package
library(Momocs)
library(ggplot2)

# List of .jpg for the outline extraction (just an example)
head(scallop.list, 6) # names of the first six files for site A

## [1] "1_0.1.jpg" "1_0.2.jpg" "1_0.3.jpg" "1_0.4.jpg" "1_0.5.jpg" "1_0.6.jpg"

Each outline was imported directly from the black mask with an algorithm extracting the image outline.
In the outline analysis each outline was described through the closed polygon formed by the (x;y) coordinates
of the pixels defining it.

# Outlines extraction and creation of a list of (x;y) coordinates
scallop.out <- import_jpg(scallop.list)

In order to specify explanatory variables going along with the extracted outline coordinates, grouping
factors and covariates were retrieved from the image file-names. These factors were specified through a
data-frame, and then used to create subsets in the collection of coordinates (see below the definition of Coo
objects).

# Retriving covariables from the file-names and defining the grouping factors
grouping.fac <- lf_structure(scallop.list, names = c("Site", "Number"),

split = "_", trim.extension = T)

2 Collection of coordinates (Coo objects)

After the definition of a list of coordinates for each of the shell image, the list was passed to one of the
Momocs class builder, “Out”" (class builder for closed outlines) and a Coo (Collection of COOrdinates) class
object defined, along with grouping factors (Site).
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## # Definition of a Coo and grouping factors
## scallop.coo <- Out(scallop.out, fac = grouping.fac[1])

## An Out object with:
## --------------------
## - $coo: 170 outlines (4642 +/- 461 coordinates, all closed)
## - $fac: 1 classifier:
## 'Site' (factor 9): 1, 2, 3, 4, 5, 6, 7, 8, 9.

Before outline analysis, shapes were organised into a collection of coordinates, a Coo object. The Coo object
carries:

• a component names $coo, a list of 170 shapes with the outline type (closed) and average number of
points sampled +/- deviation;

• a component $fac, a list of factors for classification (Site).

2.1 Shape graphics: outlines inspection

The extracted outlines were investigated with different graphical tools. Single shapes from the collection were
investigated as well as the whole Coo objects through panel representations.

1_0.1 1_0.2 1_0.3 1_0.4 1_0.5 1_0.6 1_0.7 1_0.8 1_0.9 1_1.0 1_1.1 1_1.2 1_1.3 1_1.4

1_1.5 1_1.6 1_1.7 1_1.8 1_1.9 1_2.0 2_0.1 2_0.2 2_0.3 2_0.4 2_0.5 2_0.6 2_0.7 2_0.8

2_0.9 2_1.0 2_1.2 2_1.3 2_1.4 2_1.5 2_1.6 2_1.7 2_1.8 2_1.9 2_2.0 3_0.1 3_0.2 3_0.3

3_0.4 3_0.5 3_0.6 3_0.7 3_0.8 3_0.9 3_1.0 3_1.1 3_1.2 3_1.3 3_1.4 3_1.5 3_1.6 3_1.7

3_1.8 3_1.9 3_2.0 4_0.1 4_0.2 4_0.4 4_0.5 4_0.6 4_0.7 4_0.8 4_0.9 4_1.1 4_1.2 4_1.4

4_1.5 4_1.6 4_1.7 4_1.8 4_1.9 4_2.0 5_0.1 5_0.2 5_0.3 5_0.4 5_0.5 5_0.6 5_0.7 5_0.8

5_0.9 5_1.0 5_1.1 5_1.2 5_1.3 5_1.4 5_1.5 5_1.6 5_1.8 5_1.9 5_2.0 6_0.2 6_0.3 6_0.5

6_0.6 6_0.7 6_0.8 6_0.9 6_1.1 6_1.2 6_1.3 6_1.4 6_1.5 6_1.7 6_1.8 6_1.9 6_2.0 7_0.1

7_0.2 7_0.3 7_0.4 7_0.5 7_0.6 7_0.7 7_0.8 7_0.9 7_1.0 7_1.1 7_1.2 7_1.3 7_1.4 7_1.5

7_1.6 7_1.7 7_1.8 7_1.9 7_2.0 8_0.1 8_0.2 8_0.3 8_0.4 8_0.5 8_0.6 8_0.7 8_0.8 8_1.0

8_1.1 8_1.2 8_1.3 8_1.4 8_1.5 8_1.6 8_1.7 8_1.8 8_1.9 8_2.0 9_0.1 9_0.2 9_0.3 9_0.4

9_0.5 9_0.6 9_0.7 9_0.8 9_0.9 9_1.0 9_1.1 9_1.2 9_1.3 9_1.4 9_1.5 9_1.6 9_1.7 9_1.8

9_1.9 9_2.0

Figure 1 : Panel with all the extracted outlines from the Coo. Individuals with colours matching the different
grouping factors (from 1 to 9).
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Figure 2 : Plot of a single centred random outline (1_20) and all the shapes plotted in the same windows
(“+” = shape centroid, “<” = first point).

From the plot it was clear that the outlines were neither centred nor aligned. Also, the first point of the
outlines (black arrows) varied along the bottom side (not homologous).
The outlines showed an overall difference in size, rotation and translation.

2.2 Outlines adjustement

On Coo object several families of generic operations can be performed:

• plotting functions (shape graphics, see above)
• geometric operations (e.g. alignments, centring, rescaling etc.)

Usually the outlines become rough due to artefacts during the manual digitization processes, therefore a
specific number of smoothing iterations was selected.

# Outlines smoothing (5 smoothing iterations)
scallop.coo <- coo_smooth(scallop.coo, 5)

2.3 Normalization

The concept of normalization in Elliptical Fourier analysis is central and has long been a matter of trouble.
There are two ways of normalizing outlines. The first, and by far the most used, is to use a “numerical”
alignment directly on the matrix of coefficients. The coefficients of the first harmonic are consumed by this
process but higher-rank harmonics are normalized for size and rotation. This is sometimes referred as using
the “first ellipse”, as the first harmonic defines the best-fitting ellipse in the plane that is consumed during
the normalization.

The problem with this method is that biases can be introduced if your shapes are prone to bad alignments
among all the first ellipses. This is usually easy to observe on the morphospace where upside-down shapes (or
rotated), bizarre clustering and outline deformations can be detected. Most of the time this is due to a poor
normalization on the matrix of coefficients, and the variability observed is caused by the variability in the
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alignment of the first ellipse used for the normalization. The shapes prone to this are usually rounded/ellipsoid
with a strong bilateral symmetry.

When this happen, another method of normalization should be used and shapes are aligned through geometric
operations before the Elliptic Fourier transformation and the latter is performed with no normalization.
With this method shapes are aligned before the transformation with operations performed directly on the
coordinates or on some landmarks along the outline, such as Procrustes alignment on pseudo-landmark.
First point should be made homologous as well to minimize any subsequent problems.

In this case, since the shapes were prone to bad alignments among all the first ellipses, the normalization of
outlines was carried before the Elliptic Fourier Transformation through the following steps:

1. The outlines were first centred (so all the centroid were moved to the same coordinates) and rescaled;
2. Procrustes superimposition was used to obtain a optimal alignment of the outlines with the same

numbers of sampled coordinates (1000 pseudo-landmarks);
3. The starting point was also normalized (made homologous) for the following analysis to minimize

any subsequent bias.

To compare the shapes of two or more objects, they must be first optimally aligned or “superimposed”.
Procrustes superimpositions (PS) aims to minimize the sum of squared distances between similar
landmarks or fixed coordinates by allowing size, rotation and translation to be adjusted.

# Centering outlines
scallop.coo.adj <- coo_center(scallop.coo)
# Re-scaling and point sampling (1000 points)
scallop.coo.adj <- coo_scale(scallop.coo.adj)
scallop.coo.adj <- coo_sample(scallop.coo.adj, 1000)
# Procrustes superimposition
scallop.coo.adj <- fgProcrustes(scallop.coo.adj)
# Normalization of the starting point
scallop.coo.adj <- coo_slidedirection(scallop.coo.adj, "W")
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Figure 3 : Centred shapes and Outline resulting from Procrustes superimposition

5



3 Outline Analysis (Coe objects)

3.0.1 Elliptic Fourier analysis

As described, the method fits separately the X and Y coordinates of an outline projected on a plane. This
approach is very popular since it has great advantages: equally spaced points are not required and the
coefficient can be made intendant of outline position and normalized for size. Four coefficients per harmonic
are obtained with this method and normalisation of coefficients can be performed. They can be also normalised
for the location of the first outline coordinates, so that shapes are individually aligned according to their
first-fitted ellipse.
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Figure 4 : Ptolemaic ellipses which illustrate intuitively the principle behind elliptical Fourier analysis.

3.1 Calibration

The advantage of the Fourier-based approaches is that they can fit virtually any shapes, while the ratio
signal/noise can be quite small for higher levels harmonics. This means that the details described by the
high frequency harmonics are due to many things, e.g. digitalization error, and not to real difference among
shapes.
Therefore, a critical question in outline Fourier analysis is: what is the right number of harmonics? So far,
there is no objective criterion, since it depends uniquely of the scope of the study and the level of details
we want from the analysis. But there are some approaches that can be used to assess the most appropriate
number of harmonics before carrying out a Fourier transformation (e.i. shape recostruction, deviation and
harmoic power analysis).
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3.1.1 Shape reconstruction

This method allowed a first qualitative estimation of the number of harmonics to be used. The approach
consists to observe the reconstructed mean shape for a given range of harmonics. The number of harmonics
providing a satisfactionary, or almost perfect, recostruction of the outline can be selected.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Shape reconstruction

Figure 5 : Mean shape reconstructed (coloured backgrounds) for an increasing number of selected harmonics.

Thirteen - eighteen harmonics provided an almost perfect recostruction of scallop outlines.

3.1.2 Deviation

The idea of deviation approach was to define the best possible fit for a given number of sampled points along
the outline and then calculated the deviation, in terms of euclidean distance, between fits with a different
range of harmonics and the best fit for each of the sampled point.

The deviation was then normalized by the centroid size and represented as “% of the centroid size”. The
most appropiate number of harmonics to select could be the one leading to an avarage deviation of 0.005.
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Figure 6 : Deviation between the best possible fit and a given range of harmonics (8, 10, 15, 18, 21) for each
point (continuous line) and standard error (backgroud); y-axis represents the deviation as % of the centroid
size for every sampled point (x-axis). Dotted lines represent avarage deviation of 0.001 and 0.005 respectively.

For a given number of sampled points along the outline, a sufficiently small avarage deviation (0.005) from
the best fit was provided by 15 harmonics.

3.1.3 Harmonic power

The number of harmonics was also estimated after examining the spectrum of harmonic Fourier power. The
power is considered as a measure of the shape information explained by an harmonic function As the rank of
the harmonic increases the power decreases adding less and less information. The power for a give harmonic
is calculated:

Powern = A2
n +B2

n + C2
n +D2

n

2
where An, Bn, Cn, Dn are the harmonic coefficients for the n harmonic.
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Figure 7 : Cumulative harmonic Fourier power for the scallop outlines.

Twenty-one harmonics gathered the 99% of the total harmonic power. Therefore they gathered the 99% of the
“shape information”, while the remaining 1% should be considered the contribution of harmonics describing
outlines details mainly due to digitization noise.

How many harmonics?

A comparison of the above methods showed that 21 harmonics effectively captured 99% of the total harmonic
power, but the effective number of harmonics providing a reliable shape recostruction and an acceptable
deviation is significantly lower (between 13 and 18 harmonics).

Therefore, 15 harmonics were selected as an optimal compromise in order to provide a reliable shape
recostruction by capturing a sufficiently high proportion of shape information (98% of harmonic power)
and to enhance robustness of statistical analysis (PCA) by reducing significantly the number of descriptors
(harmonic coefficients) calculated for each individual (from 84 - 21 harmonics to 60 - 15 harmonics).

3.2 Elliptic Fourier Transformation (Coe)

Once the right number of harmonics was determined an Elliptic Fourier transformation was performed on
the list of coordinates (Coo) in order to extract the geometric information contained in the outlines. The
transformation was carried out without normalization, since it had already been performed directly on outlines
through geometric operations. When a morphometric method is applied to the Coo object, it is turned into
a matrix of harmonic coefficients. Specifically, for each outline “4 × Number of Harmonics” coefficients
were obtained.
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# Elliptic Fourier analysis (EFT)
scallop.coe <- efourier(scallop.coo.adj, nb.h = 15, norm = FALSE) # without normalization
scallop.coe

## An OutCoe object [ elliptical Fourier analysis ]
## --------------------
## - $coe: 170 outlines described, 15 harmonics
## - $fac: 1 classifier:
## 'Site' (factor 9): 1, 2, 3, 4, 5, 6, 7, 8, 9.

Morphometrics on coordinates produced a Coe object (Collection of COEfficients). The Coe object carried
similarly to a Coo:
* a component names $coe, a matrix of 4 coefficients extracted from 15 harmonics for each of the 170 outlines;
* a component $fac, a list of factors for classification (Site).

In this way, the geometric information contained in the outlines were quantified. Since all the coefficients
could be considered as quantitative variables, measuring the shell shape variability, generic and specific
operations could be applied to the Coe object, as well as statistical methods.
Before multivariate analysis was performed, the results of the elliptic Fourier analysis were explored in order
to check: i) the harmonic contribution to the shape reconstruction and ii) the coefficients variability
along the whole dataset.
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Figure 8 : Harmonic contribution of every harmonic to the shape reconstruction.

The graph showed the contribution of every harmonics (first 6) to the mean shape. The effect of each
harmonic on the mean shape reconstruction was observed when the corresponding coefficients were multiplied
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by amplification factors showing their removal (0), the normal shape they lead to (1), and exaggerated effect
on shape reconstruction (2, 5, 10 times).
While analysis of exaggerated coefficients were very useful to understand the shape contribution of each
harmonic:

• 1st harmonic contributed to describe the whole roundness of the shell;
• 2nd harmonic described the variability in the length of the hinge area;
• 3rd harmonic contributed to the shape (point/rounded) of the shell dorso-ventral extremities

(ventral side and hinge area);
• 4th harmonic described the length (or angle) of the contact between the squared hinge area and

the rounder shell;
• $5ˆ{th} and higher order harmonics showed a broad effect on the whole shell with no evident effects

on identifiable shell parts.

4 Multivariate analysis

Principal component analysis and other multivariate approaches were directly performed on Coe object
(harmonic coefficients considered as quantitative variables of the shape variability). Two approaches were
used:

1. Principal Component Analysis (PCA) to analyse how the shape variability varied with the
quantitative variables;

2. Multivariate Analysis of Variance (MANOVA) to check for significant differences in shape among
populations.

4.1 Principal component analysis (PCA)

A Principal Component Analysis using a Singular Value Decomposition method was carried out on
harmonic coefficients in order to see if the morphological variability of the scallop shells could be used to explain
differences and similarities among the nine scallop populations (sites = 9, n = 170). For each of the individual,
the number of quantitative variables used was equal to “4 Coefficients × Harmonics n◦ × Outlines”.
Specifically, a PCA was carried out to observe how the shape variability (morphospace) was spread across
the quantitative variables (linear combination of harmonic coefficients or PCs), and where the different
population fall on the factorial plane.

# Principal Component Analysis (PCA)
scallop.pca <- PCA(scallop.coe)
scallop.pca

## A PCA object
## --------------------
## - 170 shapes
## - $method: [ efourier analysis ]
## - $fac: 1 classifier:
## 'Site' (factor 9): 1, 2, 3, 4, 5, 6, 7, 8, 9.
## - All components: sdev, rotation, center, scale, x, fac, mshape, method, cuts.

After the eigenvectors were determined and the principal components calculates (PCs=60) the percentage of
the total variance captured by each PC, as well as the cumulative proportions of variance explained were
analysed.
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# Percentage variation explained by each PC
summary(scallop.pca) # first five PCs

## Importance of components:
## PC1 PC2 PC3 PC4 PC5
## Standard deviation 0.0007478 0.0005172 0.0004096 0.0003522 0.0002748
## Proportion of Variance 0.3829200 0.1832000 0.1149200 0.0849200 0.0517100
## Cumulative Proportion 0.3829200 0.5661200 0.6810400 0.7659600 0.8176600

The first two PCs explained the 56.6%, while the first three PCs the 68.1% of the variation among sites. PC1,
PC2 and PC3 provided a reasonably realistic representation of the differences among samples.
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Figure 9 : Contribution to description of shape variability and the scree-plot showing the percentage variance
explained by the first 10 principal components.

Only the first three principal components (PC1, PC2, PC3) were selected to be included in further analysis
because they captured a significant amount (68.1%) of the shape variability.

The Principal Components contribution to the shape description was also represented as the shape
reconstructed for increasing and decreasing values along the PCs (meanvalue, ±2 s.d., ±3 s.d).
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Figure 10 : Graph showing the contribution of the PCs to the shape reconstruction for a given position
along the PC (meanvalue, ±2 s.d., ±3 s.d).

The PCs (linear combination of harmonic coefficient) showed a different contribution to specific part of the
outline:

• the PC1 highly contributed (38.3%) to the variability in the “shape” of the hinge area (variation of
the angle formed from the round shell outline and the hinge area): low value corresponded to more
“squared”" hinge area, while high values showed a more “pointy” hinge;

• the PC2 contributed (18.3%) to the variability of the height of the hinge; low value showed a short
hinge with a more compact shell, while high values showed a well developed hinge with a more elongated
shell;

• the PC3 contributed (11.5%) to the variability of the hinge length, small value showed a short hinge,
while high values the reverse.

All the PCs showed a marked contribution to the shape variability of the hinge shape (angle, height, length).
Therefore the hinge area was selected as the shell “feature” describing the most of the variability among
the nine scallop populations.

The outline variability among the Pecten maximus populations was explored through two-variables scat-
terplots of the PCs showing the morphospace variability with different contribution of PC1-PC2, PC1-PC3
and PC2-PC3.

The PC1-2-3 captured the most of the shape variability and were shown to provide a quite consistent group
distribution on the morphospace.
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Figure 11 : Scatter-plots of PC1-2 showing the spread of groups across the morphospace.
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Figure 13 : Scatter-plots of PC2-3 showing the spread of groups across the morphospace.

The three scatter-plots showed the shape variability of the nine populations across the morphospace. Along
the PC1 (38.3%) the scallop populations were clearly separated, forming distinct clusters on the morphospace.
Specifically, the PC1 separated the populations 1, 2, 7, 9 from 3, 4, 5, 6, while 8 showed intermediate shell
shapes. The groups A and A7-8-9 were the ones at the extremes of the morphospace along the PC1.
PC1 was correlated with the “shape” of the hinge area (negative correlation with the angle formed from the
rounder shell outline and the hinge area); PC2 was positively correlated with the hinge height; while PC3
was positively correlated with the hinge length.
The most important PCs were extracted and used for the following statistical analysis as a measure of the
“morphological variability” of individuals.

# Extracting the principal components (PC1,PC2,PC3)
scallop.pc1 <- scallop.pca$x[,1]
scallop.pc2 <- scallop.pca$x[,2]
scallop.pc3 <- scallop.pca$x[,3]
scallop.df <- cbind(grouping.fac, scallop.pc1, scallop.pc2, scallop.pc3)
scallop.df <- scallop.df[-2]

4.2 Multivariate analysis of variance (MANOVA)

Hypothesis “There is a significant difference of the pricipal components (shape variability) among different
populations”

The principal components measuring the morphological variability among sites, were analysed with a
Multivariate Analysis of Variance (MANOVA) in order to test if there was a significant shape difference
among the nine populations

A multivariate analysis of variance was carried out on the first 15 principal component explaining a cumulative
percentage variation of 95%.
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# MANOVA
scallop.manova <- MANOVA(scallop.pca, "Site", test = "Wilks", retain = 0.95)
scallop.manova

## Df Wilks approx F num Df den Df Pr(>F)
## fac 8 0.11196 3.177 120 1058.8 < 2.2e-16 ***
## Residuals 161
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A MANOVA showed a significant difference in shell shape among the 9 scallop populations (Wilks′ λ =
0.112, approx− F8,161 = 3.18, p < 0.0001).

# MANOVA (without population 1)
scallop.pca.b <- filter(scallop.pca, Site != "1")
scallop.manova.b <- MANOVA(scallop.pca.b, "Site", test = "Wilks", retain = 0.95)
scallop.manova.b

## Df Wilks approx F num Df den Df Pr(>F)
## fac 7 0.13577 2.889 105 828.61 < 2.2e-16 ***
## Residuals 142
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A MANOVA showed a significant difference in shell shape among the 8 scallop populations (Wilks′ λ =
0.136, approx− F7,142 = 2.89, p < 0.0001).

4.3 Conclusions (Multivariate Analysis)

A Principal Component Analysis showed that the first three principal components accounted for the
68.1% of the variation among the 9 scallop populations. A plot of the PC1-2 and PC1-3 showed a clear
separation of the sites 1, 2, 7, 9 from 4, 5, 6, 7,while 8 showed intermediate shell shapes.
The PC1 (38.3%) was positively correlated with the “shape” of the hinge area (variation of the angle formed
from the rounder shell outline and the hinge area), PC2 (18.3%) was positively correlated with the hinge
height, while PC3 (11.5%) showed a positive correlation with the hinge length. Because of the percentage
variations explained, these three variables were considered the ones that contributed the most to the observed
shape differences among samples.

The PC1 - PC2 scatter-plot showed a separation in the morphospace of 1, 2, 3, 7, 9 with more “squared”
hinge areas compared to 4, 5, while 8 showed average hinge shapes. The hinge “shape” was the variable with
the strongest contribution to the PC1. This parameter was the one explaining the highest level of variability
among the scallop populations.
The PC1 - PC3 showed again a consistent separation of the 9 populations on the morphospace (1, 2, 3, 7, 8,
9 and 4, 5), with the population 1 ant 3, 4, 5 at the extreme of the morphospace.

All the PCs showed a marked contribution to the shape variability of the hinge area (angle, height, length).
Therefore the hinge shape (PC1) was selected as the shell parameters with the strongest contribution to
the differences, among the nine scallop populations: 1, 2, 7, 9 with a more “squared” hinge area, and 4, 5
with a more “pointy” hinge.

The morphological differences (expressed through the first 10 PCs) were also tested to be significant among
groups. A MANOVA showed a significant difference in shell shape (first 10 PCs) among the 9 scallop
populations (Wilks′ λ = 0.112, approx − F8,161 = 3.18, p < 0.0001), even excluding the population 1
(Wilks′ λ = 0.136, approx− F7,142 = 2.89, p < 0.0001).
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5 Mean shape analysis

The mean shell shapes for all the scallops (global) and group wise were retrieved directly from the Coe object.
These were analysed after superimposition in order to describe differences between the shell outlines at the
extreme of the morphospace.

# Group wise mean shapes
scallop.mean <- mshapes(scallop.coe, "Site")
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Figure 14-15 : Mean shapes for groups (1 to 9) and extreames of the morphospace.
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5.1 Thin plate splines analysis (TPS)

Deformation grids first proposed by D’Arcy Thompson can be obtained using the Thin Plate Splines
(TPS) mathematical formalization. TPS analysis is based on the use of harmonic coefficients and can be used
to visualise the deformations require to pass from the mean shape to the extreme shapes of a morphospace,
or to describe mean shape differences among different groups.

1
4

Figure 16 : Deformation grid representing the bindings required for passing from the average population 1
shape to 4.

Thin plate splines analysis showed that the main deformations required to pass from the 1 mean shapes to the
4 mean shape were in the hinge area (hinge “shape”, height and length). The population 1 was characterised
by a more “squared”, shorter (height) and longer hinge than 4 that was more “pointy”, taller (height) and
shorter.

The differences between the two mean shapes were characterized by a slight postero-antero asymmetry of the
auricles and adjacent transition from the hinge to the rounder shell outline. Specifically, the right side in 1
was slightly shorter and with a more acute angle than the left one, while for 4 was characterized by marked
asymmetries.

As a result, population 4 mean shape resulted more “elongated” than 1, which was slightly tilted towards the
right (anterior side).
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Data analysis of the shell colour variability (inner left valve) of Pecten maximus among nine populations
collected along the Northern Ireland coastline is reported.

6 Colour anlysis: data description

Colour data of the inner left valve surface from nine P. maximus populations collected along the Northern
Ireland coastline (9 sites, n=180).

Sample Site Area.255 Mean.255 Int.Den.255 Area.110 Mean.110 Int.Den.110 X.Area.110
1 1 9011 132.02 1189600 1794 85.17 152827 0.199
2 1 7525 136.94 1030509 1213 79.77 96784 0.161
3 1 7202 140.25 1010065 806 81.31 65541 0.112
4 1 9530 104.90 999690 5583 76.45 426821 0.586

6.0.1 Variables description

Sample / Site Sample number and scallop population of origin (nine populations from 1 to 9).

Area.255 / Area.110 valve total surface area (grey value from 0 to 255) and coloured surface area (from 0
to 110) in square pixels.

Mean.255 / Mean.110 average pixels grey value for the whole valve and coloured area. This is the sum of
the grey values of all the pixels in the selection (respectively grey values 0-255 and 0-110) divided by
the number of pixels. These values represent the measure of the pigment intensity for the whole valve
surface and the brown coloured area only.

Int.Den.255 / Int.Den.110 respectively the product of Area.255 ×Mean.255, and Area.110 ×Mean.110.

X.Area.110 proportion of coloured surface area over the total valve area: Area.110
Area.255

7 Descriptive statistics

Scallops were characterized by marked inter and intra-population differences in the colour of the inner flat
(left) valve. This brown colour was characterized by a strong variability in both the colour intensity and
surface area. The variability of the amount of brown colour could be described through the variability of
the mean intensity and the proportion of coloured area:
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Figure 1 : Proportion of coloured area (small / wide) and mean colour intensity (dark / bright) variability
for each individual.
Four general groups can be identified, based on the proportion of coloured area and the colour intensity:

1. Individuals with a small and bright coloured area.
2. Individuals with a small and dark coloured area.
3. Individuals with an wide and bright coloured area.
4. Individuals with an wide and dark coloured area.

These two measurements (mean colour intensity and proportion of coloured area) can be used to create an
index to quantify the brown colour for a given colour area.
The Mean × Area Index quantifies the brown coloured area for a given colour intensity and surface area.

# Creating a new index to compare the colour variability among populations
scallop.colour$Mean.X.Area.110 <- scallop.colour$Mean.110 * scallop.colour$X.Area.110
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Figure 2 : Box plots of Mean.110, X.Area.110* and Mean.X.Area.110 Index** for the collection sites.
The Mean × Area Index differed among the nine scallops population:
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7.1 Data normality and homoscedasticity

The data were checked for normality and homoscedasticity with histograms, box-plot and Q-Q plot.
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The index was shown to be not normally distributed with a strong positive skew. A square-root transformation
was applied in order to make the data more normally distributed and the variances more homogeneous.
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Figure 3 : Checking data normality before and after the square-root transformation.
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The data distribution was also checked for symmetry before and after the transformation.

# Checking distribution simmetry (relative mean and median)
library("boot")
# non-transformed data
median(scallop.colour$Mean.X.Area.110); mean(scallop.colour$Mean.X.Area.110)

## [1] 15.42354
## [1] 17.83834

Before the transformation, the samples median and mean were respectively 15.4 and 17.84, showing a
negatively skewed distribution (median higher than mean).

# Square-root transformed data
median(sqrt(scallop.colour$Mean.X.Area.110)); mean(sqrt(scallop.colour$Mean.X.Area.110))

## [1] 3.927281
## [1] 3.936383

After a square-root transformation, the median and mean were 3.93 and 3.94, showing a more symmetric,
therefore a more normal, distribution.

8 Colour Index

Colour Index =
√
Mean intensity × Coloured area (%)

The Colour Index (CI) quantifies the colour on a shell surface for a given colour intensity and surface area.
This is used to express the variability of the brown colour of the inner scallop valve.

An high value of the index indicates individuals with a wide and dark coloured area, small values refers to
small and brightly coloured shells, while intermediate values indicates intermediate combinations of intensity
and area, such as a small and dark or a wide and bright coloured surface (see graph above).

# Creation of the the "Colour Index"
scallop.colour$Colour.Index <- sqrt(scallop.colour$Mean.X.Area.110)
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Figure 4 : Variability of the Colour Index among the nine scallop populations.

8.1 One-way ANOVA

Hypothesis “There is a difference in the Colour Index among the nine scallop populations 1-9.”

The data were analysed with a one-factor Analysis of Variance in order to test if there was a significant
difference of the Colour Index among the nine scallop populations, with and without population 1.

# One-way ANOVA colour
colour.aov <- aov(Colour.Index ~ Site, data = scallop.colour)
summary(colour.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## Site 8 87.7 10.960 5.61 2.55e-06 ***
## Residuals 171 334.1 1.954
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A one-way ANOVA showed a significant difference of the Colour Index among the nine populations
(F8,171 = 8.25, p < 0.001, n = 180).
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# One-way ANOVA colour
colour.aov <- aov(scallop.colour$Colour.Index ~ scallop.colour$Site, subset = (Site != "1") )
summary(colour.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## scallop.colour$Site 7 36.52 5.217 2.598 0.0147 *
## Residuals 152 305.18 2.008
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A one-way ANOVA still showed a significant difference of the Colour Index without population 1 (F7,152 =
2.59, p = 0.015, n = 170).
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Figure 5 : Checking assumptions of residuals normality, homoscedasticity and absence of biased observations.

The one-way ANOVA model met the model assumptions of normality, homogeneity of variance and absence
of excessively influential observations.

24



9 Colour intensity and area

Analysis of the variability of the mean colour intensity and colour surface area among the nine scallop
populations. As already defined above.
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Figure 6 Box plots of the mean grey value and the proportion of the coloured area.

9.1 Colour intensity analysis

Hypothesis “There is a difference in the mean colour intensity among different populations.”

The data were checked for normality with histograms, box-plot and Q-Q plot; and homogeneity of variance
through the analysis of the ratio highest/smallest variance.
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Figure 7 : : Checking assumptions of std. residuals normality, homoscedasticity and absence of biased
observations.

The colour intensity data were not normally distributed and they were characterized by a strong negative
skew. The variances also looked heterogeneus.
In order to make the data distribution more normal the effect of log10, square-root and inverse transformations
were checked.
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Figure 8 : Checking assumptions of std. residuals normality, homoscedasticity and absence of biased
observations for the three different transformations.
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A log10, square-root and inverse transformations did not make the data distribution more normal.
Therefore the variability of the mean grey value among the nine sites was analysed with a Kruskall-Wallis
rank sum Test (a non-parametric test for multiple independent samples).

# Kruskall-Wallis rank sum Test Mean.110
# non-parametric comparison among three or more independant samples
kruskal.test(Mean.110, Site, data = scallop.colour)

##
## Kruskal-Wallis rank sum test
##
## data: Mean.110 and Site
## Kruskal-Wallis chi-squared = 9.5007, df = 8, p-value = 0.3018

A Kruskall-Wallis rank sum Test showed that there was a non-significant difference in the mean grey
value among the nine scallop populations (χ2

8,171 = 9.5, p = 0.302, n = 180).

9.2 Colour area data analysis

Hypothesis “There is a difference in the colour surface area among different populations.”

The data were checked for normality with histograms, box-plot and Q-Q plot; and homogeneity of variance
through the analysis of the ratio highest/smallest variance.

Histogram of X.Area.110

X.Area.110

F
re

qu
en

cy

0.0 0.2 0.4 0.6

0
10

20
30

40
50

0.
0

0.
2

0.
4

0.
6

Boxplot X.Area.110

X
.A

re
a.

11
0

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 9 : Checking assumptions of std. residuals normality, homoscedasticity and absence of biased
observations..

The colour intensity data were not normally distributed and they were characterized by a positive skew. The
variances looked heterogeneus.
In order to make the proportional data distribution more normal a arcsin transformation was used.
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Histogram X.Area.110
 (arcsin)
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Figure 10 : Checking assumptions of std. residuals normality, homoscedasticity and absence of biased
observations after an arcsin transformation.

A arcsin transformation made the data distribution more normal, therefore a parametric test was used.

The data were analysed with a one-factor ANOVA in order to test if there was a significant difference of
the colour surface area among the nine scallop populations.

# arcsin transfromation
scallop.colour$arcsin.X.Area.110 <- 57.295*asin(sqrt(X.Area.110))
# One-way ANOVA X.Area.110
X.Area.110.aov <- aov(arcsin.X.Area.110 ~ Site, data = scallop.colour)
summary(X.Area.110.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## Site 8 5672 709.0 5.74 1.78e-06 ***
## Residuals 171 21122 123.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

A one-way ANOVA showed a significant difference of the colour surface area (arcsin) among the nine sites
(F8,171 = 5.74, p < 0.001, n = 180).
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The ANOVA model met the model assumptions of normality, homogeneity of variance and absence of
excessively influential observations.
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Figure 11-12 : Checking assumptions of residuals and std. residuals normality, homoscedasticity and absence
of biased observations.

The standardised residuals (error) were normally distributed and homoscedastic.
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10 Conclusions (Colour analysis)

A one-way ANOVA showed a significant difference of the Colour Index among the nine populations
(F8,171 = 8.25, p < 0.001, n = 180) and without population 1 (F7,152 = 2.59, p = 0.015, n = 170).

A Kruskall-Wallis rank sum Test showed that there was a non-significant difference in the mean grey
value among the nine scallop populations (χ2

8,171 = 9.5, p = 0.302).

A one-way ANOVA showed a significant difference of the colour surface area (arcsin) among the nine sites
(F8,171 = 5.74, p < 0.001).

There was a significant difference in the Colour Index, of the inner flat valve, among the nine scallop
populations (1-9) (one-way ANOVA, F8,171 = 8.25, p < 0.001, n = 180).
This difference in the Colour Index (amount of brown colour on the shell surface) could be mainly explained
by a significant difference of the colour surface area among the populations (one-way ANOVA, F8,171 =
5.74, p < 0.001), rather than by a real difference in the mean colour intensity (Kruskall-Wallis rank sum
Test, χ2

8,171 = 9.5, p = 0.302). Therefore, the differences among the nine populations were caused by a
difference in the proportion of the brown-coloured surface area and not by a real difference in the mean colour
intensity.
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