2016-BJP-0574-RP.R1

Online Supporting information

Role of inducible nitric oxide synthase in endothelium-independent relaxation to raloxifene in rat aortas

Chi Ming Wong ^{a,b,c*}, Chak Leung Au^c, Suk Ying Tsang ^d, Chi Wai Lau^c, Xiaoqiang Yao^c, Zongwei Cai^{a,b}, Arthur Chi-Kong Chung^{a,b*}

^a Partner State Key Laboratory of Environmental and Biological Analysis and Department of Chemistry, Hong Kong Baptist University (HKBU), Hong Kong, China

^b HKBU Institute for Research and Continuing Education, Shenzhen, China

[°] School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China

^d School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China

Running title: Inducible nitric oxide synthase in raloxifene-induced vasorelaxation

FIGURE LEGENDS FOR ONLINE SUPPORTING INFORMATION

Figure S1. A, Concentration-dependent inhibition of U46619-induced contractions in endothelium-intact rat aortic rings by raloxifene (Rf) (n=6-8). B, pEC₅₀ values for U46619-induced contraction in the absence and presence of raloxifene (0.1-10 μ M, n=6-8). C, Similar inhibitory effects of 1 μ M raloxifene on U46619-contracted endothelium-intact (+Endo) and –denuded aortic rings (-Endo) (n=7-9). D, pEC₅₀ values obtained in (C). Concentration-response curves for U46619-induced contractile responses in rat endothelium-intact aortic rings. Raloxifene reduced the U46619 contraction in the absence and presence of 100 μ M L-NAME (E) or 3 μ M ODQ (G). Results are mean ± SEM of 6-9 rings from different rats. F & H, pEC₅₀ values obtained in E & G. Contractions were normalized as percentage of 60 mM K⁺-induced tension. Statistical differences are indicated by between different treatment groups (* P < 0.05, ** P < 0.01, *** P < 0.001). NS indicates no significant difference.

Figure S2. The steady-state maximum relaxation to raloxifene (Rf, 1 μ M) in the U46619-contracted endothelium-intact (+endo) and endothelium-denuded (-endo) aortic rings. Statistical differences (P < 0.001) are indicated by ^a between vehicle control and raloxifene group in endothelium-intact rings, and ^b between vehicle control and raloxifene group in endothelium-denuded rings. Results are mean \pm SEM of 6-7 rings from different rats.

Figure S3. A, Recordings showing time-dependent relaxant responses to 10 μ g/ml LPS in endothelium-denuded aortic rings in control and in the presence of 1 μ M ICI 182,780. B, No inhibitory effects of ICI 182,780 on LPS-induced aortic relaxation. C, The maximal relaxant effect of LPS in the absence and presence of ICI 182,780. Statistical differences are indicated by ** (P < 0.01) or *** (P < 0.001) between vehicle control and treatment groups. Results are mean \pm SEM of 6 rings from different rats. NS indicates no significant difference.

Figure S4. A, Recordings showing time-dependent relaxant responses to 10 μ g/ml LPS in endothelium-denuded aortic rings in control and in the presence of 3 μ M PDTC. B, Inhibitory effects of PDTC on LPS-induced aortic relaxation. C, The maximal relaxant effect of LPS in the absence and presence of PDTC. Statistical differences are indicated by *** (P < 0.001) between vehicle control and LPS group, and ^a (P < 0.05) between LPS and treatment group. Results are mean ± SEM of 6 rings from different rats.

Figure S5. A, Inhibitory effects of 100 μ M L-NAME or 100 μ M AMT-HCl on LPS (10 μ g/ml)-induced relaxation. B, Inhibitory effect of 10 μ M actinomycin D or 10 μ M cycloheximide on LPS-induced relaxation. C, The maximal relaxant effect of LPS in the absence and presence of L-NAME, AMT-HCl, actinomycin D and cycloheximide. Statistical differences are indicated by *** (P < 0.001) between vehicle control and LPS group, and ^a (P < 0.05) between LPS and other treatment groups. These experiments were performed on endothelium-denuded aortic rings. Results are mean \pm SEM of 5-6 rings from different rats.

Figure S6. Comparison of relaxations induced by 1 μ M raloxifene (A) and 100 nM SNP (B) in endothelium-denuded aortic rings following different pharmacological treatments. Statistical differences are indicated by * (P < 0.001) between control and treatment groups. Results are mean ± SEM of 6-11 rings from different rats.

Figure S7. A, The time-course for the relaxant response induced by raloxifene (1 μ M), 17 β -estradiol (E2, 1 and 10 μ M) and tamoxifen (Tam, 1 and 10 μ M) in the U46619-contracted endothelium-denuded aortic rings. B, The steady-state maximum relaxation to raloxifene, 17 β -estradiol and tamoxifen. Statistical differences are indicated by between vehicle control and other treatment groups (*** P < 0.001). Results are mean ± SEM of 5-6 rings from different rats. NS indicates no significant difference.

Figure S8. A, Inhibitory effects of 100 µM AMT-HCl or 10 µM cycloheximide on (10)17β-estradiol µM)-induced relaxation in the U46619-contracted endothelium-denuded aortic rings. B. The maximal relaxant effect of 17B-estradiol in the absence and presence of AMT-HCl and cycloheximide. C, Inhibitory effect of 100 μM AMT-HCl or 10 μM cycloheximide on tamoxifen (10 μM)-induced relaxation. D, The maximal relaxant effect of tamoxifen in the absence and presence of AMT-HCl and cycloheximide. Statistical differences are indicated by *** (P < 0.001) between vehicle control and 17 β -estradiol or tamoxifen group, and ^a (P < 0.05) between 17β -estradiol or tamoxifen and other treatment groups. Results are mean \pm SEM of 5-6 rings from different rats.