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Supporting Information
This document contains additional information for the “Critical Assessment
of Small Molecule Identification 2016: Automated Methods” as follows:
o Additional Methods: MS-FINDER and MetFrag
e Additional Results: Retention Time, Comparison with Category 1, Cluster
Plots without Training Data
e Selected Mass Spectra — Challenging Challenges
e Additional Plots: Number of Candidates versus Rank, Visualizing
Participant Raw Scores

Additional Methods
MS-FINDER
Team Kind (Tobias Kind, Hiroshi Tsugawa, Masanori Arita and Oliver Fiehn)
submitted entries to Category 3 using the freely available MS—FINDER, version
1.60 [1, 2], MS/MS searching and structure database lookup for confirmation (entry
MS-FINDER+MD). The full methods (summarized in the main text) are as follows:
First, molecular formulas and structures were determined with MS-FINDER,
which was originally developed for the theoretical assignment of fragment sub-
structures to mass spectra. Generally MS-FINDER (http://prime.psc.riken.
jp/Metabolomics_Software/) determines molecular formulas using Lewis and Se-
nior checks as well as isotopic abundance information from the precursors ions.
This is required to restrict the search space. In this case only MS/MS spectra
were provided, meaning molecular formulas could only be calculated with less accu-
racy. However MS-FINDER utilizes an internal formula database, which prioritizes
existing formulas from large chemical databases over less common formulas. The
elements C, H, N, O, P, S, F, Cl, Br, I were included (Si was excluded) and 5 ppm
mass accuracy for MS1 and 20 ppm for MS2 were assumed. The top 5 molecular
formulas were regarded for structure queries. Each formula was then queried in
the CASMI candidate lists as well as an internal MS-FINDER structure database.
Whereas the CASMI candidate list contained up to 8000 compounds per challenge,
the internal MS-FINDER, database was compiled from thirteen major biological
and environmentally relevant databases (see section Teamn Vaniya below for more
details) and was used to prioritize structure lookups. A tree-depth of 2 and rela-
tive abundance cutoff of 1% as well as up to 100 possible structures were reported
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with MS-FINDER. The score was calculated by the in silico fragmenter, which
simulated the alpha-cleavage of linear chains with the consideration of hydrogen
rearrangement (HR) rules up to three chemical bonds. Multiple bonds (double-,
triple-, or cycles) were modeled as penalized single bonds in which hydrogen rear-
rangements were also utilized. The final score was calculated by the integration of
mass accuracy, isotopic ratio, product ion assignment, neutral loss assignment, bond
dissociation energy, penalty of fragment linkage, penalty of HR rules, and existence
of the compound in the internal MS-FINDER structure databases.

Secondly, MS/MS search was used for further confirmation via the NIST MS
Search GUI (http://chemdata.nist.gov/) together with major MS/MS databases
such as NIST [3], MONA (http://mona.fiehnlab.ucdavis.edu/), ReSpect [4]
and MassBank [5]. The precursor was set to 5 ppm and product ion search tolerance
to 200 ppm. Around 100 out of the 208 candidates had no MS/MS information.
For these searches that gave no MS/MS results, a simple similarity search without
precursor information was also used, or the precursor window was extended to 100
ppm.

Thirdly, those results that gave overall low hit scores were also cross-referenced
with the STOFF-IDENT database of environmentally-relevant substances [6, 7] to
obtain information on potential hit candidates. This step was taken because the

training set consisted of mostly environmentally relevant compounds.

Team Vaniya (Arpana Vaniya, Stephanie N. Samra, Sajjan S. Mehta, Diego Pe-
drosa, Hiroshi Tsugawa and Oliver Fiehn) participated in Category 2 using MS-
FINDER [1, 2] version 1.62 (entry MS-FINDER).

MS/MS spectra were uploaded to MS-FINDER in .msp file format. Precursor m/z,
ion mode, mass accuracy of instrument, and precursor type were used as metadata
in each file header to populate the fields in MS-FINDER. Further parameter settings
were: tree depth of 2, relative abundance cut off of 1 and maximum report number
of 100. The default formula finder settings were used: Lewis/Senior rules check, 5 %
isotope ratio tolerance, element probability check, element ratio check at common
range (99.7 %), elements selected O, N, S, P, F, Cl, Br, I, up to 100 reported results.
The only difference to the default values was the mass tolerance, which was set to
45 ppm mass accuracy as given by the CASMI organizers.

MS-FINDER  typically retrieves candidates from an Existing Structure Database
(ESD) file located in the Resources sub-folder in the main MS-FINDER folder. The
original ESD file contained entries such as title (name), InChIKey, short InChIKey
(the first block), PubChem CID, exact mass, formula and SMILES as well as addi-
tional database identifiers compiled from 13 databases: HMDB [8, 9], YMDB [10],
PubChem [11], SMPDB [12], UNPD [13], ChEBI [14], PlantCyc [15], BMDB [16],
KNApSAck [17], FooDB [18], ECMDB [19], DrugBank [20] and T3DB [21].

However, as candidates were provided with CASMI, all structure databases used
in MS-FINDER were disabled prior to analysis. For each of the 208 challenges the
ESD file was replaced with a formatted ESD file containing information from the
candidate lists provided by the CASMI organizers. This ensured that all previous
structural information was removed. The ESD files were sorted by mass (least to
greatest) to satisfy the binary search criteria used in MS-FINDER. The headers in
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the ESD files were kept identical, all PubChem CID entries were changed to -1,
all HMDB entries were changed to a dummy database identifier for each candidate
compound starting with AV001 to AV0On, (where n was the maximum number of
candidates for that challenge), while all other database identifiers were changed to
N/A. Example original and formatted ESD files are shown in Additional File 2,
Tables A1 and A2 respectively. All local databases were disabled under the param-
eter settings expect for HMDB; the PubChem online setting was set to “never use
it”. A batch search of the challenge MS/MS against the challenge candidate list (in
the ESD) was performed on the top 500 candidates, to avoid long computational
run times. Up to 500 top candidates structures were exported as a text file from
MS-FINDER. Scores for automatically matching experimental to virtual spectra
were ranked based on mass error, bond dissociation energy, penalties for linkage
discrepancies or violating hydrogen rearrangement rules. Final scores and multiple
candidate SMILES were reported for 199 challenges for submission to CASMI 2016.
Nine challenges could not be processed due to time constraints.

MetFrag

Team Ruttkies  (Christoph Ruttkies, Emma Schymanski and Steffen Neumann)
submitted internal entries, such that MetFrag2.3 [22] could be evaluated alongside
the other methods outside the actual competition, since the organizers could not
participate in the contest itself. These entries were also used to investigate the
influence of metadata on the competition results. MetFrag command line version
2.3 (available from http://msbi.ipb-halle.de/~cruttkie/metfrag/MetFrag?2.
3-CL. jar) was used to process the challenges, using the MS/MS peak lists and the
ChemSpider IDs (CSIDs) of the candidates provided. Several entries were submit-
ted, using different settings as outlined below.

In Category 2, the MetFrag submission consisted of the MetFrag fragmentation
approach only. The parameters were set to mzppm = 5, mzabs = 0.001 and tree
depth = 2. The adduct type was set to [M+H]" (positive) and [M—H]~ (negative
mode). Unbound candidates (e.g. salts) and those containing non-standard isotopes
were filtered out and not considered in the final scoring.

The entry MetFrag+CFM took the results lists from MetFrag and used these as
input for CFM-ID [23] version 2 to retrieve an additional score that was used to
calculate the final score as described in [22]. The score weights (w) were optimized
on the available training data and chosen using 100 randomly drawn combinations;
the combination yielding the highest number of correct Top 1 ranks in the training
set (where the answer was known) was selected, such that wnietrag = 0.5793923
and wepnm.p = 0.4206077. The weighted sum of the scores was used to create the
scores in the final candidate list.

For Category 3, additional metadata was added to the Category 2 entries. Reten-
tion time (RT) and reference information (Refs) was added to the MetFrag results
to form the MetFrag+RT+Refs entry. For the linear retention time model, reten-
tion times from the negative and positive training set were used together with the
log P values calculated with the CDK [24]. The correlation is shown in Figure 1. The
ChemSpiderReferenceCount was retrieved from the ChemSpider database using the
CSIDs given [25]. The best weight combination was chosen out of 1000 randomly
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drawn weights (consistent with the above) to yield: Positive: waetrrag = 0.4260182,
wrr = 0.2206725 and wgrets = 0.3533094 and negative: wyietFrag = 0.3982628,

wrr = 0.2321251 and wgess = 0.3696120.

logP
4
I

RT

Figure 1 Retention Time Model used in CASMI. Data was taken from the CASMI training set;
the correlation coefficient is 0.684. See text for details.
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Figure 2 The absolute deviation of the logP (y) for each candidate per challenge (x) from the
value predicted from the retention time (positive challenges only). The candidate logPs are
shown in greyscale (intensity of the greyscale indicates how many entries with this value), the log
P of the correct candidate is shown by the green cross.
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The submission MetFrag+CFM+RT+Refs used the fragmenter scores from the
MetFrag+CFM entry and added the reference and retention time information as
above. The best weight combination on the training data, out of 1000 ran-
domly drawn weights, was used, yielding: (positive): WMetFrag = 0.43807140,
wrr = 0.09885304, wgrers = 0.33431292 and wepnm.ip = 0.12876264. For negative:
WMetFrag = 0.38728278, wrr = 0.19584541, wress = 0.32712506 and wcpm-ip =
0.08974675.

The submission MetFrag+CFM+RT+Refs+MoNA used all the scores mentioned above,
with the addition of a structure-spectrum similarity score based on the MetFu-
sion approach [26]. The LC-MS/MS library was downloaded January 2016 from
the MassBank of North America (MoNA, http://mona.fiehnlab.ucdavis.edu/
spectra/querytree). The best of 1000 randomly drawn weights was used (cho-
sen consistent with above) as follows: Positive: WMetFrag = 0.16212070, wrr =
0.08104633, WRefs = 0.25308415, WCFM-ID = 0.06701364, WMetFusionMoNA —
0.43673519 and negative: WietFrag = 0.13587813, wrr = 0.09295245, wrefs =
0.09457464, werpm-ip = 0.17781439, wnetFusionMoNa = 0.49878039.

Additional Results

Predicted Retention Time/logP Results

The distribution of predicted retention times, with the placement of the correct
candidate for the positive challenges, is shown in Figure 2.

Comparison with Results from Category 1

Challenges 10 — 19 in Category 1 were also present among the Category 2 and 3
challenges, as given in Table 1 in the main text. The results for these challenges,
separated by category, are visualized in Figure 3 (positive mode challenges, 10—
14) and Figure 4 (negative mode challenges, 15-19). The median rank, number of
entries and the range are given in Table 6 in the main article.

Additional Clustering Results - Challenges Absent from All Training Sets

Heat maps from the clustering of all participants and challenges where the correct
answer was not present in any CASMI challenge (44 challenges in positive mode,
43 in negative mode) are given in Figures 5 (negative mode) and 6 (positive mode).
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CASMI Categories 1, 2 and 3, Challenges 10-14 Positive Mode
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Figure 3 Comparison of Category 1, 2 and 3 entries, Challenges 10 to 14 (Positive mode).

CASMI Categories 1, 2 and 3, Challenges 15-19 Negative Mode
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Figure 4 Comparison of Category 1, 2 and 3 entries, Challenges 15 to 19 (Negative mode).

Note the logarithmic y scale.
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Figure 5 Heat Map of Negative Mode CASMI Challenges not in any training set. Both
Category 2 (green labels on the right) and 3 (blue labels) participants are included. Missing values
(correct solution missed, or no submission for a challenge) were replaced with the number of
candidates for that challenge. Ranks are log-scaled from good (blue) to poor (red). Team Diihrkop
was omitted as they did not submit for any challenge, while CSI I0KR_AR and CFM_retrain were
omitted as these were identical with their original submissions. An interactive version of this plot
is available at http://www.casmi-contest.org/2016/heatmapNegCat2noTrain.html.
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Figure 6 Heat Map of Positive Mode CASMI Challenges not in any training set. Both Category
2 (green labels on the right) and 3 (blue labels) participants are included. Missing values (correct
solution missed, or no submission for a challenge) were replaced with the number of candidates
for that challenge. Ranks are log-scaled from good (blue) to poor (red). An interactive version of
this plot is available at http://www.casmi-contest.org/2016/heatmapPosCat2noTrain.html.
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Selected Mass Spectra — Challenging Challenges

Selected spectra for the challenging challenges are as follows:

e Figure 7: Challenge 207 (Challenge 14, Category 1): Abietic acid.
e Figure 8: Challenge 36: Propoxycarbazone.

e Figure 9: Challenge 41: Monobenzyl phthalate.

e Figure 10:
e Figure 11:
e Figure 12:
e Figure 13:
e Figure 14:
e Figure 15:
e Figure 16:

Figure 17:
Figure 18:
Figure 19:
Figure 20:

Challenge 152:
Challenge 202:
Challenge 178:
Challenge 131:
Challenge 126:
Challenge 119:
Challenge 184:
Challenge 168:
Challenge 199:

Ethofumesate.

Pendimethalin.

Michler’s ketone.
5-Methyl-1-(propan-2-yl)-1H-indole-2,3dione.
2-(4-Morpholinyl)benzothiazole.
6-Bromo-2(1H)-quinolinone.
Medroxyprogesterone.

Chlorpropham.

Lauric isopropanolamide.

Challenge 92: 2’-Methylacetanilide.

Challenge 197:

10-Azabenzo[a]pyrene.
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Figure 7 Challenge 14 (Category 1) = Challenge 207 (Category 2 and 3): Abietic acid. Despite
the informative mass spectrum and reasonable candidate numbers (581), no method ranked the
correct answer in first place. At least one additional substance (isopimeric acid) is very similar,

which may explain the results in part.
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Figure 8 Challenge 36 (Categories 2 and 3): Propoxycarbazone. The relatively uninformative
spectrum for a complicated structure explains why the machine learning approaches may have
struggled to have good results. This may also be out of the domain of the training sets, as it is a
substance more often measured in positive mode. The fragments make sense, but the spectrum
has a relatively low information content for such a large molecule.
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Figure 9 Challenge 41 (Categories 2 and 3): Monobenzyl phthalate. Phthalate spectra are
typically dominated by rearrangement reactions; the combinatorial fragmenters struggled with this
spectrum but machine learning and metadata approaches performed well, indicating that these
substances are well represented in the public domain.
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Figure 10 Challenge 152 (Categories 2 and 3): Ethofumesate. Most Category 2 approaches
struggled with this challenge, maybe because of the one dominant peak.
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Figure 11 Challenge 202 (Categories 2 and 3): Pendimethalin. Most Category 2 approaches
struggled with this challenge, maybe because of only two dominant peaks and the nitro groups,

which are prone to rearrangements.
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Figure 12 Challenge 178 (Categories 2 and 3): Michler’s ketone. Most Category 2 approaches
struggled with this challenge, likely because of the one dominant non-precursor peak (as the

molecule is symmetric).
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Figure 13 Challenge 131 (Categories 2 and 3): 5-Methyl-1-(propan-2-yl)-1H-indole-2,3dione.
Most approaches struggled with this challenge, likely because of the one dominant peak

corresponding with the isopropyl group loss.
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Figure 14 Challenge 126 (Categories 2 and 3): 2-(4-Morpholinyl)benzothiazole. Most
approaches struggled with this challenge, maybe because of small peaks and aromatic nitrogens.
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Figure 15 Challenge 119 (Categories 2 and 3): 6-Bromo-2(1H)-quinolinone. Most approaches
struggled with this challenge, which is not surprising considering the uninformative spectrum, with
few, low intensity peaks where the main peak is a Br loss.
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Figure 16 Challenge 184 (Categories 2 and 3): Medroxyprogesterone. The machine learners did
well, metadata failed. Many peaks are present, but two dominate. This is a typical steroid
spectrum and there are likely to be many similar structures.
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Figure 17 Challenge 168 (Categories 2 and 3): Chlorpropham. The machine learners did well,
but metadata failed despite a nice spectrum and it is ranked 2nd in ChemSpider by references.
Involves breaking of an amide bond.
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Figure 18 Challenge 199 (Categories 2 and 3): Lauric isopropanolamide. The machine learners
did well, metadata failed. There are many structures with similar numbers of references in
ChemSpider. This also involves a breaking of an amide bond.
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Figure 19 Challenge 92 (Categories 2 and 3): 2'-Methylacetanilide. The machine learners did
well, metadata failed. Spectrum is dominated by one main peak. Again this involves an amide
bond, but many structures have these present.
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Figure 20 Challenge 197 (Categories 2 and 3): 10-Azabenzo[a]pyrene. The machine learners did
well, metadata failed. The spectrum is very uninformative, diagnostic for this substance class -
this backs up the ability of the machine learners to learn properties.

Additional Plots

Number of Candidates versus Rank

Figure 21 shows the number of candidates for each challenge, ordered by the number
of candidates versus the results for all CASMI entries (during and post—contest).
The red line shows the number of candidates, the light blue line the median rank, the
dark blue line the smoothed mean rank (over all entries) and dark blue the smoothed
median rank. The “X”s show the number of submissions where the candidate was
ranked first (Top 1) per challenge, which is a maximum of 18 (shown by the dotted
line at y=18). The thicker black line shows the smoothed Top 1 results. The coloured
dots show the rank of the correct candidate for each challenge (legend to the left). All
in all this plot shows that there is little relationship between the candidate numbers
and the rank, in fact the lowest Top 1 counts and highest median and mean ranks
were observed for the middle range of candidate numbers (between 200 and 1000
candidates). A trend is observed for low candidate numbers, as would be expected,
but surprisingly the smoothed median rank is lower at higher candidate numbers.

Visualizing Participant Raw Scores

The following plots show all candidate scores as submitted by the participants,
per challenge for one submission per participant and category to CASMI. These
were chosen to best demonstrate the results and reveal great differences in the way
the methods treat the raw data. The arrangement was chosen to group given plots
together. All scores are shown as small dots, the correct score is shown with a larger
green dot. All candidate scores above the correct solution are shown in red, and the
highest score as blue dot. If the top score corresponds to the correct solution in
green, there are no red dots, and also no blue circle.

The selected plots are, in order (Category 2 only first, followed by the methods
that participated in both categories, with Category 2 submission above Category 3):
Figure 22: MAGMa+, Figure 23: CSI:I0KR_A, Figure 24: CSI:FID, Figure 25: CFM_orig,
Figure 26: CFM_retrain+DB, Figure 27: MS-FINDER, Figure 28: MS-FINDER+MD, Fig-
ure 29: MetFrag, Figure 30: MetFrag+CFM+RT+Refs+MoNA.
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Figure 21 The number of candidates per challenge (ordered by number of candidates) versus the
results for all CASMI 2016 entries. See text for details.
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Figure 22 Raw scores per challenge for MAGMa+. Green dot: score of correct candidate, blue dot:
highest score (if not green), candidates with scores above correct candidate are red, others black.
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Figure 23 Raw scores per challenge for CSI:I0KR_A. Green dot: score of correct candidate, blue
dot: highest score (if not green), candidates with scores above correct candidate are red, others
black. Note: 0.5 was added to all raw scores to have positive values. The parameter o controls the
raw score variance and was tuned seperately for positive and negative mode. The discrepancy in
the scores may be due to the different amount of training data available for each mode.
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Figure 24 Raw scores per challenge for CSI:FID. Green dot: score of correct candidate, blue dot:
highest score (if not green), candidates with scores above correct candidate are red, others black.
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Figure 25 Raw scores per challenge for CFM_orig. Green dot: score of correct candidate, blue dot:
highest score (if not green), candidates with scores above correct candidate are red, others black.
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Figure 26 Raw scores per challenge for CFM_retrain+DB. Green dot: score of correct candidate,
blue dot: highest score (if not green), candidates with scores above correct candidate are red,
others black.
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Figure 27 Raw scores per challenge for MS-FINDER. Green dot: score of correct candidate, blue
dot: highest score (if not green), candidates with scores above correct candidate are red, others

black.
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Figure 28 Raw scores per challenge for MS-FINDER+MD. Green dot: score of correct candidate, blue
dot: highest score (if not green), candidates with scores above correct candidate are red, others

black.
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Figure 29 Raw scores per challenge for MetFrag. Green dot: score of correct candidate, blue dot:
highest score (if not green), candidates with scores above correct candidate are red, others black.
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Figure 30 Raw scores per challenge for MetFrag+CFM+RT+Refs+MoNA. Green dot: score of correct
candidate, blue dot: highest score (if not green), candidates with scores above correct candidate
are red, others black.
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