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SUMMARY

The fluorescence microscopy methods presently
used to characterize protein motion in cells infer
protein motion from indirect observables, rather
than measuring protein motion directly. Operation-
alizing these methods requires expertise that can
constitute a barrier to their broad utilization. Here,
we have developed PIPE (photo-converted intensity
profile expansion) to directly measure the motion
of tagged proteins and quantify it using an effective
diffusion coefficient. PIPE works by pulsing photo-
convertible fluorescent proteins, generating a
peaked fluorescence signal at the pulsed region,
and analyzing the spatial expansion of the signal.
We demonstrate PIPE’s success in measuring ac-
curate diffusion coefficients in silico and in vitro
and compare effective diffusion coefficients of
native cellular proteins and free fluorophores in vivo.
We apply PIPE to measure diffusion anomality in
the cell and use it to distinguish free fluorophores
from native cellular proteins. PIPE’s direct measure-
ment and ease of use make it appealing for cell
biologists.

INTRODUCTION

Protein motion plays an important role in biological function at a

range of scales. Starting from the single-protein level, enzyme

motion has been shown to accelerate in vitro when substrate

concentration is higher (Riedel et al., 2015). On the pathway

level, substrate motion affects the likelihood of enzyme binding

(Gabison et al., 2006; Takahashi et al., 2010), which, in turn, af-

fects pathway efficiency (Castellana et al., 2014). Finally, on

the cellular level, protein motion changes under global cellular

perturbations, including hyperosmotic stress (Miermont et al.,
Cell R
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2013), unfolded-protein stress (Lai et al., 2010), and heat shock

(English et al., 2011).

Unlike the simplemotion of proteins in buffer, proteinmotion in

the cell cytoplasm is complexly modulated by interactions with

cellular components. In buffer, protein motion is driven by

thermal fluctuations delivered through interaction with water

molecules. This motion is accurately described by the Fickian

diffusion equation, whose only parameter is the diffusion coeffi-

cient. In contrast, proteins in the cell cytoplasm interact not only

with water molecules, but also with various biomolecules and

cellular structures that densely populate the cytoplasm (Luby-

Phelps, 2000). These interactions significantly affect protein mo-

tion: binding to large complexes may transiently trap proteins,

slowing them down (Saxton, 1996), while interacting with ATP-

driven components such as molecular motors and fluctuating

cytoskeletal fibers may speed proteins up or constrain their

motion to specific directions (Guo et al., 2014a). The complex

nature of protein motion in the cytoplasm is not easily captured

by simple models. Fickian diffusion, reaction-diffusion equations

(Engelke et al., 2009), and anomalous diffusion (Saxton, 2012;

Weiss et al., 2004) have all been used to describe effective

parameters of protein motion, such as diffusion coefficients,

binding and unbinding rates, and anomalous exponents, but

none of these models is regarded as adequately describing pro-

tein motion (Saxton, 2012).

To test models of cytoplasmic protein motion against experi-

mental data, researchers have developed quantitative fluores-

cence microscopy methods, including correlation-based and

perturbation-based methods (see Table 1). Correlation-based

methods, such as fluorescence correlation spectroscopy

(FCS), extract information about protein motion from the auto-

correlation of the fluorescence signal. The autocorrelation can

be analytically calculated given the model of motion, and doing

so enables users to test the model by fitting the calculated

expression to the imaging data. Correlation-based methods

have been used in vitro to measure reduced diffusion of biomol-

ecules due to molecular crowding (Engelke et al., 2009). These

methods have also been used extensively in vivo, for example,
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C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:dan@cc.huji.ac.il
mailto:jengland@mit.edu
http://dx.doi.org/10.1016/j.celrep.2017.02.063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.02.063&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Comparison of PIPE with Popular Fluorescence Microscopy Methods for Measuring Protein Motion in the Cell

Method Observable Requirements

Photo-Bleaching

Sensitivity Ease of Use

FCS autocorrelation of

fluorescence fluctuations

(indirect)

continuous point imaging,

low fluorophore

concentration, calibration

of point spread function

not sensitive to mild and

uniform bleaching

easy acquisition and

analysis, but assessment

of output quality requires

expertise

SPT trajectories of single

fluorophores (direct)

fast or stroboscopic

imaging for cytoplasmic

proteins, low fluorophore

concentration

sensitive to photo-

bleaching and blinking

requires acquisition of

many trajectories per

experiment

FSM trajectories of co-localized

fluorophore clusters

(direct)

most suitable for studying

motion of polymers,

microinjection of

fluorophores is often

needed

not sensitive to mild and

uniform bleaching

similar to SPT

FRAP recovery of average

fluorescence in photo-

bleached region (indirect)

calibration of beam width sensitive to reversible

photo-bleaching

easy acquisition and

analysis, but assessment

of output quality requires

expertise

FRAPa/

FLAC/

FDAP

decay of average

fluorescence in photo-

converted region (direct)

photo-convertible

fluorophores, calibration of

beam width

sensitive to photo-

bleaching

easy acquisition and

analysis, but assessment

of output quality requires

expertise

PIPE spreading of initially

localized photo-converted

fluorophores (direct)

photo-convertible

fluorophores

not sensitive to mild and

uniform bleaching

easy acquisition and

analysis, quality

assessment is intuitive

These methods are in addition to confinement by cell membrane, which interferes with all ensemble methods applied to cytoplasmic proteins. FLAC,

fluorescence loss after photo-conversion. FDAP, fluorescence decay after photo-activation.
in characterizing the dynamics of human islet amyloid polypro-

tein interaction with the cell membrane (Guo et al., 2014c), in

measuring diffusion of paxillin near focal adhesions (Digman

et al., 2008) and in determining the interactions of the polyprotein

Gag with cytoplasmic complexes (Larson et al., 2003). In com-

parison with correlation-based methods, perturbation-based

methods implement a more active approach, using a laser pulse

to perturb the fluorescent sample and image it as diffusion

smooths out the perturbation. Usually, the laser pulse depletes

fluorescence from the perturbed region through photo-bleach-

ing, and the observable analyzed is either the recovery of fluores-

cence at the bleached region (as in fluorescence recovery after

photo-bleaching [FRAP]) or the loss of fluorescence outside

that region. In samples containing photo-convertible fluoro-

phores, the laser pulse generates a fluorescence signal rather

than depleting it, and the observable analyzed is the subsequent

decay of fluorescence at the photo-converted region (Calvert

et al., 2007; Ehrlicher et al., 2011; Mazza et al., 2008). In all of

these cases, models can be tested by fitting the measured

observable to a predicted analytical expression. Perturbation-

based methods are convenient to apply to cytoplasmic proteins,

because these methods work well with high protein concentra-

tions, which usually characterize cytoplasmic proteins.

Each of these methods can be challenging to operationalize in

a research setting. First, each of the methods requires either a

calibration of the excitation beam width or a careful measure-

ment of the microscope point-spread function (Petrá�sek and
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Schwille, 2008). Second, users find it challenging to assess the

accuracy of the methods in a given instance. For example,

FRAP results may be skewed by reversible photo-bleaching,

i.e., spontaneous turning on of photo-bleached fluorophores

within the pulsed region. Most users cannot assess whether

reversible photo-bleaching skews a particular instance of their

FRAP analysis merely by looking at the results. FRAP presents

users with a single fluorescence recovery curve and a model

that was fitted to it. Since the model consists of a complex

expression, it is hard to judge the quality of the fit and, in turn,

the accuracy of the analysis. In other words, FRAP functions

as a black box, in that it does not offer tools to assess the quality

of its output.

Single-particle tracking (SPT) offers an alternative to these

methods. Rather than measuring an indirect observable and

fitting it to a model to infer the underlying motion, SPT directly

measures the trajectories of individual proteins, which allows a

phenomenological description of their motion. Examples include

distinguishing directed from non-directed trajectories (Monnier

et al., 2015), identifying trajectory symmetry with respect to

organelles (Jaqaman et al., 2011), and characterizing the tempo-

ral scaling of the trajectory mean-square displacement (MSD)

(Bronstein et al., 2009; Guo et al., 2014a).

Unfortunately, it is challenging to apply SPT to monomeric

proteins in the cytoplasm. SPT requires imaging thousands of

trajectories, many of which end prematurely due to photo-

bleaching, blinking, or exiting the field of view. Moreover, the



Figure 1. PIPE Analysis of Simulated Data

Correctly Recovers Diffusion Coefficients

(A) A time series of one-dimensional intensity

profiles chosen from a two-dimensional simulation

of stochastic random walk. Raw data and

Gaussian fits are shown at each time point. Inset:

an image representing the simulated fluorescence

intensity at t = 0. The intensity profiles shown in (A)

were taken from a horizontal cross-section that

passes through the center of the peak.

(B) The square widths of the Gaussian fits from (A)

are presented as a function of time. Error bars

represent 1s confidence intervals. A fitted linear

model is plotted as a solid line, and the diffusion

coefficient is stated, calculated as the slope of the

line times one-quarter. The value of the diffusion

coefficient is presented in square pixels per frame.
typical speed of monomeric proteins in the cytoplasm renders

SPT even harder to use (compared to cases such as membrane

proteins and large organelles or beads), since distinguishing in-

dividual trajectories requires a low concentration of tagged

proteins, which results in fewer trajectories per movie and thus

in more imaging work (English et al., 2011). Some of these chal-

lenges are resolved in fluorescence speckle microscopy (FSM),

which tracks fluorophores incorporated into macromolecular

structures (Waterman-Storer et al., 1998; Cameron et al.,

2011). As part of large structures, these fluorophores move

more slowly compared to monomeric fluorophores in the cyto-

plasm. Thus, FSM can correctly identify each speckle from frame

to frame, even when speckles densely populate the field of view.

In addition, FSM is less sensitive to photo-bleaching and blinking

than SPT, because speckles often consist of a few fluorophores,

which bleach more slowly than single fluorophores and rarely

blink simultaneously. FSM has been primarily used to investigate

the dynamics of polymers, such as microtubules (Waterman-

Storer et al., 1998), meiotic spindles (Yang et al., 2007), and

F-actin (Ponti et al., 2003) and has also been used to analyze

membrane receptor motion (Jaqaman et al., 2011). However,

FSM is not suitable for studying monomeric proteins in the cyto-

plasm, as they move quickly and do not form stable speckles.

Here, we propose photo-converted intensity profile expansion

(PIPE) as a method for direct measurement of rapid protein mo-

tion in the cytoplasm. PIPE works by applying a laser pulse to a

sample of photo-convertible fluorophores, generating a peaked

fluorescence signal at the pulsed region and imaging the signal

expanding as the photo-converted fluorophores move away

from that region. This expansion shows proteins moving in

different directions and through different parts of the cytoplasm.

To make the measurement useful for cell biologists, the data are

processed to a single number, the effective diffusion coefficient

(EDC). This number allows users to compare the rate of expan-

sion of different proteins or of the same proteins under different

conditions. Rather than claiming that protein motion obeys a

simplified diffusion model, the EDC provides a phenomenolog-

ical description of the imaging data.

PIPE shares the advantages of other methods and avoids their

drawbacks (see Table 1). Like SPT, PIPE images protein motion

directly, rather than inferring it from indirect observables. Unlike
SPT, PIPE can be easily applied to rapid cytoplasmic proteins.

PIPE is similar to FRAP in its applicability to high protein concen-

trations but differs from FRAP in user accessibility: PIPE uses

simple fitting functions and presents data at several stages of

the analysis, helping users assess the output quality. In addition,

PIPE requires no calibration of the excitation beamwidth. Finally,

PIPE is robust against some forms of photo-bleaching, which

can skew FRAP results.

To further demonstrate PIPE’s usefulness in generating bio-

logical insight, we applied PIPE to questions about proteins’

anomalous diffusion. Whether or not anomalous diffusion of bio-

molecules takes place in the cell has beenmuch debated among

biologists (Hihara et al., 2012; Malchus and Weiss, 2010; Pawar

et al., 2014). Anomalous subdiffusion is characterized by slower

motion to long distances compared to Brownian motion, and

anomalous subdiffusion in the cell may reflect the spatial organi-

zation within cellular compartments, which has implications to

chromatin accessibility (Hihara et al., 2012), directional motion

along the mitotic spindle (Pawar et al., 2014), and search effi-

ciency of binding sites (Guigas and Weiss, 2008). While micro-

scopy methods like FCS have been used to measure anomalous

diffusion in the cell, some claim that these results originate from

artifacts in the data analysis (reviewed in Saxton, 2012). Unlike

most existing methods, PIPE directly accesses the property of

motion that defines anomalous diffusion, i.e., the mean-square

displacement of the protein ensemble and how it scales with

time. Thus, PIPE provides distinctive opportunities formeasuring

anomalous diffusion in the cell.

RESULTS

PIPE Calculates Correct Diffusion Coefficients from
Simulated Data
To test how well PIPE analyzes data in non-ideal yet controlled

environments, we applied PIPE to computer simulations that

imitate photo-conversion experiments and explored how the

output of PIPE changes with various perturbations modeled in

these simulations (Figure 1). We found that PIPE extracted the

correct diffusion coefficient at an average error of 3%, under a

wide range of values of different parameters, including the

random walk step size distribution (which determines the
Cell Reports 18, 2795–2806, March 14, 2017 2797



Figure 2. PIPE Confirms that Purified DDR in Solution Satisfies the Stokes-Einstein Relation

Purified DDR and glycerol were mixed to produce solutions of known viscosities. Photo-conversion experiments were performed in these solutions, and the

diffusion coefficients of DDR were obtained using PIPE.

(A) A typical intensity profile expansion series. Inset: the red channel image at t = 0. Scale bar, 20 mm.

(B) The squarewidthof eachGaussianfit from (A) asa functionof time. Theextracteddiffusioncoefficient is in units ofmm2/s.Error bars denote1sconfidence intervals.

(C) The diffusion coefficients of DDR as measured by PIPE presented as a function of the inverse viscosity. The data fit well to a straight line that passes close to

the origin, as predicted by the Stokes-Einstein relation. Error bars, SE.
diffusion coefficient), shot noise, and background noise. We

further found that the extracted diffusion coefficients changed

by less than 4% under a wide range of photo-bleaching rates

(0.01%–1% bleaching probability per fluorophores per time

step), except under a very high rate (10% probability) that

depleted much of the signal before the end of the simulation.

In addition, since the theory behind PIPE assumes that the initial

intensity profile has a Gaussian shape, we tested PIPE against a

rectangular initial profile with width of 3 mm and found that the

diffusion coefficient changed by less than 6% on average for

high diffusion coefficients (10–100 mm2/s), although the change

went up to �30% for low diffusion coefficients (0.1–1 mm2/s).

One interesting parameter that did affect PIPE’s output was

the initial width of the protein ensemble, relative to the width of

the field of view. The greater this parameter was, the wider the

confidence intervals for the diffusion coefficient became

(although the mean diffusion coefficient remained within the

aforementioned 3% error bound). This insight aided us in

designing real photo-conversion experiments, since this ratio

of widths can be controlled by the microscope zoom and by

the power and duration of the photo-conversion pulse.

PIPE Reproducibly Measures Expected Diffusion
Coefficients of Purified Proteins in Solution
To test the capability of PIPE to extract correct diffusion coeffi-

cients from real microscopy data, we conducted and analyzed

photo-conversion experiments in solution. For these experi-

ments, we purified the photo-convertible fluorescent protein

Dendra2 (DDR) from bacteria transformed with a DDR-encoding

plasmid. To assess the robustness of PIPE against fluctuating

system variables, we repeated the measurements under a range

of photo-bleaching rates (1%–100% laser power), DDR concen-

trations (0.4–40 mM), and durations of the photo-conversion

pulse (50–500 ms). As the theory behind PIPE suggests, we

found no dependence of the diffusion coefficients on either of

these variables (data not shown). We then turned to measure

the accuracy of PIPE in confirming a known dependence of the
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diffusion coefficient on media viscosity. In dilute media, protein

diffusion obeys the Stokes-Einstein relation D= ðkBT=6phRhÞ,
where kB is Boltzmann’s constant, Rh is the Stokes radius of

the particle, and T and h are the temperature and viscosity of

the media, respectively. We changed the media viscosity by

titrating glycerol into the DDR solution, measured the diffusion

coefficients using PIPE, and fitted them to a linear function of

h�1. The model fit the data well (R2 = 0.98), passing close to

the origin, as predicted by the Stokes-Einstein relation (Fig-

ure 2C). Plugging the slope of the fitted line into the Stokes-Ein-

stein relation, we calculated the Stokes radius of DDR to be 2.4 ±

0.2 nm. This result agrees with the geometric radius of DDR, R =

2.25 nm, which we extracted from the crystal structure 2VZX

(Adam et al., 2009, PDB file was downloaded from http://www.

rcsb.org/pdb/home/home.do, and R was extracted by calcu-

lating the longest distance in each coordinate (x, y, z) between

a-Carbons atoms within each monomer in the PDB file and aver-

aging over these distances).

Finally, we compared our results to previously reported diffu-

sion coefficients. Since we were not familiar with reports on the

diffusion coefficient of DDR, we focused on GFP, which resem-

bles DDR in size and structure (Adam et al., 2009). The reported

diffusion coefficient of GFP (see Table 2) had been measured in

water at room temperature, i.e., at viscosity �0.89 cP. Since

our purification media contained glycerol, which increased the

viscosity, we obtained the diffusion coefficient of DDR at 0.89

cP by extrapolating from the fitted Stokes-Einstein model and

got DDDR–0.89 cP = 115 ± 11 mm2/s, in agreement with the overall

set of previously measured diffusion coefficients of GFP. Taken

together, these results demonstrate that PIPE is capable of

measuring diffusion coefficients of proteins in dilute solutions.

PIPE Establishes Baseline EDCs for Proteins of
Different Sizes in the Cytoplasm
Having demonstrated the capability of PIPE to measure protein

diffusion in solution, we turned to using it to measure protein mo-

tion in the cytoplasm of living cells. While in dilute media the

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do


Table 2. Summary of Diffusion Coefficients Measured for DDR and GFP in Solution

Protein D (m ± SE) mm2/s Temperature (�C) Method Rh–eff nm Reference

DDR 115 ± 11a 25 PIPE 2.4 ± 0.2 this work

EGFP 95 22.5 sFCS 2.42 Petrá�sek and Schwille (2008)

EGFP 94b 22 FCS 2.42 Schenk et al. (2004)

GFP 87 25 FCS 2.82 Terry et al. (1995)

GFP 130 20 FRAP 1.66c Busch et al. (2000)

EGFP 87 RT FRAP Swaminathan et al. (1997)

sFCS, scanning fluorescence correlation spectroscopy.
aThis value was extrapolated from the Stokes-Einstein relation measured using glycerol titration. The error reflects the range of parameter values of the

linear regression used to fit the Stokes-Einstein relation, within 2s confidence intervals.
bThe original value of 63 mm2/s was corrected after publication.
cThe authors verified the Stokes radius using dynamic light scattering (DLS).
diffusion coefficient is determinedmainly by the viscosity and the

protein size, in the crowded cytoplasm the EDCmay reflect addi-

tional factors, including binding to and unbinding from other pro-

teins, complexes, and intracellular structures. To probe the

scaling of the EDC with protein size, we applied PIPE to photo-

conversion experiments of DDR repeats of variable length

(denoted as NxDDR, where N = 1, 3, 6), which we transiently

expressed in COS7 cells. The EDCs we obtained from different

cells for each protein spanned awide range of values (Figure 3E),

with a coefficient of variation of �0.3. The EDC range of 1xDDR

included published diffusion coefficients of GFP in the cytoplasm

ofmammalian cells (Table 3). The average EDCs (denoted hDi for
convenience) of NxDDR decreased with increasing N, which is

consistent with the prediction that larger proteins move more

slowly. For the rest of this report, we will use hDNxDDRi as a rough

baseline for EDCs at different protein sizes, to which we can

compare EDCs of other proteins with similar sizes.

Having used PIPE to measure baseline EDCs for DDR repeats,

we continued by measuring EDCs of DDR-tagged native pro-

teins and compared the results to the baseline. We focused on

proteins from themammalian protein-folding quality-control sys-

tem: the amyotrophic lateral sclerosis (ALS)-associated protein

Sod1wt and its aggregation-prone mutants Sod1G93A and

Sod1G85R, the molecular chaperone Hsp70, and the short

degradation signal CL1 (Gilon et al., 1998), which has been

shown to convert GFP to an aggregation prone protein. The

measured hDi for these proteins and for NxDDR are shown in

Figure 3D.

We first applied PIPE to measure the motion of Sod1 variants

and found that Sod1 mutants stimulate the protein-folding qual-

ity-control system and move more slowly than wild-type Sod1.

Sod1 is known to form tight homodimers, which stay associated

even when tagged with a fluorescent protein (Grad et al., 2014).

Our results supported this finding, as hDSod1i lay much closer to

the NxDDRbaseline if plotted against the size of two Sod1-DDRs

compared with the size of one Sod1-DDR (Figure 3D). To

compare the aggregation propensity of Sod1 variants, we

compared their EDCs and counted the number the cells that

formed a juxtanuclear inclusion, which demonstrates the large

number of misfolded proteins in these cells. 24 hr after the cells

began expressing Sod1G85R or Sod1G93A, we found that inclu-

sions formed in 40% ± 11% of the cells expressing Sod1G85R,
but only in 14% ± 1% of the cells expressing Sod1G93A.

Moreover, Sod1G93A inclusions appeared much smaller and

dimmer compared to Sod1G85R inclusions (Figure 3F). Interest-

ingly, both mutants had decreased mobility compared to

Sod1wt (hDSod1G93Ai= 24± 2mm2=s; hDSod1G85Ri= 22± 2mm2=s;

hDSod1wti= 29± 2mm2=s), a claim we supported with a t test

that enabled us to reject the null hypothesis that each of the

mutant EDC samples and the wild-type EDC sample were drawn

from the same underlying distribution (p value = 0.0007 for

comparing Sod1wt and Sod1G85R, and p value = 0.046 for

comparing Sod1wt and Sod1G93A). We interpret this result to

mean that the aggregation of the Sod1 mutants slows down

the motion of the entire Sod1 ensemble in the cytoplasm, and

this effect is detectable by PIPE.

Our next result showed that the degradation signal CL1 fused

to DDR had an EDC similar to 3xDDR, hDCL1i= 31± 3mm2=s,

while the number of amino acids in DDR-CL1 is much smaller

than in 3xDDR. This result suggests that the effective size of

DDR-CL1 is bigger than what one would expect based on the

number of amino acids in DDR-CL1. This hypothesis is compat-

ible with the observation that CL1 expression promotes the for-

mation of large perinuclear fluorescent aggregates in the cell

cytoplasm (data not shown).

Last, we found that Hsp70 diffuses muchmore slowly than the

baseline, with hDHsp70i= 13± 1mm2=s, while for the similar-sized

3xDDR hD3xDDRi= 32± 3mm2=s. This result can be explained by

the fact that Hsp70 frequently binds other proteins, either mis-

folded substrates as part of its chaperone activity, or non-sub-

strate molecules, including other Hsp70 units. To test the former

hypothesis, we compared the EDC of wild-type Hsp70 with two

Hsp70 mutants: Hsp70 substrate binding domain mutant

(Hsp70-SBD) and Hsp70 ATPase domain mutant (Hsp70-

ATPase). Hsp70-SBD is a truncated 543 amino acids Hsp70

where the last 98 amino acids of the SBD containing the helical

lid subdomain (HLS) have been removed. HLS has been shown

to play a crucial key role in substrate binding (Aprile et al.,

2013), and Hsp70-SBD was measured, using FRAP, to move

faster than wild-type Hsp70 (Kim et al., 2002). Unlike Kim et al.,

we did not measure faster motion of Hsp70-SBD compared to

wild-type (hDHsp70�SBDi= 11± 1mm2=s, and t test comparing the

Hsp70wt and Hsp70-SBD EDC samples returned p value =

0.37). We also measured the EDC of the Hsp70-ATPase
Cell Reports 18, 2795–2806, March 14, 2017 2799



Figure 3. Using PIPE to Measure Diffusion Coefficients in the Cytoplasm of COS-7 Cells

(A) A typical DDR-expressing COS7 cell is shown before photo-conversion. Left, signal from green- and red-emitting DDR is shown in pseudo color. Middle, signal

from green-emitting DDR is shown in grayscale. Right, signal from red-emitting DDR is shown in grayscale. The frame on the left panel marks the area in which a

photo-conversion experiment was imaged.

(B) An intensity profile expansion series of photo-converted DDR in a typical cell. Inset: signal from red-emitting DDR at the moment of photo-conversion in the

region framed in (A). Scale bar, 3 mm.

(C) The square widths of the Gaussian fits from (B) are plotted as a function of time. The extracted D is stated in units of mm2/s.

(D) Average diffusion coefficients ±SE of NxDDR (blue stars) and DDR-tagged proteins (orange circles) in the cytoplasm are plotted against the size of each

protein in amino acids.

(E) Theweighted probability distribution of all themeasured diffusion coefficients is plotted for each protein from (D), assuming that the error of eachmeasurement

is normally distributed. The number of measurements (one to three per cell) included in each distribution is shown row by row from left to right: 31, 17, 32, 29, 21,

21, 27, 31, 21, 34.

(F) Morphology of SOD1 aggregates: about 40% of cells expressing Sod1-G85R had large juxtanuclear inclusions compared to only 14% of Sod1-G93A-ex-

pressing cells. Error bars denote SE.

(G) The juxtanuclear inclusions of Sod1-G93A appeared smaller and subtler than that of Sod1-G85R. Yellow arrows point to the juxtanuclear inclusions. Scale bar,

20 mm.
(A72W). ATP is crucial for Hsp70 activity and allows Hsp70 to

rapidly bind and release substrates. If the deviation of Hsp70

from the NxDDR baseline was due to its substrate binding,

we should expect to measure different EDCs for Hsp70-ATPase,

either higher EDCs if the mutant cannot bind substrate or

lower EDCs if the mutant cannot release substrate. However,

we observed the same EDCs as measured for Hsp70wt

ðhDHsp70�ATPasei= 13± 1mm2=sÞ. We concluded that the deviation

of Hsp70 from the NxDDR baseline is not due to its interaction

with misfolded substrate, but perhaps due to interaction with

non-substrate proteins, like other Hsp70 units (Aprile et al.,

2013).
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PIPE Discovers Different Degrees of Diffusion
Anomality for DDR Repeats and Native Proteins
To further demonstrate PIPE’s usefulness in generating new bio-

logical insight, we applied PIPE to assessing whether protein

diffusion in the cytoplasm is normal or anomalous and found

that the diffusion of the native cellular proteins is more anoma-

lous than the diffusion of the DDR repeats.

To test the capability of PIPE to distinguish normal from anom-

alous diffusion, we applied it to control data in silico and in vitro.

First, we simulated data of classic random walk (see Supple-

mental Information) and continuous time random walk (CTRW),

which is an anomalous subdiffusion model that requires less



Table 3. Comparison of EDCMeasured for DDRwith Literature Values of Diffusion Coefficients of GFP in the Cytoplasm ofMammalian

Cells

Protein D (m ± SE) mm2/s Cell Type Method Reference

DDR 38 ± 3 COS7 PIPE this work

EGFP 22 ± 7 CHO-K1 STICS Hedde et al. (2015)

GFP 21/17a U2OS FRAP/FLIP Guo et al. (2014b)

GFP 26 ± 3 A549 Line FRAP Braeckmans et al. (2007)

GFP 15 mouse adenocarcinoma FRAP Sprague et al. (2004)

GFP 25 HeLa FCS Elsner et al. (2003)

EGFP 23 ± 4 HeLa FCS Ruan et al. (2002)
aMeasurements were performed at 22�C.
computational resources to simulate compared with other

models. PIPE extracted different anomalous exponents from

the two types of simulations, demonstrating success in distin-

guishing normal from anomalous diffusion in silico. From clas-

sical randomwalk simulations, we obtained an anomalous expo-

nent of a= 1:00± 0:01, as expected. From CTRW data, we

obtained a< 1, also as expected. However, the values of a calcu-

lated from CTRW data deviated from the simulated values asim,

and depended on the distribution of step sizes (Figure 4C, and

see Supplemental Information for discussion of this result). We

then applied PIPE to photo-conversion experiments on purified

DDR in buffer. In this dilute media, we expected to observe

normal diffusion and therefore to measure a= 1. However, we

measured a= 0:87± 0:01 (Figure 4D). This downward shift in

measured anomalous exponents may be explained by protein

oligomerization or non-linearity in fluorescence detection, which

we explore in the Supplemental Information (Figure S3). Even

with this downward shift, a can be used to distinguish between

diffusion anomality of different proteins; importantly, we

observed no dependence of a on the photo-bleaching rate,

DDR concentration, or the EDC (which we modulated by chang-

ing media viscosity, as in Figure 2C).

We then used PIPE to discover differences in the diffusion

anomality of different proteins in the cytoplasm. We reanalyzed

the microscopy movies showing motion of NxDDR and DDR-

tagged proteins in the cytoplasm and measured the a values

that describe this motion (Figures 4E and 4F). For NxDDR, we

observed slightly sublinear scaling, similar to the results we

obtained in vitro: a1xDDR = 0:86± 0:03, a3xDDR = 0:85± 0:06

and a6xDDR = 0:96± 0:02. For the DDR-tagged quality-control

proteins, we obtained lower exponents: aHsp70 = 0:67± 0:03,

aSod1wt = 0:73± 0:03, aSod1G93A = 0:83± 0:03, and aðSCPÞCL1 =
0:72± 0:05. To test whether the two protein groups differ in their

mean a, we executed a two-sample t test. The test resulted in p

value = 0.013, which allowed us to reject the hypothesis that the

two groups are described using the same distribution of a. To

check for a possible artifact of data sampling (since different pro-

teins have different EDCs but for all the proteins we only

analyzed the first ten to 15 frames of each movie), we calculated

the correlation between a and the EDCs. The correlation was

0.13, which has a probability of 0.78 to occur at random (0.13

or higher and �0.13 or lower) for the same number of points

sampled from the same plotted value range, which suggests
that differences in data sampling do not artifactually distinguish

between the DDR repeats and the native cellular proteins. These

results suggest that the native cellular proteins diffuse with a

greater degree of anomality compared to the free fluorescent

probes.

DISCUSSION

Distinctiveness of PIPE
PIPE is not the first technique to use photo-convertible proteins

(Calvert et al., 2007; Ehrlicher et al., 2011; Mazza et al., 2008) or

to analyze the time evolution of spatial intensity profiles (Berk

et al., 1993; Tardy et al., 1995). Rather, PIPE’s distinctiveness lies

in the synthesis that it implements between a direct measurement

of protein motion in the cytoplasm and an intuitive and detailed

output that aids the users in assessing themeasurement’s quality.

In principle, PIPE analysis can be applied to photo-bleaching

experiments that are normally analyzed using FRAP. However,

doing so would effectively mean quantifying the expansion of

the lack of fluorophores, rather than the fluorophores them-

selves. Such a measurement would miss the advantage of

directly quantifying the motion of the tagged proteins and would

instead provide an indirect description of how the tagged pro-

teins flow into the bleached area. Moreover, applying PIPE to

photo-bleaching data tends to yield inaccurate results, because

the fitted signal is inverted, where the point of maximal depletion

lies at the peak of the Gaussian, and points of higher fluores-

cence lie at the tail. While this inversion may seem like a minor

issue, it significantly changes the noise distribution along the in-

tensity profile; since photon shot noise scales with the number of

fluorophores, the tails of the intensity profile are much noisier in

photo-bleaching experiments, where they consist of many fluo-

rophores, compared to photo-conversion experiments, where

the tails consists of a few fluorophores. Therefore, despite the

theoretical possibility of applying PIPE to photo-bleaching

data, doing so in practice is less favorable from both a concep-

tual and a technical point of view.

PIPE Guides Users in Assessing Quality of Results
In most existing methods, assessing the quality of output can be

challenging. While method developers are aware of the assump-

tions that each method makes about the imaging system and

underlying biological processes and use each method in the
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Figure 4. Using PIPE to Measure Diffusion Anomality

(A) A typical expansion series of intensity profiles of purified DDR in vitro, including raw data and Gaussian fits.

(B) The widths of the Gaussian fits in (A) are fitted to a power law as a function of time. The fitted model and the scaling exponent a are stated.

(C–E) Distributions of the ameasurements are shown. To visualize each distribution, eachmeasurement of awas treated as a Gaussian with SD that equals to the

1s confidence interval of the fitted a, and then all the Gaussians were summed. (C) Simulated data of classical random walk and CTRW with asim = 0:6;0:8. For

CTRW, distributions of a are shown for several values of the random walk step size variance s2. (D) Microscopy data of purified DDR in vitro. n = 127. (E) Mi-

croscopy data of DDR repeats and DDR-tagged proteins in the cytoplasm of COS7 cells. n = 40, 17, 24, 27, 31, 68, 34 (row by row, left to right). (F) a is shown as a

function of the diffusion coefficient from Figure 3 for proteins from (E). Error bars denote SE.
appropriate setup, other usersmay be lessmeticulouswhen they

use amethod as a part of a larger body of work. This situation can

lead to ambiguous output being misinterpreted, especially if the

method does not provide tools to assess output quality.

With this challenge inmind, we designed PIPE to be as intuitive

and user friendly as possible. First, PIPE directly measures the
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motion of the tagged proteins. This capability is enabled largely

due to the use of advanced imaging technology and photo-

convertible proteins. Second, the computational analysis of

PIPE merely makes a quantitative measurement of an effect

that is already qualitatively visible in the microscopy images.

Third, PIPE calculates the EDC from a single movie, which



obviates the need for calibration of the beam width or the point

spread function. Last, PIPE presents its output to the users at

several stages of the analysis, allowing the users to examine

the shapes of the intensity profiles and the fitting quality and to

rerun the analysis with different parameters if needed.
Do Native Cellular Proteins Undergo Anomalous
Diffusion?
Expanding beyond the framework of the EDC, we used PIPE to

find out whether proteins in the cytoplasm undergo normal or

anomalous diffusion. We measured significantly lower a values

for native cellular proteins compared with NxDDR, which sug-

gests that the former are more subdiffusive than the latter, and

therefore that the native cellular proteins we examined are

subdiffusive.

There may be several objections to this interpretation:

1. Does the downward shift in a undermine the distinction

between the different protein groups? When testing

PIPE, we only obtained the expected a values from simu-

lations of normal diffusion, while we obtained lower values

than expected from simulations of anomalous diffusion

and from in vitro microscopy data. Nevertheless, we did

obtain significantly lower a values for anomalous diffusion

compared to normal diffusion in silico. This suggests that

downward shift in a does not undermine PIPE’s ability to

measure differences in diffusion anomality between

different protein groups.

2. Could NxDDR be superdiffusive in the cytoplasm, in which

case the native proteins’ lower a values would not neces-

sarily mean that they are subdiffusive? It is unlikely that

NxDDR is superdiffusive, because (1) no mechanisms

are currently known to cause such motion of small pro-

teins in the cell, and (2) NxDDR shared similar a values

with purified DDR in vitro, which is likely to undergo normal

diffusion, and not superdiffusion. Therefore, NxDDR most

probably undergoes either normal diffusion or subdiffu-

sion, which leads us to interpret the lower a values of the

native cellular proteins as subdiffusive.

3. Are measured a values dominated by artifacts, so a lower

a does not necessarily mean a lower anomalous expo-

nent? While our measured a might be lower than the

anomalous exponent, it is still a meaningful characteristic

of the analyzed motion, because (1) different movies with

the same protein and under the same conditions give

similar a values, and (2) even movies under different con-

ditions (DDR in buffers of different viscosities) or of

different proteins (1xDDR and 3xDDR) share similar a

values. The similarity in a under different conditions shows

that it is unlikely that a values are dominated by artifacts.

Therefore, we claim that differences in a represent real dif-

ferences in diffusion anomality.
EXPERIMENTAL PROCEDURES

Cell Culture

COS7 cells were cultured in DMEM high glucose (Sigma) supplemented with

10% certified fetal bovine serum (Biological Industries), and 10 mL/L peni-
cillin-streptomycin (P4333 Sigma). Cells were maintained and imaged at

37�C in a humidified incubator with 5% carbon dioxide.

COS7 cells were transiently transfected by seeding cells in 35-mm glass-

bottom plates (Greiner Bio One) 24–48 hr before imaging. For transfections,

50%-confluent cells were incubated for 12–18 hr with 1–2 mL polyethylenimine

(PEI) 0.1% (w/v) and 1 mg of plasmid DNA for each plasmid construct.

Following PEI incubation, the mixture was replaced with fresh medium for

6–12 hr before imaging.

Plasmid Constructs

A CMV-driven expression plasmid, pDendra2-N, was used to fuse wild-type

Hsp70, Hsp70 substrate binding domain deletion mutant (Hsp70-SBD),

Hsp70 ATPase domain mutant (Hsp70-ATPase), Sod1, Sod1G85R, and

Sod1G93A to the N terminus of the photo-convertible fluorescent protein

DDR. Constructs containing Hsp70-SBD and Hsp70-ATPase sequences

were kindly provided by Richard Morimoto’s lab (Northwestern University).

CL1 sequence was fused to the C terminus of DDR vector pDendra2-C, and

the CMV promoter of pDendra2-C was exchanged for the stronger SCP3 pro-

moter (Even et al., 2016), which enhanced expression by 2- to 4-fold compared

to CMV (Figure S2). In addition, using pDendra2-C, three constructs with a var-

iable number of DDR repeats (1, 3, and 6, denoted 1xDDR, 3xDDR, and

6xDDR) were cloned.

A trc-driven expression plasmid containing 6x His tag and protein Bio-

tinylation Tag fused to DDR was kindly provided by Carlos Bustamante’s lab

(UC-Berkeley) for the purpose of DDR purification.

Protein Samples

For in vitro experiments, DDR was purified from bacteria by transformation of

the His-tag DDR plasmid DNA into DH5a bacterial cells. The transformed bac-

teria were seeded in suspension media and incubated for 12–24 hr at 37�C
before 0.5 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) was added to

induce DDR expression. The suspension media with DDR-expressing bacteria

was then left overnight and centrifuged the next day to extract a pellet. The pel-

let was resuspended in lysis buffer (50 mM sodium phosphate [pH 7.4],

300 mM NaCl, 10 mM imidazole, 5% glycerol) and lysed using a microfluidizer

device (Microfluidics). The lysatewas then centrifuged to separate soluble pro-

teins (supernatant) from insoluble proteins. The supernatant was loaded into a

NiSephB column and eluted by an elution buffer (50 mM sodium phosphate

[pH 7.4], 300 mM NaCl, 300 mM imidazole, 5% glycerol). The eluted protein

was then dialyzed against a dialysis buffer (50 mM sodium phosphate [pH

7.4], 300 mM NaCl). Protein concentration was quantified by absorption at

488 nm, where the extinction coefficient of DDR is known (McKinney et al.,

2009). The eluted DDR was then used to prepare working solutions of different

viscosity by titrating in glycerol.

Microscopy

Time-lapse images were acquired with a NIKON A1 confocal microscope. A

CFI Plan Apo Lambda 603 oil objective was used in all in vivo experiments.

In in vitro experiments, either the oil objective or a CFI Plan Apo IR SR

603WI water objective was used. While using oil objectives in an aqueous

environment may lead to optical aberrations caused by mismatched refractive

indices, we found no significant change when comparing diffusion coefficients

between oil and water objectives (<10%, data not shown).

Imaging was performed using a 488-nm laser (COHERENT, 50 mW) prior to

photo-conversion and using a 561-nm laser (COHERENT, 50 mW) for excita-

tion of the photo-converted DDR. Fluorescence emission was detected

through a 525/50- and 595/50-nm band-pass filters, respectively.

While we developed PIPE using a specific confocal imaging system, PIPE is

usable with any commercial confocal, total internal reflection fluorescence

(TIRF), or epifluorescence microscope with a capability to apply localized

photo-conversion pulses.

Photo-Conversion

For photo-conversion experiments, we used the NIKON A1 resonant scan

mode. The resonant scan mode, combined with bi-directional scanning and

an ROI of 512 3 512 pixels, allowed for an imaging rate up to 30 frames per

second. In theory, this imaging rate enables measuring diffusion coefficients
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up to 104 mm2/s, which is well above the diffusion coefficients of biomolecules.

For other systems, the frame rate should allow for at least ten time points to be

acquired between the end of the photo-conversion pulse and when the signal

is no longer visible.

Photo-conversion was executed using a 406-nm laser (COHERENT, 50

mW), a 488-nm laser (COHERENT, 50 mW), or both lasers simultaneously.

Depending on the efficiency of photo-conversion, the percentage of photo-

converted molecules is expected to be significantly smaller than that of the

fluorescentmolecules prior to photo-conversion. Therefore, as a rule of thumb,

the power settings for the 561-nm excitation laser, which was used to image to

photo-converted DDR, was set to be two to three times greater than that of the

488-nm excitation laser, which was used to image the cell prior to photo-con-

version. This allowed the pulse to be imaged for relatively long time intervals

after the initial pulse without saturating the acquired image. The photo-conver-

sion pulse was directed at a single spot, without scanning, and was stopped

after 100 or 300 ms, depending on the concentration of DDR. The point of

photo-conversion was selected at the center of the cells cytoplasm such

that the signal expansion time will be maximized before reaching the outer

bilayer membrane and nucleus. About 100 frames were acquired prior to the

photo-conversion pulse to measure the baseline fluorescence. Immediately

after photo-conversion ten to 100 frames were typically acquired, which

corresponds to 300–3,000 ms in our system. The photo-conversion time lapse

analysis is performed using homemade software written in MATLAB

(MathWorks).

To test the consistency and evenness of illumination of the excitation laser,

an autofluorescent plastic slide (CHROMA) was used. We found slight varia-

tions in the imaging intensity, which were mostly pronounced around the

edges of the imaging field. Far away from these edges, the intensity was uni-

form, suggesting that the illumination of the sample is even. We recommend

that users test their imaging systems this way, since non-uniform illumination

may lead to an asymmetric intensity profile, resulting in changes to the

Gaussian distribution signal that are unrelated to the underlying protein diffu-

sion. Correcting for non-uniform illumination post-acquisition may eliminate

the distortions that arise due to non-uniformity of photon emission rate. How-

ever, it will not eliminate distortions due to bleaching in a non-uniform excita-

tion light, which leads to parts of the imaging field bleaching faster than

others, therefore distorting accordingly the distribution of fluorescent pro-

teins. Consequently, if a certain imaging system has severely non-uniform

illumination, we recommend that the excitation laser power be kept low to

avoid rapid bleaching. In such cases, the rate of bleaching can be estimated

by measuring the average intensity in the time interval required for the

Gaussian distribution to reach the edge of the image plane. Alternatively, a

reference with similar diffusion coefficient can be used to test the validity of

applying PIPE in such cases.
Principles of PIPE and the Effective Diffusion Coefficient

Immediately after photo-conversion, one-dimensional intensity profiles at

different time points were fitted toGaussian functional forms. The square width

of these Gaussians as a function of timewas then fitted using linear regression,

and the EDC was extracted from the slope of the linear fit. This is one way out

of many possible ways to quantify the expansion of the intensity profiles, but

this is a useful way in that it provides means to validate the accuracy of

PIPE in vitro, where protein motion obeys Fickian diffusion, and the EDC is

the actual diffusion coefficient, and is related to the media viscosity by the

Stokes-Einstein relation. Calculating the diffusion coefficient considers the flu-

orophore concentration Cð x!; tÞ as a solution to the diffusion equation

vCð x!; tÞ
vt

=DV2Cð x!; tÞ;

where C is the fluorophore concentration and D is the fluorophore’s diffusion

coefficient. The photo-conversion pulse generates a perturbed red fluores-

cence concentration field, whose profile can be approximated as a Gaussian

localized at point x!0 with width S0 and amplitude C0. Plugging this initial con-

dition into the diffusion equation above, we derived the time evolution of this

perturbation according to the diffusion equation:
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Cð x!; tÞ= c0

½pS2ðtÞ�d

=

2
exp

"
ð x!� x!0Þ2

S2ðtÞ

#
;

where d is the number of spatial dimensions and S2ðtÞ=S2
0 + 4Dt. Thinking

about the above solution as the time evolution of the spatial fluorescence pro-

file Cð x!Þ, we can calculate the MSD of this profile. When Cð x!Þ=C0 is treated

as a probability distribution (which is justified because it is just a normalized

Gaussian, where
R +N
�N ðCð x!; tÞ=C0Þd x!d

= 1), the definition of the MSD is

MSDðtÞ= 1

C0

Z +N

�N

ð x!� h x!iÞ2Cð x!; tÞd x!d
:

Plugging Cð x!; tÞ into this definition, we obtain

MSDðtÞ=d

2
S2ðtÞ:

It follows that bymeasuring thewidth of the profile (S) we directly measure its

MSD. Importantly, as seen from the expression of S2ðtÞ above, this quantity

scales linearly in t regardless of the dimensionality d. This means that

measuring C along as little as a single spatial dimension is sufficient to obtain

the EDC.

Based on this analytical prediction, the intensity profile at each time point

was fitted to the Gaussian function A exp½�ððx � x0Þ=SÞ�+ ε, where x is the

index of the pixel in the intensity profile and A; x0;S; ε are fitting parameters,

which generally change with time. Last, the square of the parameter S was

fitted as a function of time using linear regression to the function

S2ðtÞ=S2
0 +4Dt, extracting the diffusion coefficient D. In movies where diffu-

sion time was short (L2=D � tim, where L is the frame size and tim is the time

to acquire one image), the Gaussian amplitude decreased quickly, and data

points at late times were dominated by noise. Only the first 15 frames after

t = 0 were analyzed. This was done in most of the in vivo data, whenever plots

of S2ðtÞ showed an initial monotonous increase and low error bars followed by

flattening of the S2 values or by values with high error bars. To check how

analyzing only 15 frames affects the results, we analyzed in vitro movies

both at full length and limited to 15 frames. We found that the EDCs increased

by �20% when only the first 15 frames were analyzed, compared with cases

where the whole movie was analyzed. More information about this procedure

and about differences between in vitro and in vivo data is provided in the Sup-

plemental Information.

Expanding beyond the EDC, when measuring diffusion anomality, the width

as a function of time was fitted to a power law instead of a straight line, and the

anomalous exponent was extracted from the power law. An anomalous expo-

nent a < 1 indicates subdiffusive motion, while a = 1means that diffusion is not

anomalous, as the MSD grows linearly with time.

Robustness to Photo-Bleaching and Blinking

Incorporating spatial information into the analysis makes PIPE robust against

photo-bleaching and blinking, given that the illumination of the microscope

excitation laser is spatially uniform. Under such illumination, rates of blinking,

reversible photo-bleaching, and irreversible photo-bleaching of a single fluoro-

phore are usually independent of fluorophore concentration, and therefore

these processes are modeled as time-dependent functions fðtÞ. Thus, the
diffusion-bleaching solution is fðtÞCð x!; tÞ, which only affects the amplitude

of the Gaussian and not the width S2ðtÞ. Since the EDC is calculated solely

from S2ðtÞ, the EDC is not affected by blinking and bleaching. In contrast, other

perturbation-based methods, including FRAP, do not use spatial information

and are therefore more sensitive to photo-bleaching. See Results for results

from testing PIPE’s sensitivity to photo-bleaching.

Technical Limitations of PIPE

Certain experimental conditions must be met for PIPE to provide accurate re-

sults. First, microscopy movies that depict the expansion of a photo-conver-

sion profile are analyzable only until the photo-converted proteins approach

the cell boundaries. At that moment, the profile’s expansion slows down due

to confinement. Therefore, if users try to analyze the expansion past that



moment, the resulting EDCwould be smaller compared to the EDCof the same

protein whose expansion was not confined by the cell boundaries. To avoid

such inaccuracy in our work, we chose to image only big cells, whose bound-

aries lay at least 10 mm away from the edge of the field of view. (The entire field

of view defined an area of �30 3 30 mm.) As a rule of thumb, we recommend

that users analyze data up to the point when the width of the Gaussian profile is

equal to the distance between the peak of the Gaussian and the nearest

boundary in the imaged plane.

Second, the concentration of photo-convertible protein should be high

enough so that enough protein is photo-converted to be detected. We tested

PIPE in vitro at DDR concentrations that range from about 100 nM to 40 mM

with no effect on the EDC (data not shown). We note that much higher concen-

trations may promote aggregation and can also cause quenching between

colliding DDR molecules, which can lead to error in the measured EDC. How-

ever, for fluorescent proteins in which access to the chromophore is protected

by a cylindrical beta barrel structure, this effect can be neglected for submilli-

molar concentration (Gather and Yun, 2014), which is often the case for tran-

sient or stable transfection in mammalian cells.

Random Walk Simulations

To test how PIPE’s accuracy is affected by various types of noise and potential

artifacts, we imitated imaging data by simulating diffusion starting from a

Gaussian initial condition, which approximates the shape of the imaged

protein distribution in our experiments immediately after photo-conversion.

See Supplemental Information for a detailed description of the random walk

simulations we performed.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and one table and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2017.02.063.
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see, S., Pressé, S., and Bustamante, C. (2015). The heat released during cat-

alytic turnover enhances the diffusion of an enzyme. Nature 517, 227–230.

Ruan, Q., Chen, Y., Gratton, E., Glaser, M., andMantulin, W.W. (2002). Cellular

characterization of adenylate kinase and its isoform: Two-photon excitation

fluorescence imaging and fluorescence correlation spectroscopy. Biophys.

J. 83, 3177–3187.

Saxton, M.J. (1996). Anomalous diffusion due to binding: AMonte Carlo study.

Biophys. J. 70, 1250–1262.

Saxton, M.J. (2012). Wanted: A positive control for anomalous subdiffusion.

Biophys. J. 103, 2411–2422.
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Fluorescence Intensity 

Figure S1. Related to Figure 1. The image segmentation process. A) The average of the first 30 images of a 
typical photo-conversion movie is shown as a heat map of fluorescence intensity. B-E) The cell mask is 
shown at different stages of the analysis: B) after edge detection, C) after dilation, D) after hole filling, and 
E) after erosion and selection of largest island of 1s. 
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Enhancing expression levels using SCP3 promoter 
  

Figure S2. Related to Figure 3. Average expression levels of cells expressing DDR or DDR-CL1 under a CMV 
promoter compared to cells expressing DDR-CL1 under a SCP3 promoter. Expression levels were measured by using 
a confocal microscope with a 60x objective to first acquire the images, then suing MATLAB individual cells 
expressing CMV-DDR, CMV-DDR-CL1 and SCP3-DDR-CL1 were identified and segmented (n=29-56). After 
segmentation, the average total intensities were calculated by integrating each specific ROI and normalizing by the 
ROI size. The distributions of average expression levels of DDR-CL1 were compared using the Mann-Whitney U 
test, which enabled us to reject the null hypothesis that expression levels were the same using the two promoters (P-
value = 0.002). 
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Table S1. Related to Figure 4. Simulation parameters of PIPE tests and artifacts investigation 

Purpose Random 
walk type 

Step size 
variance (px2) 

Fraction of 
subpopulations 

Mean emission 
(photons / time 

step) 

Expected 
α 

Output α  
(10 

replicates) 

Test PIPE 

Classical [0.0001,0.01] -- 400 1 1.00±0.01 

CTRW 
0.0015 
 0.003 
0.006 

-- 400 0.8 
0.26±0.01  
0.42±0.01  
0.55±0.01 

CTRW 
0.0015 
0.003 
0.006 

-- 400 0.6 
0.14±0.01  
0.32±0.01  
0.43±0.01 

Population 
heterogeneity 

Classical 

0.001 / 0.001 
0.001 / 0.002 
0.001 / 0.003 
0.001 / 0.004 
0.001 / 0.005 

0.5 / 0.5 400 1 

1.00±0.02  
0.76±0.01  
0.53±0.01  
0.46±0.01  
0.46±0.06 

Classical 0.001 / 0.002 

0 / 1 
0.1 / 0.9 
0.2 / 0.8 
0.3 / 0.7 
0.4 / 0.6 
0.5 / 0.5 
0.6 / 0.4 
0.7 / 0.3 
0.8 / 0.2 
0.9 / 0.1 

1 / 0 

400 1 

0.99±0.01  
0.75±0.10  
0.85±0.03  
0.91±0.03  
0.89±0.04 
0.91±0.1  
0.94±0.03  
0.98±0.03  
0.98±0.04  
0.99±0.03 
0.99±0.02 

Noise floor 
threshold Classical 0.005 -- 

200 
300 
400 
500 

1 See Fig. 
S3C 

 

Figure S3. Related to Figure 4. Effect of potential artifacts on PIPE’s calculation of α. A) Simulations of 
random walk with two equal particle populations, each with a different diffusion coefficient. α is shown 
as a function of the ratio of the diffusion coefficients. Dslow was held constant, as a variance of step size 
distribution of 0.1px2. B) Simulations of random walk of two particle populations with diffusion 
coefficient ratio of 2 (step size variances of 0.1px2 and 0.2px2). α is shown as a function of the relative 
fraction of the slow population. C) Simulations of random walk with a single population were processed 
using a noise floor threshold, below which the signal vanishes. α is shown as a function of the noise floor 
threshold, in units of the mean emission λ of a single particle. Several values of λ were simulated, and all 
the curves collapse into a similar trend upon normalization of the noise floor. All errorbars represent the 
mean and s.e. of 10 replicate simulations. 

A 
 

B 
 

C 
 



 

 4 

Supplemental methods 

PIPE theory and data analysis 
PIPE’s theory and computational analysis consist of filtering the signal from the raw imaging data and fitting it to an 
expanding Gaussian. We designed the computational analysis to work under a wide range of measurement noises 
and signal strengths, using a dynamic signal averaging scheme. The stages of the computational analysis are 
described in detail below. PIPE’s user manual and the entire source code can be found at englandlab.com. 

Image segmentation  

A typical photo-conversion movie shows a single cell, which may of may not fill the entire field of view. Excluding 
the cell exterior from the analysis is a crucial feature of the data analysis for two reasons, both of which are related 
to the subsequent Gaussian fitting of the intensity profiles. The first reason to exclude the cell exterior from the data 
analysis is that the cell interior emits more fluorescence than the cell exterior, which means that intensity profiles 
that pass through the cell membrane can be reasonably fitted to Gaussians even after the profiles stop expanding and 
reach steady-state. Because intensity profiles that are solutions to the diffusion equation need to be flat at steady-
state, the fluorescence contrast created by the cell exterior would lead to incorrect Gaussian fits. The second reason 
to exclude the cell exterior from the data analysis is that when the intensity profiles reach the cell boundary, the 
main assumptions of PIPE break down: the MSD stops growing linearly with time, and the intensity profile shape 
deviates from a Gaussian. 

To exclude the extracellular space from the analysis, it is straightforward to use standard image segmentation 
algorithms. We used the following algorithm (see Fig. S1 for output of different stages): 

1) averaged_image = average_pixel_by_pixel(first 30 images of movie) 
2) edge_mask = detect_edges(averaged_image) % sharp spatial fluctuations in brightness are identified as edges 

and marked as 1s while other pixels are marked as 0s. 
3) dilated_mask = dilate(edge_mask) % edge detection may not identify the whole cell membrane, so dilation 

helps filling gaps in the segmented membrane and create a continuous stretch of 1s. 
4) filled_mask = fill_holes(dilated_mask) % creates islands of 1s in a sea of 0s 
5) eroded_mask = erode(filled_mask) % shaves off some 1s from the island perimeters to compensate for the 

dilation in step (3) 
6) cell_mask = find_largest_island_of_1s(eroded_mask) % identify the cell as the largest island of pixels with 

value 1. This compensates for background noise that may cause the edge detection algorithm to segment other 
edges that are outside the cell. 

Note that this algorithm creates a cell mask based on the first 30 images of the movie, and assumes that this 
mask describes the cell interior during the entire movie. This assumption is justified, since we did not observe any 
cell motility during the imaging time. In addition, we only considered the cell boundary to appear in the field of 
view if the area taken by the cell interior was less than 90% of the field of view area. Otherwise, no cell was 
detected, and the cell mask included the entire field of view. We made this choice because our algorithm often 
detected artificial boundaries very close to the borders of the field of view, even in in vitro data, where no cells are 
imaged.  

Automatic detection of pulse coordinates 

PIPE only analyzes the frames acquired after the photo-converting laser has turned off. In addition, PIPE defines the 
intensity profiles so that they pass through the center of the photo-converted ensemble, where the fluorescence 
intensity is highest. To achieve these restrictions, PIPE automatically identifies the coordinates of the pulse, i.e. the 
frame where the photo-conversion laser was turned off and the pixel that marks the center of the fluorescence at that 
frame. While this task can be done manually by the end-users, automating it makes it easier to apply PIPE to a large 
number of movies. We used the following procedure: 

1) for t=0:end 
a. total_fluorescence(t) = average_within_image(movie(t)) 

2) t_start = detect_sudden_change_in_gradient(total_fluorescence) 
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3) t_end_of_pulse=find_location_of_peak(total_fluorescence(t_start:end)) % the photo-conversion laser 
increases the average fluorescence in the field of view, so the frame that contains the highest average 
fluorescence after t_start is the last frame before the laser was turned off.  

4) area_of_pulse = segment_image(movie(t_end_of_pulse)) % this image segmentation is similar to the 
procedure used in the previous section, only that instead of edge detection we use thresholding on T 
percent of maximum fluorescence. We start from T=100% and gradually lower T until the detected 
area has a radius between 15 and 100 pixels. (The entire field of view is 512 pixels wide). 

5) [x_center, y_center] = find_centroid(area_of_pulse) 

Correction of baseline fluorescence and noise reduction 

To eliminate background fluorescence from the analysis, data acquired prior to the pulse was averaged-over, 
smoothed and then subtracted from the rest of the data. Next, measurement noise was decreased by averaging 
images at consecutive time points pixel-by-pixel, and assigning to the resulting image a single time point at the 
middle of the averaged-over time range. The averaging scheme (number of images averaged at each time point) was 
designed to keep the SNR high for a long time while avoiding averaging too much and thereby distorting the 
Gaussian shape of the intensity profiles. Lastly, one-dimensional intensity profiles were segmented from the images 
in the horizontal dimension. The profiles were averaged over several parallel lines (usually 30) pixel-by-pixel to 
further decrease noise. 

Random walk simulations 
To test how PIPE’s accuracy is affected by various types of noise and potential artifacts, we imitated imaging data 
by simulating diffusion starting from a Gaussian initial condition. It is well known in statistical mechanics that 
Fickian diffusion emerges from a large number of particles undergoing random walks. In this section we describe 
our simulations, in which we generated trajectories of random walkers and then binned the trajectory data into pixel 
matrices.  

Core random walk algorithm 

The simplest random walk algorithm is well known: starting from time zero and any initial locations, at each time 
step every simulated particle takes a spatial step of constant size either left or right in every spatial dimension. This 
simple algorithm generates trajectory ensembles with two important properties: 𝑥 = 0 and 𝑥 ! = 2𝑑𝐷𝑡, where 𝑥 
is displacement and triangular brackets denote ensemble average, and where 𝑑 is the number of spatial dimensions, 𝑡 
is the time step and 𝐷 is the effective diffusion coefficient of the ensemble.  𝐷 is not an input parameter of the 
algorithm, but a result of the similar behavior of many random walkers and a continuous concentration following the 
diffusion equation. 

We slightly modified this basic algorithm by sampling the step sizes from a continuous normal distribution with 
mean 0, instead of randomizing between +1 and -1. This choice does not change the properties above. We chose to 
switch to this distribution because the only variable in this distribution is the variance, which is linear in 𝐷. Thus, by 
changing the step size distribution we directly change 𝐷 and only 𝐷. In addition, this continuous distribution 
allowed us to work with a continuous space rather than with a discrete space, which removes finite-size effects that 
exist when working with discrete spaces. 

We chose the simulation parameters to most accurately imitate the real microscopy data. We considered the unit of 
each time step to be 10ms and the unit of the step size variance to be 1µm2. We explored three orders of magnitude 
of step size variance, from 0.001 to 2, which correspond to diffusion coefficients between ~0.1µm2/sec and 
~200µm2/sec. This range covers most of the biomolecules in the cell, from large organelles and membrane proteins 
to small peptides in the cytoplasm. We sampled the initial locations of the particles from a two-dimensional normal 
distribution with standard deviation of 3µm, similar to the observed photo-converted proteins in our experiments 
immediately after the photo-conversion pulse. We chose the number of particles to be 105, which fits the expected 
number of photo-converted fluorophores in a typical experiment: according to bionumbers.hms.harvard.edu, there 
are ~1010 proteins in a mammalian cell, which corresponds to a concentration of ~108proteins/(µm)3. Highly 
expressed proteins comprise ~1% of cellular proteins or less, so in our experiments, DDR concentration is at most 
106proteins/(µm)3. The photo-conversion pulse converts a volume of ~(µm)3, and assuming 10% conversion 
efficiency, we obtain 105 photo-converted proteins. We simulated each particle for 1000 time steps, matching a 
typical experiment of 10 seconds.  
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We chose to perform the simulations in two spatial dimensions, because this way we struck a balance between the 
aims of accurately imitating our experiments and keeping simulation time feasibly short. Since our COS7 cells are 
much wider than they are thick, and since the focal plane contains most of the cell volume in the height dimension, 
the cell’s interior can be approximated as a two-dimensional space. A more precise model would include the third 
dimension and would use various shapes to imitate the cell membrane in the third dimension, but the additional 
accuracy of this model would come at a significant expense in time dedicated to checking the effects of the cell 
shape on the results. Even in thick in vitro samples, diffusion is effectively two-dimensional, because the 
concentration profile at 𝑡 = 0 is only Gaussian in the horizontal dimensions. In the vertical dimension fluorescence 
can be approximated as uniform, since the photo-conversion laser passes through the whole sample in the vertical 
dimension. 

Before running PIPE on the simulated data, we tested a few simulations (chosen at random) for the behavior of the 
mean displacement and the MSD. We directly calculated the displacement and MSD, averaged over the trajectory 
ensemble at each time point. We then calculated the time average of the mean displacement and found that it is very 
close to zero (i.e. much smaller than a typical step size), as expected. In addition, we fitted MSD versus time to a 
power-law and obtained an exponent of 1±0.02, verifying the expected linear temporal scaling. 

Simulation of Continuous Time Random Walk (CTRW) 

As mentioned above, we simulated normal diffusion by sampling random spatial steps from a (Gaussian) probability 
distribution, while leaving the waiting times between steps constant. Here, we simulated CTRW by random 
sampling of both the spatial steps and the waiting times. To obtain anomalous diffusion from CTRW, we sampled 
the waiting times from a power-law distribution 𝑃 𝑡 ∝ 1/𝑡!!!!"#, where 𝛼!"# is the desired anomalous exponent 
(Metzler and Klafter, 2000). 

Pre-processing of simulated data 

To match the format of the simulated data to that of our imaging data, we processed the simulated trajectory 
information into a time series of pixel matrices. First, we created a virtual field of view by choosing a cutoff distance 
of 30µm (with one exception, described in the Results section in the main text, where we explored cutoff distances 
between 3-45µm). The cutoff distance of 30µm corresponds to the edge of the field of view at maximal zoom in our 
imaging system. We placed the photo-converted particles in the middle of the frame by ignoring particle locations 
that were half of the cutoff distance away, in either x or y direction, from the center of the initial distribution. Then, 
we binned the location information into pixels by dividing the field of view to equal squares and counting the 
number of particles within each square at every time point. We chose the square size so that we would end up with 
512 pixels in each dimension, mimicking our imaging data. 

Noise addition 

Our random walk simulations were a useful tool for exploring how noise affects PIPE’s output. We introduced two 
types of noise to the data. First, we added Poissonian shot noise, which was intended to capture the variability in 
number of photons detected from the fluorophores due to the stochastic nature of fluorophore excitation and 
emission. We implemented this noise by mapping each pixel value, from the number of fluorophores in the pixel (N) 
to fluorescence intensity value. The mapping procedure included sampling N times from a Poisson distribution with 
average λ. We usually chose λ to be 400, which corresponds to the expected number of excitations of a single 
fluorophore during an acquisition time of a diffraction limited spot on our imaging system (~1µs at maximal zoom), 
given the decay time of GFP (2.6nsec) (Swaminathan et al., 1997). The accuracy of PIPE (average error in the EDC) 
did not change when we chose different values of λ between 1 and 1600. The second type of noise we added was 
background noise, which was aimed to represent autofluorescence and imaging-system-noise (e.g. dark current). To 
generate this noise, we added to each pixel at each time step a value that we sampled from a Poisson distribution 
with mean value 500. Using other mean values for this distribution, between 100 and 1900, did not change PIPE’s 
accuracy. 

Photo-bleaching 

We added uniform photo-bleaching to the simulations in the form of stochastic and irreversible switching off of 
single particles with a constant probability rate. This stage took place in the trajectory generation phase, before pre-
processing and noise addition. We implemented photo-bleaching by choosing a bleaching rate ω and sampling once 
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from a uniform distribution between 0 and 1 for each particle at each time step. If the number we sampled was less 
than ω, we considered the particle bleached, and stopped sampling time steps for that particle until the end of the 
simulation. We tried ω values of 10-1, 10-2, 10-3 and 10-4. The only case where bleaching significantly perturbed 
PIPE’s output was the case where ω = 10-1. Further details about the effect of simulated photo-bleaching rates are 
elaborated in the Results section below. 

Artifact exploration 
When performing simulations of anomalous diffusion, and when measuring the anomalous exponents of purified 
proteins in vitro, PIPE measured α-values that differed from the expected anomalous exponents, i.e. the simulated 
anomalous exponents 𝛼!"# in the simulations and α = 1 in solution, which describes the normal diffusion that takes 
place there. To explain this discrepancy between measurement and expectation, we screened an array of possible 
artifacts and found that population heterogeneity and non-linear fluorescence detection might skew the 
computational analysis. To examine the effect of population heterogeneity, we simulated normal diffusion with two 
subpopulations of random walkers, each with a different diffusion coefficient, and analyzed their motion with PIPE. 
The results we obtained showed that α is indeed smaller than 1, and that it decreases as the gap between the 
diffusion coefficients of the subpopulations widens (Fig. S3A). In addition, α decreases as the fraction of the slower 
subpopulation decreases (Fig. S3B). This behavior is not expected from the MSD, whose temporal scaling remains 
linear even when subpopulations vary in their diffusion coefficients. The probable explanation for our unexpected 
result is that the intensity profile of a heterogeneous population does not remain Gaussian under the diffusion 
equation. This means that the width of the profile’s Gaussian fit is not always linearly proportional to the MSD, and 
can therefore scale differently with time, i.e. with unexpected values of 𝛼. To check whether heterogeneity in 
oligomerization state is the cause for observing 𝛼 < 1 in vitro, we measured 𝛼 under a 100-fold range of DDR 
concentrations, and observed no change in 𝛼. This finding suggests oligomerization does not artifactually affect 𝛼, 
because such a significant change in concentration should modulate the relative abundance of monomeric and 
dimeric DDR (Fron et al., 2013). Nevertheless, we cannot rule out population heterogeneity as an artifact, for 
example concentration-independent heterogeneity, which might arise from DDR binding to side-products of the 
purification. 

Another effect that might cause the downward shift in measuring 𝛼 is non-linear fluorescence detection. To examine 
this effect, we changed the way simulated data is processed so that every pixel with fluorescence intensity below a 
threshold (“noise floor”) was assigned a value of zero, while pixels with values above the threshold remained 
unchanged. We performed this procedure under a range of emission statistics (changing the mean λ of the 
Poissonian fluorescence emission for the simulated particles) and found a persistent decreasing trend of 𝛼 from 1 to 
0.9 as the noise floor increases from zero to 2λ. Beyond 2λ we identified no trend, as 𝛼 values fluctuated 
significantly between replicate simulations (Fig S3C; See Table S1 for parameter values used in each simulation and 
for numerical results). While it is plausible that imaging systems have lower bounds on detection sensitivity, it is 
challenging to verify whether a noise floor as low as 2λ really exists. A signal of 2λ correponds to a concentration of 
~2 fluorophores per pixel on average. In such low concentrations, the actual number of fluorophores per pixel 
fluctuates dramatically, so a non-zero average signal is expected even if no signal is registered from pixels with two 
fluorophores or fewer. It may be possible to test the noise floor hypothesis using immobile fluorophores, ideally of 
the kind that does not photo-bleach.  
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Differences between in vitro and in vivo data 
One of our main claims in this work is that choosing to use EDCs to describe protein motion enabled us to validate 
PIPE in vitro, where protein motion can be justifiably modeled as Fickian diffusion. Obtaining accurate results in 
vitro allowed us to assert that results such as cell-to-cell variability in EDCs describe real biophysical differences, 
rather than flaws in PIPE. To reach this conclusion, it is necessary to establish that the in vitro and in vivo data are 
sufficiently similar in all aspects other than the underlying physical process. 

While the in vitro and in vivo data share many properties because they were acquired by the same imaging system, 
they differ in their time durations. While in vitro movies were analyzable up to one hundred frames after photo-
conversion, in vivo movies were usually analyzable only up to frame number 10 or 20. The frames that followed 
were too noisy to analyze: they produced Gaussian fits with low amplitudes compared with the magnitude of noise, 
and with widths that had large error bars and that broke the trend of linear scaling of the square widths from the first 
10 or 20 frames. To understand the effect of the movie duration on the accuracy of measuring the EDC, we 
reanalyzed all the in vitro movies only up to frame 15, and we found that as a result, the EDC increases by 
21%±17% on average pulse or minus one standard deviation. This finding decreases the expected accuracy but does 
not undermine the applicability of PIPE in vivo.  
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