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Heterologous prime-boosting with viral vectors encoding the
pre-erythrocytic antigen thrombospondin-related adhesion
protein fused to a multiple epitope string (ME-TRAP) induces
CD8+ T cell-mediated immunity to malaria sporozoite chal-
lenge in European malaria-naive and Kenyan semi-immune
adults. This approach has yet to be evaluated in children and
infants. We assessed this vaccine strategy among 138 Gambian
and Burkinabe children in four cohorts: 2- to 6-year olds in
The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to
12-month-olds and 10-week-olds in The Gambia. We assessed
induction of cellular immunity, taking into account the distinc-
tive hematological status of young infants, and characterized
the antibody response to vaccination. T cell responses peaked
7 days after boosting with modified vaccinia virus Ankara
(MVA), with highest responses in infants aged 10 weeks at
priming. Incorporating lymphocyte count into the calculation
of T cell responses facilitated a more physiologically relevant
comparison of cellular immunity across different age groups.
Both CD8+ and CD4+ T cells secreted cytokines. Induced anti-
bodies were up to 20-fold higher in all groups compared with
Gambian and United Kingdom (UK) adults, with comparable
or higher avidity. This immunization regimen elicited strong
immune responses, particularly in young infants, supporting
future evaluation of efficacy in this key target age group for a
malaria vaccine.

INTRODUCTION
Vaccination is one of the most cost-effective health care interven-
tions available, and currently used vaccines prevent an estimated
2.5 million deaths each year.1 Most vaccines are administered during
infancy and protect primarily through the induction of antibodies.2,3
Mol
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The exception is Bacille Calmette-Guérin (BCG), where protection
appears to involve mainly CD4+ T cells. However, there is a range
of diseases affecting infants, for which vaccines are yet to be devel-
oped, where an ability to induce potent CD8+ T cell responses could
be important. These include respiratory syncytial virus (RSV), HIV,
tuberculosis, and vaccines targeting malaria parasites at the liver stage
of infection.4 An extensive literature in murine immunology docu-
ments frequent reductions in CD8+ T cell induction in newborn
mice, suggesting that generation of such T cell responses in human
infants might be difficult.5–8 Limited studies in infants demonstrate
reduced Th1 and proliferative responses to vaccination;9–11 however,
data are lacking on the capacity to induce CD8+ T cells in early
infancy.

A highly effective malaria vaccine against the most lethal malaria spe-
cies, Plasmodium falciparum, could help to save half a million lives
each year.12 The primary target population for a vaccine is young in-
fants in sub-Saharan Africa because from 6months of age, infants and
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Table 1. Study Outline

Group Age Site N

1st Vaccine Dose
ChAd63
ME-TRAP, vp

2nd Vaccine
Dose MVA
ME-TRAP, PFU

1a

2–6 years The Gambia

6 1 � 1010 1 � 108

1b 6 1 � 1010 2 � 108

1c 6 HDCRV (1 mL) HDCRV (1 mL)

1d 6 5 � 1010 1 � 108

1e 6 5 � 1010 2 � 108

1f 6 HDCRV (1 mL) HDCRV (1 mL)

2a

5–12 months The Gambia

12 1 � 1010 1 � 108

2b 12 5 � 1010 1 � 108

2c 12 no vaccine no vaccine

3a

10 week The Gambia

12 1 � 1010 1 � 108

3b 12 5 � 1010 1 � 108

3c 12 no vaccine no vaccine

4 5–17 months Burkina Faso 30 5 � 1010 1 � 108

vp, viral particles; PFU, plaque-formingunits;HDCRV, humandiploid cell rabies vaccine.
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children in this region bear the greatest burden of malaria mortality.12

Themost advancedmalaria vaccine, RTS,S/AS01, shows good efficacy
against controlled human malaria infection (CHMI) in adults in the
United States,13,14 however, efficacy against clinical malaria observed
among 6- to 12-week-old infants in a large phase 3 clinical trial was
�30% over 12 months,15,16 and declined thereafter, well below the
target of 75% efficacy against clinical malaria specified by the updated
Malaria Vaccine Technology Roadmap.17,18 RTS,S/AS01 does not
induce CD8+ T cells; efficacy is mediated by IgG antibodies and
CD4+ T cells against the circumsporozoite (CS) protein, a pre-eryth-
rocytic antigen that is highly abundant during the sporozoite stage of
the parasite life cycle.19–22 Immunogenicity data from efficacy trials
demonstrated that the levels of anti-CS antibodies induced in 6- to
12week-old infants were 3-fold lower than in 5- to 17-month-olds,
suggesting that RTS,S/AS01 is less immunogenic in young in-
fants.15,23 This stage of the parasite life cycle is an attractive target
for a humoral response as sporozoites can be eliminated before infect-
ing host hepatocytes, however, this window may be as brief as
30min.24 The liver-stage of the P. falciparum life cycle is also a leading
target for vaccination. This stage lasts between 5.5 and 7 days in
humans,25–27 thus prolonging the opportunity for antigen-specific
CD8+ T cells to locate and kill infected hepatocytes.

We have previously described vaccination approaches employing the
sporozoite antigen thrombospondin-related adhesion protein
(TRAP) fused to a multiple epitope string (ME) in a number of deliv-
ery platforms including DNA and replication-deficient viral vectors.28

Most recently, we have demonstrated the safety and immunogenicity
of a heterologous prime-boost approach using a chimpanzee adeno-
virus (ChAd63) andmodified vaccinia virus Ankara (MVA), both en-
coding the ME-TRAP subunit.29–31 This regimen induces cellular
immunity comprising both CD4+ and CD8+ phenotypes and IgG
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antibody responses in malaria-naive and semi-immune adults.32,33

Against CHMI with P. falciparum-infected mosquitoes, ChAd63
MVAME-TRAP elicited 21% sterile efficacy and significantly delayed
the time-to-patency of malaria in a further 36% of vaccinees.34 Effi-
cacy was strongly associated with monofunctional interferon-gamma
(IFNg)-secreting CD8+ T cells. In a recent field trial in Kenyan adults,
67% efficacy against malaria infection was induced by the same im-
munization regime, and again, a T cell correlate of efficacy was
observed.35 Significant anti-TRAP IgG titers after heterologous
prime-boost with ChAd63 ME-TRAP and MVA ME-TRAP could
also contribute to vaccine efficacy.33

We present here a detailed evaluation of the high-level T cell and anti-
body responses induced by this regimen in young children and in-
fants. Infants have very different hematological parameters to older
children and adults: total blood volume is substantially lower and
numbers of circulating lymphocytes per ml significantly higher.36

We propose an alternative approach for calculating T cell responses
following vaccination, which takes account of the higher lymphocyte
count in infants and young children. This methodology is especially
relevant when comparing cellular immunogenicity across age groups.

Here, we report T cell and antibody immunogenicity across four pe-
diatric age strata ranging from 6 years to 10 weeks old, from three
clinical vaccine studies using the ChAd63 ME-TRAP and MVA
ME-TRAP regimen in malaria-exposed African children and infants.
Responses are also compared to those of malaria-naive and malaria-
exposed vaccinated adults. Given that each clinical trial was a small
phase I study, combining the datasets together into a single analysis
facilitates the observation of trends across age groups and between co-
horts with differing malaria exposure. Two clinical trials were per-
formed in the western region of The Gambia in Sukuta, where modest
malaria transmission is still observed following seasonal rains, despite
a substantial decline in incidence since 2003.37 A third study was un-
dertaken in Burkina Faso with highly seasonal transmission and a far
greater incidence of malaria than in The Gambia, averaging more
than one confirmed clinical episode per child per year.38,39 An effec-
tive malaria vaccine would be useful in both settings.

RESULTS
Study Design

Two hundred children were screened for eligibility across the three
trials and 138 eligible children were enrolled, vaccinated, and fol-
lowed up (Figures S1A and S1B) Trial groups are shown in Table 1.
Primary outcomes of safety, reactogenicity, dose-finding, and pre-
liminary cellular immunogenicity from this study are reported
separately.40 Baseline demographics of trial participants are shown
in Table S1.

Immunogenicity

T Cell Responses Assessed by ELISpot

We report elsewhere ex vivo IFNg ELISpot responses stratified by age
and dose in group 1 and group median response data stratified by
dose in groups 2, 3, and 4.40 Peak ELISpot responses were compared
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Figure 1. ELISpot Responses across Trials with Age De-escalation

(A) Comparison of peak ELISpot immunogenicity at 7 days post-MVA including data

from previously published trials in adults,32,34 expressed as SFC per 106 PBMC

(Kruskal-Wallis test with Dunn’s post-test for multiple comparisons between all

groups. Dotted lines show lower limit of assay detection (LLD) and positive threshold

for ELISpot response. (B) Lymphocyte counts per milliliter of blood for all vaccinated

volunteers. (Kruskal-Wallis test with Dunn’s post-test for multiple comparisons

between all groups. Adult groups not combined due to difference by 2-tailed Mann-

Whitney test, p = 0.0009). (C) ELISpot responses expressed as SFC per milliliter of

blood (Kruskal-Wallis test with Dunn’s post-test for multiple comparisons to adult

control group denoted by black bars, Kruskal-Wallis test with Dunn’s post-test for

multiple comparisons between all pediatric groups denoted by gray bars). Closed

circles, UK adults; open circles, Gambian adults; open triangles, all pediatric

groups. Numbers in green and group bars represent group medians. *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001.
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between groups in these age de-escalation studies with those from
previously published adult phase I trials in the United Kingdom34

and The Gambia.32 A trend toward lower T cell immunogenicity in
pediatric vaccinees compared with adult vaccinees was measured,
with responses in Burkinabe children significantly reduced (Fig-
ure 1A). Notably, responses in 10-week-old Gambian infants were
comparable to those in adults and higher than in Burkinabe children
aged 5–12 months and 13–17 months (Figure 1A; p < 0.0001, Krus-
kal-Wallis test with Dunn’s correction for multiple tests). No differ-
ences were measured between responses in United Kingdom (UK)
and Gambian adults (data not shown32). Due to the observation
that children under 17 months have significantly higher lymphocyte
counts per milliliter of blood than older children and adults (Fig-
ure 1B; p < 0.0001, Kruskal-Wallis test with Dunn’s correction for
multiple tests), expressing ELISpot responses using the number of pe-
ripheral blood mononuclear cells (PBMC) as the denominator may
not accurately reflect immunogenicity across age groups. We there-
fore express ELISpot responses as spot-forming cells (SFC) per milli-
liter of blood by integrating lymphocyte counts collected during
routine hematology tests at each time point. Using this arguably
more physiologically relevant denominator, T cell responses were
comparable between adults, children, and older infants. Furthermore,
responses in 10-week-old infants were almost 3-fold higher than UK
and Gambian adults (Figure 1C, p = 0.0017, Kruskal-Wallis test with
Dunn’s correction for multiple tests against adult control group). No
differences were measured between responses in UK and Gambian
adults (data not shown). Responses remained higher in Gambian
10-week-old infants compared to both Burkinabe age groups (Fig-
ure 1C; p = 0.0007, Kruskal-Wallis test with Dunn’s correction for
multiple tests between all pediatric groups).

T Cell Responses Assessed by Flow Cytometry

Flow cytometry is reported for samples from Gambian 5- to
12-month-olds and Burkinabe 5- to 17-month-olds. Due to limited
PBMC availability and technical issues with the assay, older children
and young infants were not assessed. Assessment of cytokine ex-
pression 7 days after boosting with MVA ME-TRAP showed detect-
able IFNg, interleukin 2 (IL-2), and tumor necrosis factor-alpha
(TNF-a) secretion from CD4+ and CD8+ T cells (Figure 2).
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Figure 2. T Cell Responses by Flow Cytometry

Responses were assessed from cryopreserved PBMC for

group 2 (5- to 12-month-olds in the Gambia, N = 8) and

group 4 (5- to 17-month-olds in Burkina Faso, N = 12).

Dotted lines represent the lower limit of detection for

CD4+ and CD8+ T cell populations. Bars represent geo-

metric means. Open symbols, group 2; closed symbols,

group 4.
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Expression of the degranulation marker CD107a on CD8+ T cells was
also evident in 15% of volunteers tested.

Antibody Responses after Vaccination

Antibody responses to vaccination in Gambian 2- to 6-year-olds
(group 1) were weak, irrespective of priming or boosting dose (Fig-
ure 3A). IgG titers in Gambian and Burkinabe infants and young chil-
dren (groups 2, 3, and 4) markedly increased 7 days after boosting
with MVA (Figure 3B). In Gambian 10-week-olds (group 3), IgG ti-
ters were significantly higher post-boost in the group that received the
higher dose of ChAd63 ME-TRAP (p = 0.0008, 2-tailed Mann Whit-
ney test, group 3a versus 3b), however, there were no significant ef-
fects of ChAd63 ME-TRAP dose in other age groups (Figure 3B). Re-
sponses in all groups of infants and children under 2 years were very
substantially and significantly higher than responses in UK and Gam-
bian adults (Figure 3C; p = < 0.0001, Kruskal-Wallis test with Dunn’s
correction for multiple tests comparing between all groups). Re-
sponses in Gambian 2- to 6-year-olds (group 1) were similar in
magnitude to those in adults. IgG subtypes were also measured for
each group. IgG1 and IgG3 subclasses showed the highest increase
above baseline, with significantly higher titers in infants and young
children (groups 2, 3, and 4) than older children (group 1) or adults
(Figures 3D and 3E). Titers of IgA antibodies at the peak of the im-
mune response were more frequently detected in the Burkinabe in-
fants, than in the Gambian groups (Figure 3F). IgM antibody re-
sponses were low after vaccination and did not vary between
groups (data not shown).

Avidity of IgG antibodies was measured at the peak time point (Fig-
ure 4A) and was significantly higher in Burkinabe infants and chil-
dren when compared with Gambian 10-week-olds (p = 0.0006, Krus-
kal-Wallis test with Dunn’s correction for multiple tests). A similar
trend in IgG avidity was seen in Gambian 5- to 12-month-olds
550 Molecular Therapy Vol. 25 No 2 February 2017
compared to Gambian 10-week-olds. Children
aged 2–6 years (group 1) were not included in
this analysis due to the low number of individ-
uals with high enough titers to perform the
assay. Differences in antibody avidity between
groups were further studied by measuring the
avidity of IgG1 and IgG3 subtypes in younger
children and infants (groups 2, 3, and 4; Figures
4B and 4C), which revealed that the lower IgG
avidity in 10-week-olds was largely due to lower
avidity of IgG1 antibodies as IgG3 avidity was
comparably low across all groups of infants and children. Avidity of
IgG1 antibodies was highest in Gambian infants aged 5–12 months
and significantly higher than that in Burkinabe infants of comparable
age (Figure 4B; p < 0.0001, Kruskal-Wallis test with Dunn’s correction
for multiple tests). A clear effect of age was apparent in Burkinabe
5- to 17-month-olds (group 4), in which IgG1 avidity was positively
associated with age at first vaccination (Spearman’s r = 0.47, p 0.02,
Figure 4D). Total IgG avidity significantly increased between 1 and
7 weeks post-boost in both Gambian 5- to 12-month-olds and
10-week-olds (p = 0.0015 and p = 0.0010, respectively, Wilcoxon
matched pairs test between time points within the same group, Fig-
ure 4E). The magnitude of the increase in avidity after boosting was
the same for both age groups with the ratio of the avidity at 7 weeks
to 1 week post-boost comparable for 5- to 12-month-olds and
10-week-olds (Figure 4F).

Neutralizing antibodies to the adenovirus vector were measured prior
to vaccination in group 1 only and were weaker than those measured
previously in Gambian adults (74 ELISA units [EUs], 95% confidence
interval [CI] 35–155 in group 1 versus 192 EUs, 95% CI 104–422).32

Neutralizing antibody titers were not correlated with T cell or anti-
body responses at the peak time point 7 days after MVA ME-TRAP
vaccination (Figures 4G and 4H).

DISCUSSION
We demonstrate here that immunization of children and infants with
a prime-boost regimen using ChAd63 and MVA ME-TRAP induces
high level T cell and antibody responses to a pre-erythrocytic malaria
antigen that has previously demonstrated efficacy against CHMI in
malaria naive adults and against natural infection in semi-immune
adults.33–35 Levels of TRAP-specific T cells and IgG were highest in
infants who received their priming immunization at 10 weeks of
age and an MVA ME-TRAP boost 8 weeks later.
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Figure 3. Antibody Responses to Vaccination

(A) Geometric mean time course of anti-TRAP IgG for Gambian 2- to 6-year-olds (group 1) vaccinated with high and low dose ChAd63 ME-TRAP and MVA ME-TRAP. (B)

Geometric mean time course of anti-TRAP IgG titer for Gambian 5- to 12-month-olds (group 2), Gambian 10-week-olds (group 3) and Burkinabe 5- to 17-month-olds (group

4). (C) Peak IgG titer at 7 days post-MVA. (D and E) TRAP-specific IgG1 and IgG3 antibodies at day 63 (1 week post-MVAME-TRAP). (F) TRAP-specific IgA antibodies at day

(legend continued on next page)
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Higher ELISpot responses were measured in adults vaccinees
compared to pediatric vaccinees using the standard ELISpot readout.
However, comparisons of immunogenicity in de-escalating age
groups are complex due to differences in body mass and total blood
volume of participants receiving similar doses of vaccine. More spe-
cifically, variations are observed in the numbers of lymphocytes circu-
lating per milliliter of blood between adults and children and between
infants and older children. To address this, we have incorporated the
lymphocyte count from the full blood count performed at the same
time into the denominator of the units used to report ELISpot re-
sponses. Using this approach to take account of the much higher
lymphocyte frequencies measured in young children and infants,
we have quantified comparable T cell responses between adults, chil-
dren, and older infants. Responses in 10-week-old infants were almost
3-fold higher compared with adults, indicating that ChAd63 and
MVAME-TRAP T cell immunogenicity is increased and not reduced
with administration to young infants.

While T cell responses between the two sites were comparable be-
tween 5- to 17month-olds, overall lower responses were measured
in Burkina Faso, potentially due to a combined effect of age and
differing malaria exposure by site. Malaria-related immunosuppres-
sion could lead to reduced vaccine immunogenicity or differences
in innate immunity may exist in the early weeks of life in these chil-
dren. Congruently, malaria transmission in the Gambia is markedly
lower than in Burkina Faso,37,39,41 thus these effects would likely be
seen in older Gambian children who have had more years of lower
level malaria exposure; and in younger infants in Burkina Faso where
transmission is higher.42,43

Higher frequencies of antigen-specific cells per milliliter of blood traf-
ficking through the spleen may increase the likelihood of antigen
recognition from antigen-presenting cells following vaccination, giv-
ing rise to greater cellular immunity. The level of antigen-specific
T cells per milliliter is likely to correlate better with vaccine efficacy
than T cells per million PBMC, as the former should correlate better
with the rate at which antigen-specific T cells enter the liver, which is
the relevant target organ in malaria.

Anti-TRAP IgG titers at the peak time point were, remarkably,
�20-fold higher in the youngest groups of children and infants
than those at the same time point post-vaccination in malaria-naive
and semi-immune adults. Interestingly, titers in 2- to 6-year-old chil-
dren were lower than those in adults and younger children or infants,
which when assessed in combination with the similar observation in
T cell frequencies, suggests vaccination of older children may be less
effective at preventing malaria infection. A recent study with these
viral vectors expressing TRAP and circumsporozoite protein (CS)
in malaria-naive adults, proposed a role for both anti-CS and anti-
63. Dashed lines show seropositive threshold (mean + 3 SD of 42 malaria-naive samp

adults at peak; open triangles all pediatric groups at peak. All adults boosted with 2 �
ME-TRAP. Medians displayed. All comparisons across groups made using Kruskal-Wa

**p < 0.01, ***p < 0.001, ****p < 0.0001.
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TRAP antibody responses in reducing parasite density during the
liver-stage of malaria infection.33 This suggests that the additional
component of antibody immunogenicity elicited in the youngest
age groups here may improve the efficacy of this vaccine regime
to a level above that observed in adults undergoing CHMI. In
RTS,S/AS01 trials a reduction of anti-CS IgG responses in a compa-
rable group of 6- to 12-week-old infants compared with adults
associated with decreased vaccine efficacy.44 The finding that viral-
vector-induced antibody levels are not decreased in this age group
is therefore very encouraging, because this is the preferred target
age group for a malaria vaccine.

Avidity of antibodies measured 7 days after boosting was lower in
young infants than in 5- to 12- or 5- to 17-month-olds, although
the kinetics of avidity maturation were comparable between these
age groups. In the Burkinabe infants, IgG1 avidity was significantly
lower than in Gambian infants of the same age, perhaps again due
to increased malaria exposure in Burkina Faso. Avidity of IgG anti-
bodies alone has been shown not to be predictive of malaria vaccine
efficacy for RTS,S/AS01, however, an association between the change
in avidity, as well as IgG titers following the second and third dose
were strongly associated with a reduction in the risk of malaria.45

This suggests that the kinetics of antibody avidity maturation as
well as the magnitude of the IgG response contributes to vaccine ef-
ficacy. Further work to determine the potential for antibodies induced
by this regime to inhibit parasite invasion using in vitro functional as-
says is underway.

Previous studies have demonstrated a reduction of cellular responses
to vaccines in infants with reduced or defective secretion of Th1 cy-
tokines in response to oral polio and protein-in-adjuvant vaccines,
such as DTaP.10,11,46 Similarly, preferential differentiation of B cells
into memory cells rather than plasma cells is associated with reduced
IgG responses to protein and polysaccharide antigens in infants.8,47

The preliminary observations reported here demonstrate that replica-
tion-deficient viral vectors can elicit immune responses in infants that
appear to be superior to those in comparable adult populations. De-
livery of antigens by viral vectors may overcome the limitations of the
immature infant immune system, which have been shown to limit
seroconversion to EPI vaccines.48,49 This is consistent with strong
CTL function previously measured following congenital infection
with cytomegalovirus and Trypanosoma cruzi, demonstrating that
under certain conditions, the immature human immune system is
indeed capable of potent CTL activity.50,51

In this study, we have assessed the ability of a virally vectored prime
boost regime to induce immunity to a protective pre-erythrocytic ma-
laria antigen in two populations with very different malaria endemic-
ities. Furthermore, a novel methodology for more physiological and
les tested on each assay). Closed circles UK adults at peak; open circles Gambian

108 PFU MVA ME-TRAP, all children and infants boosted with 1 � 108 PFU MVA

llis with Dunn’s post-test for multiple comparisons to adult control group. *p < 0.05.
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Figure 4. Antibody Avidity and Anti-Vector

Neutralizing Antibodies

(A) Avidity of total IgG (B), IgG1 and (C) IgG3 subtypes in

Burkinabe and Gambian younger children and infants

(groups 2, 3, and 4) and adults (Kruskal-Wallis test with

Dunn’s post-test for multiple comparisons between all

groups). (D) Effect of age at first vaccination on IgG1

antibody avidity after boosting in Burkinabe 5- to

17-month-olds (group 4, Spearman’s r = 0.47, p 0.02).

(E) Increase in total IgG avidity between 1 and 7 weeks

post boost, (p = 0.0015 for 5- to 12-month-olds,

p = 0.0010 for 10-week-olds, Wilcoxon matched pairs

for comparisons within groups. Mann Whitney test with

post-test for multiple comparisons between groups at

comparable time points). (F) Change in total IgG avidity

between 1 and 7 weeks post boost, expressed as a ratio

for each age group (no significant difference by t test).

(G and H) Correlations between group 1 neutralizing

antibody titers to the ChAd63 vector and peak antibody

titers by ELISA and T cell responses by ELISpot, respec-

tively. Spearman’s r = 0.06, p 0.75 for (G) and r = 0.002,

p 0.99 for (H). Medians displayed. Kruskal-Wallis tests

performed with Dunn’s post-test for multiple comparisons

between all groups. *p < 0.05. **p < 0.01, ***p < 0.001,

****p < 0.0001.
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robust comparison between adult and pediatric T cell responses was
developed and applied across several age de-escalating clinical studies.
Our immunogenicity findings combined with the acceptable safety
profile observed in these studies40 show clear potential utility of this
approach for immunization against malaria and other childhood ill-
nesses where either antibodies or cellular immunity are relevant to
protection, for example RSV.52 Further studies are underway to assess
optimal regimes for immunization with co-administration of WHO
Expanded Program of Immunisation (EPI) vaccines and to determine
efficacy against clinical and severe malaria in a cohort of infants and
children in a region of high malaria transmission.

MATERIALS AND METHODS
Objectives

The primary objective of these trials was to evaluate the safety and re-
actogenicity of the ChAd63ME-TRAP andMVAME-TRAP vaccines
in malaria-experienced Gambian and Burkinabe children. Secondary
objectives were to evaluate the cellular and humoral immunogenicity
of the vaccines in two settings of varying seasonalmalaria transmission
while the tertiary objective was to compare the immunogenicity of the
low and high doses of MVA ME-TRAP (Gambian children only).

Study Setting

The first clinical trial (group 1) took place from December 2010 to
December 2011 in the Sukuta field site of Medical Research Council,
The Gambia. Sukuta is a peri-urban Gambian village located about
30 km south of the capital Banjul. The Sukuta field site previously
served as the base for the phase I trials of ChAd63 MVA ME-TRAP
vaccine regimen in adults (18). In this region, malaria transmission is
highly seasonal, occurring almost exclusively during the rainy season
(July to December) with greatest incidence from September to
November. Anopheles gambiae is the principal malaria vector. Previ-
ous studies have documented decline in incidence of malaria in The
Gambia.37,41 The second clinical trial (groups 2 and 3) took place
in the same setting between September 2011 and March 2013.

The third clinical trial (group 4) took place from December 2012 to
September 2013 in Banfora Health District in the Cascades region
of South Western Burkina Faso, about 400 km southwest from the
capital Ouagadougou. Malaria transmission is stable during the
year, with increased levels during the rainy season from May to
November, peaking fromMay to September.38 A. gambiae is the prin-
cipal malaria vector. Immunogenicity analyses of group 4 are split
into two age groups: 5–12 months and 13–17 months, permitting
direct analysis of 5- to 12-month-olds in the Gambia and Burkina
Faso.

Ethics and Regulatory Approval

An independent Data Safety and Monitoring Board (DSMB) was ap-
pointed before the trials began to provide oversight and to review the
safety data reports as the trials progressed. Experienced local pediatri-
cians served as local safety monitors (LSM) and, along with the
DSMB, reviewed all safety data between dose escalations. In addition,
trials were conducted according to ICH Good Clinical Practice guide-
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lines and were monitored by an external organization (Appledown
Clinical Research). The Gambian Government/Medical Research
Council Joint Ethics Committee, The Gambia Medicines Board, the
Burkina Faso Ministry of Health and Institutional Bioethics Commit-
tee, the UKMedicines andHealthcare products Regulatory Authority,
and Oxford Tropical Research Ethics Committee (OXTREC
Numbers: 64-09, 26-11, 41-12) granted approval of the study proto-
col. All three trials were registered with https://clinicaltrials.gov
(NCT01373879, NCT01450293, NCT01635647) and the Pan African
Clinical Trials Registry (www.pactr.org) (PACTR201204000362870,
PACTR201401000363170, PACTR201208000404131).

Study Design

We conducted three phase Ib studies. The first study (group 1, aged
2–6 years) in The Gambia was the pediatric arm of a phase Ib sin-
gle-blind, randomized controlled, dose-escalation study in adults
that has been reported previously.31,32 The second study, also in
The Gambia, was a subsequent single-blind randomized controlled,
dose-escalation study in children aged 5–12 months (group 2) and
10 weeks (group 3) at vaccination with ChAd63ME-TRAP. The third
study was a phase I open-label safety lead-in group of a larger phase
IIb study in Burkina Faso in children aged 5–17 months at first vacci-
nation (group 4). CONSORT diagrams are provided in the Supple-
mental Information. Protocol S1 (group 1, The Gambia), protocol
S2 (groups 2 and 3, The Gambia), protocol S3 (group 4, Burkina
Faso), and checklists S1–S3 are given in the supplemental information
of the paper reporting the clinical outcomes of these studies.40 All vac-
cinations were intramuscular with group 1 receiving doses in the del-
toid region of the arm, while all other groups were vaccinated in the
anterolateral thigh. A control group was added to group 1 because of
the anticipated high frequency of concurrent diseases in the study age
group of 2–6 years and also to aid objective assessment of the relation-
ship of adverse events to vaccination. Human diploid cell rabies vac-
cine (HDCRV) (Sanofi Pasteur MSD) was chosen as the comparator
vaccine because rabies is endemic in The Gambia and anti-rabies vac-
cines were not readily accessible for pre-exposure prophylaxis; hence,
the investigators deemed that giving HDCRVmight benefit the study
participants. In groups 2 and 3, no-treatment controls were included,
but there was no control group in group 4 as the subsequent larger
phase II study had a rabies vaccine control arm. For group 1,
36 eligible children were randomized to receive either group 1a: low
dose ChAd63 ME-TRAP (1 � 1010vp) followed by low dose MVA
ME-TRAP (1 � 108 plaque-forming units [ PFU]); group 1b: low
dose ChAd63 ME-TRAP (1 � 1010vp) followed by high dose
MVAME-TRAP (2� 108 PFU); group 1c: control HDCRV 1mL fol-
lowed by HDCRV 1 mL; group 1d: high dose ChAd63 ME-TRAP
(5 � 1010vp) followed by low dose MVA ME-TRAP (1 � 108

PFU); group 1e: high dose ChAd63 ME-TRAP (5� 1010vp) followed
by high dose MVA ME-TRAP (2 � 108 PFU); group 1f: Control
HDCRV 1 mL followed by HDCRV 1 mL intramuscular (IM). All
vaccinations were separated by an 8-week interval.

For groups 2 and 3, 36 eligible children in each group were ran-
domized to receive either group a: low dose ChAd63 ME-TRAP

https://clinicaltrials.gov
http://www.pactr.org
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(1 � 1010vp) followed by low dose MVA ME-TRAP (1 � 108 PFU);
group b: high dose ChAd63 ME-TRAP (5 � 1010vp) followed by low
dose MVAME-TRAP (1� 108 PFU); group c: no vaccine. For group
4, all children received high dose ChAd63 ME-TRAP (5 � 1010vp)
followed by low dose MVA ME-TRAP (1 � 108 PFU).

Pediatric groups are compared to malaria naive adult vaccinees in the
UK and semi-immune adult vaccinees the Gambia, who all received
5 � 1010 viral particles (vp) ChAd63 ME-TRAP and 2 � 108 PFU
MVA ME-TRAP.
Randomization in Groups 1, 2, and 3 and Blinding

An independent statistician at the Centre for Statistics in Medicine,
Oxford performed a stratified randomization of participants (strati-
fied by age into two categories and split by the median values of
ages of children recruited). The list of eligible children after screening
was sent to the statistician who carried out the randomization. The
statistician had no knowledge of the participants, except the age, as
this was required for the stratification. The children were randomly
allocated to six groups in dose-escalated fashion. This was done to
determine the tolerable doses as this was the first time ChAd63 and
MVA ME-TRAP vaccines were being administered in Gambian chil-
dren. The investigators and the vaccinators were un-blinded to the
group allocations. However, the study children’s parents/carers
and field workers who conducted post-vaccination assessment of re-
actogenicity and solicited symptoms were blinded to the group
allocations.
Sample Size

These phase Ib trials were not powered to detect differences between
groups. The sample size was based on general acceptance of this size
for initial assessment of safety, tolerability, and immunogenicity of
the investigational vaccines in a malaria endemic area and this size
balances the need to avoid exposing a large group of study partici-
pants to an unknown risk with the need for useful safety and immu-
nogenicity data from an adequate sample size.
Interventions

The Clinical Biomanufacturing Facility (CBF; University of Oxford,
UK) and IDT (Germany) manufactured ChAd63 ME-TRAP and
MVA ME-TRAP respectively under Good Manufacturing Practice
conditions, respectively as previously described.34
Blood Processing

Blood samples were stored at room temperature prior to processing,
which was completed within 6 hr of venepuncture. PBMC were sepa-
rated by density centrifugation from heparinized whole blood and re-
suspended in RPMI containing 10% heat-inactivated, batch-tested,
sterile-filtered fetal bovine serum (FBS) previously screened for low
reactivity (Labtech International), 1% L-glutamine, and 1% peni-
cillin/streptomycin. Cell counts were performed using trypan blue
staining and a microscope according to an established standard oper-
ating procedure (SOP) in the lab.
Ex Vivo IFNg ELISpot Assays

Ex vivo (18 hr stimulation) ELISpot assays were performed using
Multiscreen IP ELISpot plates (Millipore), human IFNg SA-ALP
antibody kits (Mabtech), and BCIP NBT-plus chromogenic substrate
(Moss Inc.). Cells were cultured in RPMI (Sigma) containing 10%
heat-inactivated, sterile-filtered fetal calf serum, previously screened
for low reactivity (Labtech International) supplemented with 1%
L-glutamine and 1% penicillin/streptomycin. Antigens were tested
in duplicate with either 200,000 or 250,000 PBMC added to each
well of the ELISpot plate. TRAP peptides were 20 amino acids in
length, overlapping by 10 amino acids (NeoBioLab), assayed in six
pools of seven to ten peptides at 10 mg/mL. Plates were counted using
an AID automated ELISpot counter (AID Diagnostika GmbH, algo-
rithm C), using identical settings for all plates, and counts were
adjusted only to remove artifacts. Responses were averaged across
duplicate wells, responses in unstimulated (negative control) wells
were subtracted from each individual pool, then responses to individ-
ual pools were summed for each strain of the TRAP antigen. Re-
sponses to the negative control were always <142 SFC/106 PBMC,
with a median of 18 SFC/106 PBMC. Pools were considered positive
if the response was greater than the median plus 2 SDs (59 SFC/106)
of all negative control wells after subtraction of the autologous back-
ground. The lower limit of detection for the assay was 28 SFC for
ME-TRAP. Staphylococcal enterotoxin B (0.02 mg/mL) and phyto-
hemmagglutinin-L (10 mg/mL) were used as a positive control,
whereby responses of >800 SFC/106 passed quality control (QC). Re-
agents and methods were standardized between the two trial sites.
Lymphocyte counts per milliliter of blood were taken directly from
the hematology breakdown or calculated by multiplying the number
of white blood cells per milliliter of blood by the lymphocyte differen-
tial percentage. These data were routinely obtained at post-vaccina-
tion time points as part of the safety assessments. This value was
then multiplied by the number of SFC per million PBMC to produce
the number of SFC per milliliter of blood.

Flow Cytometry

PBMC were frozen in FBS containing 10% DMSO and stored in the
vapor phase of liquid nitrogen. Of the 30 PBMC samples available in
group 4, we selected samples where the ELISpot on fresh PBMC at day
gave a response over 250 SFC per million PBMC, as responses lower
than this would not be detectable by flow cytometry.

Thawing was performed rapidly in a water bath and cells were rested
for 2 hr with benzonase at 25 U/106 PBMC (Novagen) before stimu-
lation overnight at 37�C with 5% CO2, either with Staphylococcal
enterotoxin B, a pool of 56 peptides at 2 mg/mL spanning the entire
length of the TRAP protein from the T9/96 strain of P. falciparum
(Neopeptide) or an unstimulated control. Brefeldin A (BD Biosci-
ences) 1 mg/mL and monensin (eBioscience) 1 mg/mL were added af-
ter 2 hr into the incubation and left to incubate for a further 16 hr.
Cells were then washed in fluorescence-activated cell sorting
(FACS) buffer (PBS containing 0.1% bovine serum albumin [BSA]
and 0.01% sodium azide and stained for viability with LIVE/DEAD
aqua amine reactive dye (Life Technologies) for 20 min at room
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temperature in the dark. Cells were then washed in FACS buffer and
permeabilized for 20 min with Cytofix/Cytoperm (BD Biosciences)
then washed in 1:10 permeabilization buffer (BD Biosciences).
A cocktail of antibodies for surface and intracellular staining was
added and incubated for 30 min at room temperature in the dark.
The antibody cocktail is described in Table S2. Cells were again
washed in permeabilization buffer and resuspended in PBS contain-
ing 1% paraformaldehyde, prior to acquisition on a BD LSR II on
the day of staining. Compensation control beads (OneComp Beads,
eBioscience, ArC Amine Reactive Beads, Invitrogen) were stained ac-
cording to the manufacturer’s instructions using the same concentra-
tion of antibody used for cells to for compensation between parame-
ters, and unstained cells were used to adjust forward and side scatter
photo-multiplier tube voltages.

Analysis of Flow Cytometry Data

At least 29,000 live CD3+ cells were analyzed per sample. Data were
prepared and analyzed using FlowJo v9.6.2 (Treestar) with a hierarchi-
cal gating strategy. A sample gating strategy is shown in Figure S2. Re-
sponses to peptidewere determined after subtraction of the response in
the unstimulated control for each sample. Samples where a response to
the positive control of >1% cytokine positive CD4+ or CD8+ T cells af-
ter subtraction of the unstimulated control could not be detected were
excluded from the analysis. All samples had a minimum of 31,000
CD4+ or 8,000 CD8+ T cells in the parent population, thus the lower
limit of detection for the assay was 0.0042% for CD4+ T cells and
0.022% for CD8+ T cells. A response was classified as positive if the
response to peptide was greater than the medium control for the cor-
responding sample. Analysis of polyfunctionality was not undertaken
due to low event numbers acquired from small pediatric samples.

Anti-vector Neutralizing Antibody Assay

One day prior to performing the assay, GripTite 293 cells (Invitrogen)
were seeded in 96-well plates (3� 104 cells/well). Heat inactivated test
samples were diluted 4-fold from 1:9 to 1:2,304 in 10% FBS in DMEM
and incubated 1:1 with ChAd63 expressing the secreted alkaline
phosphatase gene (8 � 107 vp/mL) for 1 hr at 37�C. Serum and virus
were then added to 293 cells in a volume of 200 mL in duplicate for
1 hr, after which sample and virus were aspirated and replaced with
fresh 10% FB DMEM. A virus-only control was included. After
22–26 hr at 37�C, 50 mL of medium was assayed for SEAP activity us-
ing a Phospha-Light TROPIX phosphatase assay (Applied Bio-
systems) in black assay plates, and luminescence was measured after
45 min on a Thermo-Fisher Varioskan Flash Luminometer. Anti-vec-
tor neutralization titers were defined as the dilution of serum showing
50% reduction in SEAP activity, based on observed % inhibition
values relative to SEAP activity from virus alone. For trial A, anti-vec-
tor antibodies were measured in serum and for trial B plasma was
used, however, we have determined that these sample types are equiv-
alent for this assay.

TRAP-Specific Total IgG ELISA

Standardized ELISAs for TRAP-specific antibodies were conducted
as previously described35. Briefly, a reference standard of pooled
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anti-TRAP antibody positive serum was serially diluted to produce
a standard curve, which was included on all plates. The standard sam-
ple was assigned a value in arbitrary ELISA units (EUs). The standard
curve was then used to convert absorbance values of individual test
sera (diluted to fall within the linear range of the curve) into EUs.
A “seropositive cut-off” value was calculated using the mean plus
three standard deviations of the EU values of 42 serum samples
from unvaccinated UK volunteers. For the total IgG standardized
ELISA, this cut-off value was 88 EUs.

TRAP-Specific Isotype ELISA

Isotype ELISAs were conducted as previously described53 except
plates were coated with 0.5 mg/mL of TRAP antigen in carbon-
ate-bicarbonate coating buffer and left overnight at 4�C. Briefly,
sera were diluted 1:100 in 0.2% BSA in PBS/Tween-20 (dilution
buffer) and added in duplicate to each of six 96-well plates. After
2 hr, plates were washed and one of six secondary antibodies was
added to each plate at 1:1,000 in dilution buffer, 50 mL per well.
Secondary antibodies used were: biotin-conjugated mouse anti-hu-
man IgG1 Fc (clone HP6070) (Life Technologies); biotin-conju-
gated mouse anti-human IgG2 Fc (clone HP6002) (Life Technolo-
gies); biotin-conjugated mouse anti-human IgG3 (clone HP6050)
(Sigma); biotin-conjugated mouse anti-human IgG4 (clone
HP6025) (Sigma); alkaline phosphatase-conjugated goat polyclonal
anti-human IgA a-chain (Sigma); and biotin-conjugated goat poly-
clonal anti-human IgM u-chain (Sigma). After 1 hr, plates were
washed and 50 uL of ExtrAvidin alkaline phosphatase (Sigma)
diluted 1:5,000 in dilution buffer was added to all plates (except
IgA, to which only dilution buffer was added). After 30 min, all
plates were washed and development buffer was added as for total
IgG ELISA. Blank wells and internal development controls were
included on each plate.

A “seropositive cut-off” value was calculated for each isotype or sub-
class using the mean plus 3 SDs of the EU values of 42 serum samples
from unvaccinated UK volunteers. Cut-off values were 0.147 (IgG1),
0.166 (IgG2), 0.2002 (IgG3), 0.151 (IgG4), 0.362 (IgM), and 0.374
(IgA).

TRAP-Specific IgG Avidity ELISA

IgG antibody avidity was assessed by sodium thiocyanate (NaSCN)-
displacement ELISA. The assays were conducted as for total IgG
ELISAs except that sera were individually diluted in dilution buffer
to a level calculated to reach an OD405 of 1.0 (using total IgG EUs)
and plated at 50 mL/well in 16 wells of a 96-well plate. Plates were
incubated for 2 hr at room temperature (RT) before chaotropic agent
NaSCNwas added in duplicate at increasing concentrations down the
plate (0–7 Molar [M]). Plates were incubated for 15 min at RT before
washing, incubation with secondary antibody and development as for
the total IgG assay. The concentration of NaSCN required to reduce
the OD405 to 50% of that without NaSCN ( = IC50) was used as a
measure of avidity. This was calculated from the intercept of the curve
for each sample with the line of 50% reduction of the OD405 in the
NaSCN-free well for each sample.
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IgG1 and IgG3 avidity was assessed using the same protocol, except
that two dilutions were made for each sample to levels calculated to
reach an OD405 of 1.0 (using the OD values from the IgG1 and
IgG3 ELISAs) and added to two plates, one of which was incubated
with anti-IgG1 and the other with anti-IgG3. Secondary antibodies
used were the same as used for the Isotype ELISAs.

Statistical Methods

Group data display geometric mean or median. Matched pairs ana-
lyses were conducted where time points within a group were
compared and excludes volunteers with missing data at any time
point. UK and Gambian adult data were combined for several
ELISpot and ELISA analyses due to no statistically significant differ-
ences between the two populations. A Kruskal-Wallis test was used to
compare ELISpot and ELISA data in children against the adult control
group, with Dunn’s multiple comparisons post-test. Kruskal-Wallis
tests for comparisons between all groups were also used, with Dunn’s
multiple comparisons post-test. For statistical analyses, an alpha-level
of 0.05 was considered significant and all p values are two-tailed. All
analyses were performed in GraphPad Prism, Mac version 6.
(GraphPad Software).

SUPPLEMENTAL INFORMATION
Supplemental Information includes two figures and two tables and
can be found with this article online at http://dx.doi.org/10.1016/j.
ymthe.2016.11.003.

AUTHOR CONTRIBUTIONS
Study Design, M.O.A., A.B.T., J.B.Y., S.H.H., N.A.A., C.J.A.D., K.L.F.,
B.K., S.B.S., K.B., A.V.S.H., I.N., and K.J.E.; Project Management and
Regulatory Affairs, R.R., N.K.V., O.L., A.M.L., and E.B.I.; Provided
Clinical Care to Participants, M.O.A., A.B.T., J.B.Y., and U.J.A.;
Immunological Assay Design, C.M.B., G.B., N.J.E., K.L.F., A.V.S.H.,
I.N., and K.J.E.; Performed Experiments, C.M.B., A.D., G.B., G.S.S.,
Y.J.J., O.O., N.J.E., C.T., N.O., M.O., J.N.-J., A.D., I.N., K.J.E.; Data
Analysis, C.M.B., G.B., N.J.E., I.N., and K.J.E.; Data Interpretation,
C.M.B., G.B., A.V.S.H., I.N., and K.J.E.; Preparation of Figures,
C.M.B., G.B., and K.J.E.; Manuscript Preparation, M.O.A., C.M.B.,
G.B., A.V.S.H., and K.J.E.

CONFLICTS OF INTEREST
The following authors have declared that no conflicts of interest exist:
C.M.B., A.D., G.B., G.S.S., Y.J.J., O.O., N.J.E., C.T., N.O., M.O., J.N.-J.,
A.D., M.A.O., A.B.T., J.B.Y., J.U.A., S.H.H., N.A.A., R.R., C.J.A.D.,
R.C., N.K.V., O.L., A.M.L. K.L.F., B.K., E.B.I., S.B.S., K.B., I.N., and
K.J.E. A.V.S.H. is a named inventor on patent applications on malaria
vectored vaccines and immunization regimens. Authors from
ReiThera are employees of and/or shareholders in ReiThera, which
is developing vectored vaccines for malaria and other diseases.

ACKNOWLEDGMENTS
For the study in The Gambia, we thank the Gambian National Ma-
laria Control Programme and staff of Sukuta Health Centre for their
collaboration; Momodou Cox, Isatou Bah, Victor Kouassi, Pa Saidou
Chaw, Ebrima Touray, Sarjo Sanneh, Lisa Fofana, Jarrai Barrow,
Christiana Demba, Sally Savage, Omar Badjie for laboratory support;
Maimuna Sowe, Haddy Kanyi for data management; Prof Ousman
Nyan for local safety monitoring; Jenny Mueller and Vivat
Thomas-Njie from the Clinical Trial Support Office; Dembo Kanteh,
Mamkumba Sanneh from the Research Support Office. CeriMckenna
(Appledown) for external monitoring. We thank the members of the
Data Safety Monitoring Board and all the study volunteers. This work
was supported by an award from the European and Developing
Countries Clinical Trials Partnership (EDCTP) and was performed
by the Malaria Vectored Vaccines Consortium (MVVC), a 5-year
integrated project funded by the European and Developing
Countries Clinical Trials Partnership (EDCTP, grant number
IP.2008.31100.001). The European Vaccine Initiative (EVI) is the
coordinator of the EDCTP-funded MVVC project. O.L. is executive
director of EVI. N.K.V. is an employee of EVI. The work was also sup-
ported by the UK National Institute of Health Research through the
Oxford Biomedical Research Centre (http://oxfordbrc.nihr.ac.uk/)
(A91301 Adult Vaccine), the Wellcome Trust (https://www.
wellcome.ac.uk/) (084113/Z/07/Z), and the Medical Research
Council. This research was supported by the UK Medical Research
Council (MRC) and the UK Department for International Develop-
ment (DFID) under the MRC/DFID Concordat agreement and
MC_UP_A900/1122 (M.O.A., A.D., Y.J., K.F., B.K., K.B.). Cofunding
was also provided by the Swedish International Development Coop-
eration Agency (Sida), the Austrian Federal Ministry of Science and
Research, and Irish Aid. S.H.H. holds a Wellcome Trust research
training fellowship (097940/Z/11/Z). The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

REFERENCES
1. WHO-UNICEF (2014). Global immunization data. http://www.who.int/

immunization/monitoring_surveillance/global_immunization_data.pdf.

2. Cruz, A., Torrado, E., Carmona, J., Fraga, A.G., Costa, P., Rodrigues, F., Appelberg, R.,
Correia-Neves, M., Cooper, A.M., Saraiva, M., et al. (2015). BCG vaccination-induced
long-lasting control of Mycobacterium tuberculosis correlates with the accumulation
of a novel population of CD4+IL-17+TNF+IL-2+ T cells. Vaccine 33, 85–91.

3. Plotkin, S.A. (2010). Correlates of protection induced by vaccination. Clin. Vaccine
Immunol. 17, 1055–1065.

4. Koff, W.C., Burton, D.R., Johnson, P.R.,Walker, B.D., King, C.R., Nabel, G.J., Ahmed,
R., Bhan, M.K., and Plotkin, S.A. (2013). Accelerating next-generation vaccine devel-
opment for global disease prevention. Science 340, 1232910.

5. Welsh, R.M. (2001). Assessing CD8 T cell number and dysfunction in the presence of
antigen. J. Exp. Med. 193, F19–F22.

6. Martinez, X., Regner, M., Kovarik, J., Zarei, S., Hauser, C., Lambert, P.H., Leclerc, C.,
and Siegrist, C.A. (2003). CD4-independent protective cytotoxic T cells induced in
early life by a non-replicative delivery system based on virus-like particles.
Virology 305, 428–435.

7. Adkins, B., Leclerc, C., and Marshall-Clarke, S. (2004). Neonatal adaptive immunity
comes of age. Nat. Rev. Immunol. 4, 553–564.

8. PrabhuDas, M., Adkins, B., Gans, H., King, C., Levy, O., Ramilo, O., and Siegrist, C.A.
(2011). Challenges in infant immunity: implications for responses to infection and
vaccines. Nat. Immunol. 12, 189–194.

9. Siegrist, C.A. (2001). Neonatal and early life vaccinology. Vaccine 19, 3331–3346.

10. Vekemans, J., Ota, M.O., Wang, E.C., Kidd, M., Borysiewicz, L.K., Whittle, H.,
McAdam, K.P., Morgan, G., and Marchant, A. (2002). T cell responses to vaccines
Molecular Therapy Vol. 25 No 2 February 2017 557

http://dx.doi.org/10.1016/j.ymthe.2016.11.003
http://dx.doi.org/10.1016/j.ymthe.2016.11.003
http://oxfordbrc.nihr.ac.uk/
https://www.wellcome.ac.uk/
https://www.wellcome.ac.uk/
http://www.who.int/immunization/monitoring_surveillance/global_immunization_data.pdf
http://www.who.int/immunization/monitoring_surveillance/global_immunization_data.pdf
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref2
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref2
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref2
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref2
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref2
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref2
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref2
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref2
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref3
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref3
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref4
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref4
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref4
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref5
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref5
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref6
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref6
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref6
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref6
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref7
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref7
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref8
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref8
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref8
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref9
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref10
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref10
http://www.moleculartherapy.org


Molecular Therapy
in infants: defective IFNgamma production after oral polio vaccination. Clin. Exp.
Immunol. 127, 495–498.

11. Rowe, J., Macaubas, C., Monger, T.M., Holt, B.J., Harvey, J., Poolman, J.T., Sly, P.D.,
and Holt, P.G. (2000). Antigen-specific responses to diphtheria-tetanus-acellular
pertussis vaccine in human infants are initially Th2 polarized. Infect. Immun. 68,
3873–3877.

12. WHO (2013). World Malaria Report 2013 (Geneva: World Health Organisation).

13. Bojang, K.A., Milligan, P.J., Pinder, M., Vigneron, L., Alloueche, A., Kester, K.E.,
Ballou, W.R., Conway, D.J., Reece, W.H., Gothard, P., et al.; RTS, S Malaria
Vaccine Trial Team (2001). Efficacy of RTS,S/AS02 malaria vaccine against
Plasmodium falciparum infection in semi-immune adult men in The Gambia: a rand-
omised trial. Lancet 358, 1927–1934.

14. Kester, K.E., McKinney, D.A., Tornieporth, N., Ockenhouse, C.F., Heppner, D.G.,
Hall, T., Krzych, U., Delchambre, M., Voss, G., Dowler, M.G., et al.; RTS,S Malaria
Vaccine Evaluation Group (2001). Efficacy of recombinant circumsporozoite protein
vaccine regimens against experimental Plasmodium falciparummalaria. J. Infect. Dis.
183, 640–647.

15. Agnandji, S.T., Lell, B., Fernandes, J.F., Abossolo, B.P., Methogo, B.G., Kabwende,
A.L., Adegnika, A.A., Mordmüller, B., Issifou, S., Kremsner, P.G., et al.; RTS,S
Clinical Trials Partnership (2012). A phase 3 trial of RTS,S/AS01 malaria vaccine
in African infants. N. Engl. J. Med. 367, 2284–2295.

16. RTS,S Clinical Trials Partnership (2015). Efficacy and safety of RTS,S/AS01 malaria
vaccine with or without a booster dose in infants and children in Africa: final results
of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45.

17. Moorthy, V.S., Newman, R.D., and Okwo-Bele, J.M. (2013). Malaria vaccine technol-
ogy roadmap. Lancet 382, 1700–1701.

18. Malaria Vaccine Funders Group (2013). Malaria vaccine technology roadmap. http://
www.who.int/immunization/topics/malaria/vaccine_roadmap/TRM_update_nov13.
pdf?ua=1.

19. Yoshida, N., Potocnjak, P., Nussenzweig, V., and Nussenzweig, R.S. (1981).
Biosynthesis of Pb44, the protective antigen of sporozoites of Plasmodium berghei.
J. Exp. Med. 154, 1225–1236.

20. Ndungu, F.M., Mwacharo, J., Kimani, D., Kai, O., Moris, P., Jongert, E., Vekemans, J.,
Olotu, A., and Bejon, P. (2012). A statistical interaction between circumsporozoite
protein-specific T cell and antibody responses and risk of clinical malaria episodes
following vaccination with RTS,S/AS01E. PLoS ONE 7, e52870.

21. White, M.T., Bejon, P., Olotu, A., Griffin, J.T., Riley, E.M., Kester, K.E., Ockenhouse,
C.F., and Ghani, A.C. (2013). The relationship between RTS,S vaccine-induced anti-
bodies, CD4+ T cell responses and protection against Plasmodium falciparum infec-
tion. PLoS ONE 8, e61395.

22. Lumsden, J.M., Schwenk, R.J., Rein, L.E., Moris, P., Janssens, M., Ofori-Anyinam, O.,
Cohen, J., Kester, K.E., Heppner, D.G., and Krzych, U. (2011). Protective immunity
induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-a producing
effector and central memory CD4 T cells. PLoS ONE 6, e20775.

23. Agnandji, S.T., Lell, B., Soulanoudjingar, S.S., Fernandes, J.F., Abossolo, B.P.,
Conzelmann, C., Methogo, B.G., Doucka, Y., Flamen, A., Mordmüller, B., et al.;
RTS,S Clinical Trials Partnership (2011). First results of phase 3 trial of
RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 365, 1863–1875.

24. Chattopadhyay, R., de la Vega, P., Paik, S.H., Murata, Y., Ferguson, E.W., Richie, T.L.,
and Ooi, G.T. (2011). Early transcriptional responses of HepG2-A16 liver cells to
infection by Plasmodium falciparum sporozoites. J. Biol. Chem. 286, 26396–26405.

25. Cheng, Q., Lawrence, G., Reed, C., Stowers, A., Ranford-Cartwright, L., Creasey, A.,
Carter, R., and Saul, A. (1997). Measurement of Plasmodium falciparum growth rates
in vivo: a test of malaria vaccines. Am. J. Trop. Med. Hyg. 57, 495–500.

26. Rickman, L.S., Jones, T.R., Long, G.W., Paparello, S., Schneider, I., Paul, C.F.,
Beaudoin, R.L., and Hoffman, S.L. (1990). Plasmodium falciparum-infected
Anopheles stephensi inconsistently transmit malaria to humans. Am. J. Trop. Med.
Hyg. 43, 441–445.

27. Murphy, J.R., Baqar, S., Davis, J.R., Herrington, D.A., and Clyde, D.F. (1989).
Evidence for a 6.5-day minimum exoerythrocytic cycle for Plasmodium falciparum
in humans and confirmation that immunization with a synthetic peptide representa-
tive of a region of the circumsporozoite protein retards infection. J. Clin. Microbiol.
27, 1434–1437.
558 Molecular Therapy Vol. 25 No 2 February 2017
28. Hill, A.V., Reyes-Sandoval, A., O’Hara, G., Ewer, K., Lawrie, A., Goodman, A.,
Nicosia, A., Folgori, A., Colloca, S., Cortese, R., et al. (2010). Prime-boost vectored
malaria vaccines: progress and prospects. Hum. Vaccin. 6, 78–83.

29. McConkey, S.J., Reece, W.H., Moorthy, V.S., Webster, D., Dunachie, S., Butcher, G.,
Vuola, J.M., Blanchard, T.J., Gothard, P., Watkins, K., et al. (2003). Enhanced T-cell
immunogenicity of plasmid DNA vaccines boosted by recombinant modified
vaccinia virus Ankara in humans. Nat. Med. 9, 729–735.

30. O’Hara, G.A., Duncan, C.J., Ewer, K.J., Collins, K.A., Elias, S.C., Halstead, F.D.,
Goodman, A.L., Edwards, N.J., Reyes-Sandoval, A., Bird, P., et al. (2012). Clinical
assessment of a recombinant simian adenovirus ChAd63: a potent new vaccine vec-
tor. J. Infect. Dis. 205, 772–781.

31. Ogwang, C., Afolabi, M., Kimani, D., Jagne, Y.J., Sheehy, S.H., Bliss, C.M., Duncan,
C.J., Collins, K.A., Garcia Knight, M.A., Kimani, E., et al. (2013). Safety and immu-
nogenicity of heterologous prime-boost immunisation with Plasmodium falciparum
malaria candidate vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in healthy
Gambian and Kenyan adults. PLoS ONE 8, e57726.

32. Kimani, D., Jagne, Y.J., Cox, M., Kimani, E., Bliss, C.M., Gitau, E., Ogwang, C.,
Afolabi, M.O., Bowyer, G., Collins, K.A., et al. (2014). Translating the immunoge-
nicity of prime-boost immunization with ChAd63 and MVA ME-TRAP from ma-
laria naive to malaria-endemic populations. Mol. Ther. 22, 1992–2003.

33. Hodgson, S.H., Ewer, K.J., Bliss, C.M., Edwards, N.J., Rampling, T., Anagnostou,
N.A., de Barra, E., Havelock, T., Bowyer, G., Poulton, I.D., et al. (2015). Evaluation
of the efficacy of ChAd63-MVA vectored vaccines expressing circumsporozoite pro-
tein and ME-TRAP against controlled human malaria infection in malaria-naive in-
dividuals. J. Infect. Dis. 211, 1076–1086.

34. Ewer, K.J., O’Hara, G.A., Duncan, C.J., Collins, K.A., Sheehy, S.H., Reyes-Sandoval,
A., Goodman, A.L., Edwards, N.J., Elias, S.C., Halstead, F.D., et al. (2013).
Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adeno-
virus-MVA immunisation. Nat. Commun. 4, 2836.

35. Ogwang, C., Kimani, D., Edwards, N.J., Roberts, R., Mwacharo, J., Bowyer, G., Bliss,
C., Hodgson, S.H., Njuguna, P., Viebig, N.K., et al.; MVVC Group (2015). Prime-
boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encod-
ing TRAP provides partial protection against Plasmodium falciparum infection in
Kenyan adults. Sci. Transl. Med. 7, 286re5.

36. Shearer, W.T., Rosenblatt, H.M., Gelman, R.S., Oyomopito, R., Plaeger, S., Stiehm,
E.R., Wara, D.W., Douglas, S.D., Luzuriaga, K., McFarland, E.J., et al.; Pediatric
AIDS Clinical Trials Group (2003). Lymphocyte subsets in healthy children from
birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study.
J. Allergy Clin. Immunol. 112, 973–980.

37. Ceesay, S.J., Casals-Pascual, C., Erskine, J., Anya, S.E., Duah, N.O., Fulford, A.J.,
Sesay, S.S., Abubakar, I., Dunyo, S., Sey, O., et al. (2008). Changes in malaria indices
between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet 372, 1545–
1554.

38. Tiono, A.B., Kangoye, D.T., Rehman, A.M., Kargougou, D.G., Kaboré, Y., Diarra, A.,
Ouedraogo, E., Nébié, I., Ouédraogo, A., Okech, B., et al. (2014). Malaria incidence in
children in South-West Burkina Faso: comparison of active and passive case detec-
tion methods. PLoS ONE 9, e86936.

39. Ouédraogo, A., Tiono, A.B., Diarra, A., Sanon, S., Yaro, J.B., Ouedraogo, E.,
Bougouma, E.C., Soulama, I., Gansané, A., Ouedraogo, A., et al. (2013). Malaria
morbidity in high and seasonal malaria transmission area of Burkina Faso. PLoS
ONE 8, e50036.

40. Afolabi, M.O., Tiono, A.B., Adetifa, U.J., Yaro, J.B., Drammeh, A., Nébié, I., Bliss, C.,
Hodgson, S.H., Anagnostou, N.A., Sanou, G.S., et al. (2016). Safety and
Immunogenicity of ChAd63 and MVA ME-TRAP in West African children and in-
fants. Mol. Ther. 24, 1470–1477.

41. Ceesay, S.J., Casals-Pascual, C., Nwakanma, D.C., Walther, M., Gomez-Escobar, N.,
Fulford, A.J., Takem, E.N., Nogaro, S., Bojang, K.A., Corrah, T., et al. (2010).
Continued decline of malaria in The Gambia with implications for elimination.
PLoS ONE 5, e12242.

42. Ho, M., Webster, H.K., Looareesuwan, S., Supanaranond, W., Phillips, R.E.,
Chanthavanich, P., and Warrell, D.A. (1986). Antigen-specific immunosuppression
in human malaria due to Plasmodium falciparum. J. Infect. Dis. 153, 763–771.

http://refhub.elsevier.com/S1525-0016(16)45386-4/sref10
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref10
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref11
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref11
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref11
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref11
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref12
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref13
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref13
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref13
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref13
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref13
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref14
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref14
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref14
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref14
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref14
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref15
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref15
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref15
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref15
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref16
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref16
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref16
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref17
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref17
http://www.who.int/immunization/topics/malaria/vaccine_roadmap/TRM_update_nov13.pdf?ua=1
http://www.who.int/immunization/topics/malaria/vaccine_roadmap/TRM_update_nov13.pdf?ua=1
http://www.who.int/immunization/topics/malaria/vaccine_roadmap/TRM_update_nov13.pdf?ua=1
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref19
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref19
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref19
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref20
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref20
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref20
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref20
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref21
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref21
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref21
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref21
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref21
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref22
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref22
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref22
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref22
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref23
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref23
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref23
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref23
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref24
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref24
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref24
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref25
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref25
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref25
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref26
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref26
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref26
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref26
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref27
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref27
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref27
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref27
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref27
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref28
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref28
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref28
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref29
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref29
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref29
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref29
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref30
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref30
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref30
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref30
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref31
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref31
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref31
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref31
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref31
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref32
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref32
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref32
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref32
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref33
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref33
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref33
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref33
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref33
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref34
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref34
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref34
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref34
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref35
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref35
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref35
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref35
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref35
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref36
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref36
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref36
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref36
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref36
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref37
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref37
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref37
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref37
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref38
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref38
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref38
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref38
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref39
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref39
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref39
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref39
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref40
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref40
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref40
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref40
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref41
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref41
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref41
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref41
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref42
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref42
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref42


www.moleculartherapy.org
43. Millington, O.R., Gibson, V.B., Rush, C.M., Zinselmeyer, B.H., Phillips, R.S., Garside,
P., and Brewer, J.M. (2007). Malaria impairs T cell clustering and immune priming
despite normal signal 1 from dendritic cells. PLoS Pathog. 3, 1380–1387.

44. White, M.T., Verity, R., Griffin, J.T., Asante, K.P., Owusu-Agyei, S., Greenwood, B.,
Drakeley, C., Gesase, S., Lusingu, J., Ansong, D., et al. (2015). Immunogenicity of the
RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: sec-
ondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect.
Dis. 15, 1450–1458.

45. Ajua, A., Lell, B., Agnandji, S.T., Asante, K.P., Owusu-Agyei, S., Mwangoka, G.,
Mpina, M., Salim, N., Tanner, M., Abdulla, S., et al. (2015). The effect of immuni-
zation schedule with the malaria vaccine candidate RTS,S/AS01E on protective effi-
cacy and anti-circumsporozoite protein antibody avidity in African infants. Malar. J.
14, 72.

46. Gans, H., Yasukawa, L., Rinki, M., DeHovitz, R., Forghani, B., Beeler, J., Audet, S.,
Maldonado, Y., and Arvin, A.M. (2001). Immune responses to measles and mumps
vaccination of infants at 6, 9, and 12 months. J. Infect. Dis. 184, 817–826.

47. Siegrist, C.A., and Aspinall, R. (2009). B-cell responses to vaccination at the extremes
of age. Nat. Rev. Immunol. 9, 185–194.

48. Halsey, N., and Galazka, A. (1985). The efficacy of DPT and oral poliomyelitis immu-
nization schedules initiated from birth to 12 weeks of age. Bull. World Health Organ.
63, 1151–1169.
49. Gans, H.A., Arvin, A.M., Galinus, J., Logan, L., DeHovitz, R., and Maldonado, Y.
(1998). Deficiency of the humoral immune response to measles vaccine in infants
immunized at age 6 months. JAMA 280, 527–532.

50. Marchant, A., Appay, V., Van Der Sande, M., Dulphy, N., Liesnard, C., Kidd, M.,
Kaye, S., Ojuola, O., Gillespie, G.M., Vargas Cuero, A.L., et al. (2003). Mature
CD8(+) T lymphocyte response to viral infection during fetal life. J. Clin. Invest.
111, 1747–1755.

51. Hermann, E., Truyens, C., Alonso-Vega, C., Even, J., Rodriguez, P., Berthe, A.,
Gonzalez-Merino, E., Torrico, F., and Carlier, Y. (2002). Human fetuses are able to
mount an adultlike CD8 T-cell response. Blood 100, 2153–2158.

52. Green, C.A., Scarselli, E., Sande, C.J., Thompson, A.J., de Lara, C.M., Taylor, K.S.,
Haworth, K., Del Sorbo, M., Angus, B., Siani, L., et al. (2015). Chimpanzee adeno-
virus- and MVA-vectored respiratory syncytial virus vaccine is safe and immuno-
genic in adults. Sci. Transl. Med. 7, 300ra126.

53. Biswas, S., Choudhary, P., Elias, S.C., Miura, K., Milne, K.H., de Cassan, S.C., Collins,
K.A., Halstead, F.D., Bliss, C.M., Ewer, K.J., et al. (2014). Assessment of humoral im-
mune responses to blood-stage malaria antigens following ChAd63-MVA immuniza-
tion, controlled human malaria infection and natural exposure. PLoS ONE 9,
e107903.
Molecular Therapy Vol. 25 No 2 February 2017 559

http://refhub.elsevier.com/S1525-0016(16)45386-4/sref43
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref43
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref43
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref44
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref44
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref44
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref44
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref44
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref45
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref45
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref45
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref45
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref45
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref46
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref46
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref46
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref47
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref47
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref48
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref48
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref48
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref49
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref49
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref49
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref50
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref50
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref50
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref50
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref51
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref51
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref51
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref52
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref52
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref52
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref52
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref53
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref53
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref53
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref53
http://refhub.elsevier.com/S1525-0016(16)45386-4/sref53
http://www.moleculartherapy.org


YMTHE, Volume 25
Supplemental Information
Viral Vector Malaria Vaccines Induce High-Level

T Cell and Antibody Responses in West African

Children and Infants

Carly M. Bliss, Abdoulie Drammeh, Georgina Bowyer, Guillaume S. Sanou, Ya Jankey
Jagne, Oumarou Ouedraogo, Nick J. Edwards, Casimir Tarama, Nicolas
Ouedraogo, Mireille Ouedraogo, Jainaba Njie-Jobe, Amidou Diarra, Muhammed O.
Afolabi, Alfred B. Tiono, Jean Baptiste Yaro, Uche J. Adetifa, Susanne H.
Hodgson, Nicholas A. Anagnostou, Rachel Roberts, Christopher J.A. Duncan, Riccardo
Cortese, Nicola K. Viebig, Odile Leroy, Alison M. Lawrie, Katie L. Flanagan, Beate
Kampmann, Egeruan B. Imoukhuede, Sodiomon B. Sirima, Kalifa Bojang, Adrian V.S.
Hill, Issa Nébié, and Katie J. Ewer



 

 

Supplemental material 

 
Figure 1a Clinical trial design for groups 1,2 and 3 in the Gambia. 

 
 

Figure 1b. Clinical trial design for Group 4 in Burkina Faso.  

 



 

 

Supplementary Figure 1. Flow of study design and volunteer recruitment to trials in the 

Gambia (a) and Burkina Faso (b). All immunizations were administered intramuscularly with 

sequential vaccines administered into the deltoid of alternating arms. The parents of two enrolled 

volunteers in group 4 withdrew consent between vaccinations and consent was also withdrawn for 

one child in each of group 1a and 1b after vaccination before follow-up was completed; all other 

volunteers completed study visits as scheduled. Abbreviations: ChAd63, simian adenovirus 

serotype63; ME-TRAP, multiple epitope–thrombospondin-related adhesion protein; MVA, 

modified vaccinia virus Ankara; pfu, plaque-forming units; vp, viral particles; HDCRV, human 

diploid cell rabies vaccine.  

 



 

 

Supplementary Figure 2. Sample gating strategy for flow cytometry.

 
 



 

 

Supplementary Table S1. Baseline demographics of enrolled trial participants 

 

 

 

 Group 

Site The Gambia Burkina Faso 

Age group 2-6 years 5-12 months 10 weeks 5-17 months 

Study group 1a 1b 1c 1d 1e 1f 2a 2b 2c 3a 3b 3c 4 

N 6 6 6 6 6 6 12 12 12 12 12 12 30 

Median age, 

(IQR) 

44 months 

(36-51) 

8 months 

(5.5-8.5) 
10 weeks 

44 weeks  

(36-61) 

Gender ratio 

(M/F) 

0.64 

(23/13) 

0.61  

(22/14) 

0.69 

(25/11) 

0.5 

(15/15) 



 

 

 

Supplementary Table S2. Antibodies used in flow cytometry.  

 Antibody 

Fluorochrome 

/Dye 

Clone Supplier 

Product 

code 

Final 

Dilution 

 

 LIVE/DEAD 

Aqua amine 

reactive dye Invitrogen L34955 1:200 

CD4 Allophycocyanin RPA-T4 eBioscience 17-0049-73 1:50 

CD14 

 

eFluor 450 

 

61D3 

 

eBioscience 

 

48-0149 1:100 

CD19 

 

eFluor 450 

 

HIB19 

 

eBioscience 

 

48-0199 1:100 

 

CD3 Alexa Fluor 700 

 

OKT3 

 eBioscience 

 

56-0037-42 1:100 

CD8 APC-eFluor780 RPA-T8 eBioscience 47-0088-42 1:20 

IFNγ FITC 4S.B3 eBioscience 11-7319-82 1:200  

IL-2 PE            MQ1-17H12 eBioscience 12-7029-82 1:100 

TNFα PE Cy7 MAb11 

BD 

Biosciences 

 

25-7349-82 1:1000 

 

CD107a PE-Cy5 

 

eBioH4A3 

 eBioscience 

15-1079-42 

 1:500 
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