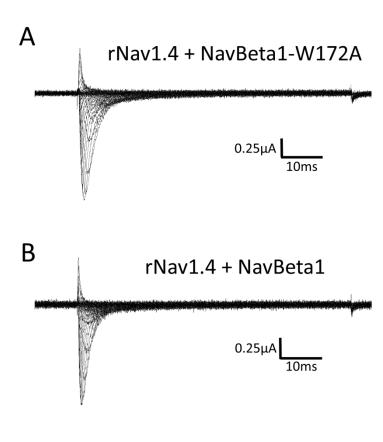

Supplementary Information for

Mechanism of functional interaction between potassium channel Kv1.3 and sodium channel NavBeta1 subunit

Tomoya Kubota1, Ana M. Correa and Francisco Bezanilla.

Suppl. Fig 1. Effect of Myelin Basic Protein P₀ on hKv1.3-del-W436F gating currents


A) Representative gating currents from hKv1.3-del-W436F co-expressed with P₀. **B**)-**C**) The Q-V relationship (**B**) and Tau-V curve (**C**) for hKv1.3-del-W436F alone (black circles, n=8), co-injected with rNavBeta1 (red circles, n=5) or with P0 (gray inverted triangles, n=4). Error bars indicate SEM. Gray stars (*) indicate statistical significance (*p*-value < 0.05) of the difference between hKv1.3-del-W436F (black circles) and with P0 (gray inverted triangles) from -50 mV to -25 mV in Q-V (**C**), and from 0 mV to +40 mV in Tau-V (**D**).

Α

P22001	Human	MDERLSLLRSPP-PPSARHRAHPPQRPASSG	GAHTLVNHGYAEPAAGRE
G3QEG2	Gorilla	MDEHLSLLRSPP-PPSARHRAHPPQRPASSG	GAHTLVNPGYAEPAAGRE
F6ZSH4	Macaque	MDEHLSLLRSPP-PPSARHRAHPAQRPASSG	GAHTLVNPGYAEPAAGPE
F1S626	Pig	MDEHLSLLRSPPPPPSTRHRAHPPQHPASRGGGGGGG	GGGGGDAHTLVNPGYAEPAAGPE
P15384	Rat		
P16390	Mouse		
Q90YY3	Xenopus		
H2TUB9	Fugu	MDDHLSLLQSPPPSVTKAR	GDNLVNHGYTDTEA
D00001			
P22001		LPPDMTVVPGDHLLEPEVADG-GGAPPQGGCGG	
~	Gorilla	LPPNMTVVPGDHMLEPEVADG-GGAPPQGGCGG	
F6ZSH4	Macaque	LPPDMTVVPGDHLLEPEVADG-GGAPPQGGCGG	GGCDRYEPLPPSLPAAGEQDCCG
F1S626	Pig	LPPDMTVVPGDHLLEPEAADG-GGDPPQGGCGGG	GGCDRYEPLPPALPAAGEQDCCG
P15384	Rat	MTVVPGDHLLEPEAAGGGGGDPPQGGCVSG	GGCDRYEPLPPALPAAGEQDCCG
P16390	Mouse	MTVVPGDHLLEPEAAGGGGGDPPQGGCGSGGGG	GGCDRYEPLPPALPAAGEQDCCG
Q90YY3	Xenopus	MTVVACDNILEEAAALPGH	IHSSEAYEQEDHECC
H2TUB9	Fugu	DVMTVVACDNMLEESAALPGN	HSLDRYEPDHECC

Suppl. Fig 2. KCNA3 N-terminus alignment among species

A) Potential start codons, M1 and M53 in human are highlighted in red. Human, primates, pig and Fugu have longer N-terminus while rodents and *Xenopus* don't.

Suppl. Fig 3. W172A effect on Nav ionic currents

Sodium ionic currents from rat skeletal muscle Nav channel (Nav1.4) co-injected with NavBeta1-W172A (**A**) or with NavBeta1 (**B**). NavBeta1-W172A showed acceleration of fast inactivation similar to NavBeta1.