
Additional file 2: Parameter fitting 

Here we detail the methods and results of fitting the midge model to the time-series data.  Firstly, 

we use a deterministic least squares fitting, which is then used to provide priors for an Approximate 

Bayesian Computation [1, 2, 3, 4] fitting. 

For the fitting below, the temperature-dependent parameters (see Additional file 1) are fixed.  

Allowing these to be estimated in a Bayesian framework would have enabled us to test whether 

the functional form of these temperature relationships differed between the Obsoletus group and 

C. variipennis sonorensis, the estimation of these on top of the other parameters would have been 

prohibitive computationally.  We only fit the model to parameters where there is no prior 

information, namely the density-dependence (𝑎𝑖 and 𝑏𝑖, corresponding to site 𝑖), diapause (𝑑start 

and 𝑑end) and scaling factor (𝑐) parameters.  We assume that the density-dependence parameters 

are site specific, as these are likely to be related to local resource availability.  There are two over-

wintering parameters, which give the start and end of diapause.  We assume that diapause is 

correlated to photoperiod, although the mechanisms of diapause in Culicoides are poorly 

understood.  The over-wintering parameters are not site-specific, although differences in diapause 

timings will be observed in different locations depending on latitude, which defines the 

photoperiod (see Figure S1).  The amount of daylight in a day is calculated by a planetary motion 

equation1. 

 

Figure S1: Calculated photoperiod for the five sites of interest.  The diapause parameters, 𝒅start and 𝒅end (diapause at the start and 

end of the year), are defined by the daily amount of daylight.  Thus, diapause acts at different times of the year, depending on the 

latitude of the site.  These parameters are unknown and are fitted using the statistical methods described. 

                                                           
1 http://www.gandraxa.com/length_of_day.xml 



We fit the model to adult Obsoletus group data from daily suction traps [5] at five locations 

throughout the UK (see Figure 4 in the main text).  Since the trap data is a scaled representation 

of actual Obsoletus group abundance, we apply a global scaling factor [6] to the Obsoletus group 

abundance which is simultaneously fitted alongside the other parameters. 

Least Squares Fitting 

Performing least squares fitting to stochastic models is inherently difficult due to the stochastic 

nature of the residual surface.  Therefore, as a first step, we implement a deterministic version of 

the model for parameter fitting by choosing mean values for the parameters (e.g. the adult clutch 

size is taken to be the mean, 49.7 eggs). 

The method we employ is a least squares minimisation where the sum of squares of the residual 

(difference between model output and data) is minimised.  We use a constrained Nelder-Mead 

algorithm2, implemented in MATLAB3, to find the optimal parameter values.  Initial estimates are 

given over a random wide bounded range, to militate against local optima and the relative 

uncertainty of the model parameters.  We run 1000 optimisation runs and retain the best fit 

parameters, the result of which is shown in Figure S2 and Table S1. 

  

                                                           
2 http://uk.mathworks.com/matlabcentral/fileexchange/24298-minimize 
3 © 2015 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. 



  

 

 

Figure S2: Plots showing the results of the least squares fitting across all five sites.  The data (in black), the total number of 

Obsoletus group adults, has been interpolated to account for missing values and smoothed using a 1-week moving window.  The 

model output (in red) has also been smoothed using a 1-week moving window. 

  



Table S1: Results of the deterministic model least squares fitting.  The density-dependence parameters are site specific, whereas 

the diapause and scaling factor parameters apply to all sites. 

 1 Askham 

Bryan 

2 

Hereford 

3 

Newcastle 

4 

Preston 

5 

Starcross 

Site 

unspecific 

Density-dependence 

coefficient, 𝒂𝒊 
2.21E-09 1.98E-07 1.24E-07 1.33E-08 3.19E-07 - 

Density-dependence 

coefficient, 𝒃 
0.7289 3.3399 4.5299 2.6759 5.6964 - 

Scaling factor  - - - - - 8.64E-05 

Diapause at start of year, 

𝒅start  
- - - - - 46986.50 

Diapause at end of year, 

𝒅end 
- - - - - 49065.52 

 

ABC Fitting 

So that the full stochastic model can be fitted to the data, we implement an approximate Bayesian 

computational method (ABC).  This method is a statistically rigorous technique for estimating how 

well different models and parameterisations are supported by the available data, given some prior 

beliefs about how likely they are. ABC involves running models a large number of times, with 

parameters drawn randomly from their prior distributions, and then retaining the simulations 

closest to the observations [1, 2, 3, 4].   

For the prior distributions of each parameter, we choose uniform distributions, centred on the 

values found previously from the least squares fitting, except the diapause parameters which have 

a uniform distribution over the permitted values (see Figure S3).  The stochastic model is run for 

600000 runs with parameters selected at random from the prior distributions.   

We used an R2 distance measure as this gave the best model fit.  An absolute and square root of 

the summed squared distances measures were considered but gave a lesser model fits.  The R2 

distance measure 𝜌(𝑚𝑖, 𝐷) is given by 

𝜌(𝑚𝑖, 𝐷) = 1 −
∑ (𝑚𝑖,𝑗−𝐷𝑗)

2
𝑗

∑ (𝐷𝑗−𝐷̅)
2

𝑗

. 

 

In this equation, 𝑖 is the model run, 𝐷𝑖 is the data point, 𝑚𝑖, 𝑗 is run 𝑖’s output for data point 𝑗, 𝐷𝑗 
is the empirical data for data point j, and 𝐷̅ is the mean of the empirical data. 



 

Table S2: Results of the stochastic ABC fitting.  We give the statistics on the spread of the posterior parameters.  Site 1=Askham 

Bryan, 2=Hereford, 3=Newcastle, 4=Preston and 5=Starcross. 

 a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 c dstart dend 

Min 8.84E-10 0.30 8.45E-08 1.65 5.01E-08 1.37 5.66E-09 1.39 1.57E-07 2.44 4.35E-05 4.36E+04 4.50E+04 

2.5%   1.01E-09 0.32 1.20E-07 2.04 5.98E-08 1.97 1.05E-08 1.81 2.15E-07 3.90 6.60E-05 4.40E+04 4.52E+04 

Median 2.76E-09 0.64 2.84E-07 4.47 2.10E-07 5.30 2.96E-08 3.83 4.27E-07 11.09 1.25E-04 4.55E+04 4.85E+04 

Mean 2.77E-09 0.62 2.79E-07 4.48 2.08E-07 5.41 2.92E-08 3.77 4.27E-07 10.82 1.26E-04 4.56E+04 4.85E+04 

97.5% 4.33E-09 0.84 3.92E-07 6.56 3.40E-07 8.78 4.59E-08 5.26 6.19E-07 16.58 1.92E-04 4.81E+04 5.29E+04 

Max 4.39E-09 1.10 3.97E-07 6.68 3.47E-07 9.04 4.65E-08 5.35 6.36E-07 17.09 2.15E-04 4.93E+04 5.36E+04 

 

 

 

 

 

 

 

Figure S3: Prior and posterior distributions from the ABC fitting.  Points show the median value; posterior distributions are shown 

in black; priors are shown by grey dashed lines. Asterisks mark significant narrowing (p < 0.01) after correcting for multiple testing. 

All parameter values were scaled by dividing by the median of the corresponding prior, thus identifying relative narrowing in the 

median. The density-dependence parameter indices are ordered in ascended alphabetical order with site 1=Askham Bryan, 

2=Hereford, 3=Newcastle, 4=Preston and 5=Starcross. 

ABC has been used to select the 1000 ‘best’ runs out of 100000 runs of the midge model. These 

accepted runs are those with the smallest difference to the data. Of these 1000 best-fitting samples, 

the posterior distributions of the 13 input parameters are shown in Figure S3.   This figure shows 

that the majority of parameters have narrowed, which indicates that the posterior distribution more 

accurately describes the data. 



Out of the 1000 accepted runs, Figure S4 shows the frequency distribution of parameter values 

occurring in the accepted runs. The plots reveal that some distributions are skewed, whilst other 

exhibit a more centralised and narrowed distribution.   

 

 

 

Figure S4: Posterior parameter distributions.  The 1000 accepted runs are binned into 10 column bins, thus giving the posterior 

parameter distribution.  The density-dependence parameter indices are ordered in ascended alphabetical order with site 1=Askham 

Bryan, 2=Hereford, 3=Newcastle, 4=Preston and 5=Starcross. 

Finally, we compare the fitted model to the data (see Figure S5).  Here we have plotted 100 

(randomly chosen) of the accepted runs, the best run and the data for each of the sites.  It shows 

that the model fits the data reasonably well (see main text for further discussion).  



 

Figure S5: Comparison between fitted model runs and the data.  Here we have plotted in grey 100 of the accepted runs alongside 

the data (black line) and the single best run (black dashed line) for each of the sites.  The density-dependence parameter indices are 

ordered in ascended alphabetical order with site 1=Askham Bryan, 2=Hereford, 3=Newcastle, 4=Preston and 5=Starcross. 

We conclude that the ABC model fitting gives a fit and we therefore use the mean parameter 

values for further model scenario testing and modelling control strategies (see main text). 
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