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ABSTRACT  Different alleles undergoing strong symmet-
ric balancing selection show a simple genealogical structure
(allelic genealogy), similar to the gene genealogy described by
the coalescence process for a sample of neutral genes randomly
drawn from a panmictic population at equilibrium. The only
difference between the two genealogies lies in the different time
scales. An approximate scaling factor for allelic genealogy re-
lative to that of neutral gene genealogy is {VS/(2M)}
[In{S/(16M*)}]~ %2, where M = Nu and S = 2Ns (N, effective
population size; u, mutation rate to selected alleles per locus per
generation; s, selection coefficient). The larger the value of
\/§/M (=100), the larger the scaling factor. These findings,
supported by simulation results, allow one to apply the theo-
retical results of the coalescence process directly to the allelic
genealogy. Combined with the trans-species evolution of the
major histocompatibility complex polymorphism for which
balancing selection is believed to be responsible, allelic gene-
alogy predicts that the number of breeding individuals in the
human population could not be as small as 50-100 at any time
of its evolutionary history. The analysis appears to contradict
the founder principle as being important in recent mammalian
evolution.

Gene genealogy describes the ancestral relationships of genes
at a locus, a simple consequence of the random loss or
multiplication of genes in the reproduction process occurring
in a finite population. When a gene is multiplied more than
once and the products are transmitted to later generations,
such a multiplication appears in a diagram of gene genealogy
as a divergence when looked at forward in time and as a
coalescence when looked at backward in time. The diagram
represents identity by descent and the allelic states of the
genes are irrelevant. Under neutrality (1), the theory of gene
genealogy is called coalescent (2) and provides an efficient
mathematical tool for studying various population genetics
problems (see, e.g., ref. 3). On the other hand, the ancestral
relationships among different allelic lines are called allelic
genealogy (4). Obviously, an allelic divergence occurs only
when a gene in an older line mutates to form a new one, and
this process may or may not accompany a gene divergence.
Of primary interest is how to describe which line was derived
from which other line, particularly when selection is in-
volved. Allelic genealogy thus focuses on the ancestral
history in a sample that contains different lines; any relation-
ship among genes that belong to the same line is irrelevant.
It differs from the genealogy described by the lines-
of-descent process (5) in which coalescences of genes occur-
ring within each line and the age of each line are the main
interest, but the allelic genealogy are not taken into account.

Although allelic genealogy was developed to examine quan-
titatively the extraordinary polymorphism of the major histo-
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compatibility complex (MHC) molecules (6-10), the study was
largely based on computer simulation (4). In this paper, I show
that there exists a simple mathematical structure of allelic
genealogy under strong symmetric balancing selection and use
this theory to discuss the evolutionary implication of trans-
species mode of MHC polymorphisms (7).

By balancing selection (one of the most efficient mecha-
nisms to maintain polymorphism), I mean a collection of
different selection schemes, all of which lead to the mean
gene-frequency change given below. It has been shown that
for this equation of the gene-frequency change, there can
exist two fundamentally different selection models (4). In fact
for any allele-frequency equation there are many alternative
fitness models (11). This is unfortunate for the study of
population genetics because simply observing a gene-
frequency change cannot identify the underlying mechanism.
However, this is not the concern here (see ref. 4).

Under balancing selection, alleles (allelic lines) can persist
for a much longer time than neutral alleles, even in a
relatively small population (12, 13). Those selected alleles
may therefore differ from each other by more than one
nucleotide change. When new alleles are produced each with
an initial frequency of 1/(2N), where N is the effective
population size, they differ from their parental ones by single
changes. If new alleles happen to become common without
further changes and their parental alleles still survive to that
time, some pairs among common alleles can mutate to each
other by single changes. However, such a rate would be of the
order of the per-nucleotide mutation frequency, much
smaller than the per-locus frequency («) at which new alleles
are produced. More importantly, new alleles thus produced
will eventually replace old ones and play a significant role in
the long-term evolution of molecules that experience even
strong balancing selection and weak genetic drift. Thus the
infinite-allele model of Kimura and Crow (14) (see also ref.
15), which ignores mutual changes among common alleles but
incorporates the constant production of new alleles, seems
most appropriate for describing allelic genealogy.

Analysis of a Diffusion Model

The model of symmetric balancing selection considered here
assumes that the marginal fitness of allele A; with frequency
xi is 1 — sx;. For this marginal fitness, selection can be either
overdominant (heterotic) or frequency-dependent (4, 11). In
the former case, s is the selective disadvantage of homozy-
gotes relative to heterozygotes. The latter case occurs in the
simplest frequency-dependent selection model which as-
sumes that the relative fitness of A; (multiplicative for diploid
organisms) decreases by sx; when its frequency is x;. Itis a
model of the so-called minority advantage; the rarer, the
more fit. In either case, the mean fitness of the population is
given by 1 — sF = 3 (1 — sx;)xy, where F = Six?. In a

Abbreviation: MHC, major histocompatibility complex.
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diffusion approximation of the change in gene frequency x of
a particular allele under the infinite-allele model and the
above balancing selection, the mean change is given by a(x)
= —2Mx — Sx(x — F), where M = Nu, § = 2Ns, and § is to
be read as S/(1 — sF) when s is not small, while the variance
is given by b(x) = x(1 — x). Here, time is measured in units
of 2N generations. In what follows, we further approximate
the variance by b(x) = x (14). As noted, this approximation
is quite accurate for large S and facilitates the mathematical
treatment considerably.

The above.diffusion model has received much attention
(12-14) and I first review some available results pertinent to
the present purpose. Denote by ®(x)dx the expected number
of alleles whose equilibrium frequency is in the range x to x
+ dx. It is given by (14)

B(x) = 4M e SXx—2m)y—1) 1]

where m = F — 2M/S and F is assumed to be a constant. The
function 1 has a local minimum at x = § = 1/(2Sm) and a local
maximum at x = m — 8. For S >> M, ®(8) ~4M e/ (e =
2.718 . . .) and ®(m — 8) = 4M exp(Sm?)/m.

The number of rare alleles in the frequency range 1/(2N)
to 8 (<<1) becomes

n.= f ? d(x)dx =~ 4M(e — 1), 2]
1/(2N)

and the number of common alleles in the frequency range §
to 1 becomes

1 ™
ne= f D(x)dx ~ 4M exp(Sm?) \ /—2 : 3]
s Sm

On the other hand, F is computed by integrating F =
I }/(m)d)(x)xzdx or similar equations (14, 16). But since the
integral is approximately 4Mm exp(Sm?>)V /S and m ~ F
for S >> M, we have

4M exp(Sm?) \/%r =~ 1. [4]

Eq. 4 immediately yields the closed formula of F to be (14)

FelL =S 5]
~ Vas | 16mm2]”

Since from n. = 1/F, the common alleles have an equal
average frequency given by Eq. 5. The actual number of
alleles n, becomes n, + n. = 4M(e — 1) + 1/m. In the above
and subsequent calculations, the Laplace method for large S
is extensively used.

Of interest are the expected times until a particular com-
mon allele, starting at moderate frequency x, becomes lost
[t(x)] and a particular rare allele, starting at small frequency
x, becomes common [r*(x)]. There is only one exit boundary
at x = 0 due to random genetic drift and mutation. The
diffusion theory (17-19) allows us to write #(x) as

x dy y 1 dy x
= — | ¥(2)d. Y(z)dz |,
) 2[ fo b(y)‘l'(y)_]; W f b(y)wy)ﬁ @ Z]

where ¥(x) = exp{S(x — m)Z}. It is not easy to determine the
above integrals exactly, but for large S we can derive a
reasonably accurate result, which is given by

2 2
1(m) = exp(Sm?) \/ ‘éz = %? ., (x=m). [6]

U

m
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In the above, Eq. 4 is used. On the other hand, t*(x) for x <
& may be computed as the expected time until a rare allele first
hits an interior point, say &, before extinction. Although a
rare allele tends to stay near the boundary x = 0 for a short
time, it quickly increases the frequency up to x = m — é once
it becomes close to x = 8. I conjecture that the only fate of
arare allele that increases its frequency up to & is to become
a common allele. Thus, to compute #*(x), we use the formula
(18, 19)

t*(x)

ug(x) (x ur(y)dy [ su(y)dy (s
= o 2R [FAYID [y, D | Y@ |,
[ul(x) oo, v | s e Z}

where u;(x) is the fixation probability at x = & given by
5% (y)dy/ [§¥(y)dy and ug(x) = 1 — uy(x). The approximate
expression of *(x) for x << & may be found as

-1+e™!
o)~ 7
Sm

which is independent of x.

There are n. common and #, rare alleles in the equilibrium
population so that to obtain the expected times until one of
the common alleles becomes extinct and one of the rare
alleles becomes common, we divide #(m) by n. and ¢*(x) by
n.. We then have

tm) V2 e 121
n. 4MSm n. 4MSm

(8]

from Egs. 2, 3, 6, and 7. Egs. 8 confirm the conjecture about
the fate of a rare allele that hits x = 8. They imply that there
is a precise balance between two events, one in which a
common allele goes to extinction and the other in which a rare
allele replaces that common allele, and that the average
turnover rate (r) of allelic lines in the population is the
reciprocal of either of these values. Since our approximation
for #(m) is more accurate than that for t*(x), we define r as

/ S
r=2\/2MSm~2M/S ln{ - 6”M2}. 9]

If we consider the mean rate of accumulation of mutations
in the entire population a, we need to further divide r by the
number of common alleles. This is because during a turnover
of allelic lines, only a single line can increase the number of
mutations by one while the others cannot. It is convenient to
measure « in units of 1/u generations, in which case a = 1 is
expected under neutrality (1). Thus we obtain a simple result
for a;

V2 S
a=~2\/2MSm/(2Nun;) = > '“{W}’ [10]

Allelic Genealogy

If a population evolves according to the above symmetric
model of strong selection, relatively weak mutation, and
drift, it it possible to construct an allelic genealogy. Suppose
first that there are n common alléelic lines and that we
randomly sample i such lines from the current equilibrium
population. The preceding analysis suggests that the time T
at which the most recent turnover of allelic lines occurred is
exponentially distributed with rate r in Eq. 9 (20). Assume
therefore that this happened T ago (in units of 2N generations)
and that a new line replaced one of the common lines. This
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new line, denoted by L, is likely to be a descendant of one of
n common lines having existed around T ago. Designate the
parental line by P. If P has been lost by the time of sampling,
there is no possibility that any pair of common lines in a
sample diverged T ago. This probability is 1/n since any
common line is equally likely to become lost. If on the other
hand P has survived, there is such a possibility that P and L
diverged T ago. It is necessary, however, that both P and L
are chosen in a sample, otherwise the divergence cannot be
traced in the sampled allelic lines. The probability that the
sample does not contain both P and L is 1 — ;C»/,C, where
C is the binomial coefficient. Hence we obtain the probability
that two lines in the sample did not diverge T ago as

1 R YO
n n

n nC2

while the divergence occurs with probability 1 — d.

It is a simple matter to derive a formula for the event that
a pair of lines in a sample of size i(<=n) diverged exactly K
allelic turnovers ago. The value of K is a random variable and
follows a geometric distribution; i.e., for K = (1, 2,3, . . .),

e e k-1
gk=(1—d,~)d§‘"='(' 21) {1—'(' 21)} . 2]
n n

If an allelic divergence occurred K allelic turnovers ago, the
number of distinct lines in that sample reduces to i — 1. In
those i — 1 lines, Eq. 12 with i replaced i — 1 remains true.
Obviously this process can be repeated until we find a single
line for the first time. In constructing the coalescence pro-
cess, Eq. 12 with 4N instead of n? is used: For large N, it
reduces to the exponential density (2, 3). Our situation is
different since n? is not necessarily large, but the conclusion
is the same, as seen below.

For a given K, we define a random variable Sx = ZX,T;
(divergence time of alleles) in which values of T; are mutually
independent and follow a common exponential density with
rate r in Eq. 9. Thus the conditional probability density of Sx
is given by a gamma function; that is,

r(rt)lc—l o
- 1)!e . [13]

Prob{Sx = f|K = k} =

Taking this expectation with respect to g;, we find the
unconditional probability density of Sk to be an exponential

function:

)= ,;:11 Prob{Sk = 1|K = k}g, = aexp{—ai},  [14a]

for 2 =i=n. [14b]

a;i=r(l - d) = 2\/2MSm —;

ii—-1)

n
Eq. 14a is also valid for further allelic divergences in the past
so that the process of allelic genealogy in a sample of size i
is completely determined by f;(1)2 = j = i).

When we compare Egs. 14 with the corresponding formu-
las for the coalescence process of randomly sampled neutral
genes, we arrive at the main result of this paper. In the
coalescence process, the time between successive coales-
cences is also exponentially distributed with rate i(i — 1)/2 in
units of 2N_generations. Hence we can interchange the
factors, 2V2MSm/n? and 1/2, changing the time scales
appropriately, and assert that the allelic genealogy and the
coalescence process are identical in mathematical structure.
Stated another way, all theoretical results obtained thus far
for the coalescence process of neutral genes can be used after
rescaling the time unit. The topological structure of the allelic
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genealogy is also the same as that of the coalescence process.
This simplicity is a result of simplicity in the assumptions of
the model and has been noted in ref. 21. Now that n in Eq.
14 can be regarded as n. = 1/m, the rescaling factor from the
coalescence process to the allelic genealogy becomes

S s 1™
fm V2 s [1,,{16”1”2” , [15]

T 8MSm?  2M

which is invariant if V'S/M is kept constant.

The probability density of the coalescence time at which i
neutral genes are descended from j ancestral genes (22) and
the probability of the number of distinct genes at a given past
time (2, 23) are well known. Tavaré (3) provides a lucid
review of this area. In units of 2N generations, the mean and
variance of the coalescence time are especially simple and are
given by 2(1 — 1/i) and ZiZ}[2/{j(j + 1)}]?, respectively.
Furthermore, the mean number of distinct genes having
existed 2Nt generations ago is given by (3)

2’ (2i = Dirp e~i-1172, (16]
ST
wherei =i(i+1)...(+j—-Dandiz=ii—1)...(@

—-j+1).

I have shown that those formulas can be applied directly to
the allelic genealogy, but the time scale is now in units of 2Nf;
generations. For example, we have the mean allelic diver-
gence time between two lines that are randomly selected (i =
2) as E{T,} =~ 2Nf; (generations) and that of the most distantly
related lines (i = n) as E{T.} = 4Nf,(1 — 1/n) (generations).
The mean divergence time E{T,} averaged over all pairwise
comparisons of common lines equals E{T,} (22). E{T,} =
E{T4} and E{T_} with n = n. = 1/F suggest a way to examine
our main result. That is that the ratio Ry = E{T_}/E{T4} simply
becomes 2H (H = 1 — F), irrespective of the rescaling factor
fs. The average number of nucleotide changes that can
accumulate in an allelic line during E{T,} (the subscript x
stands for either ¢ or d) may be computed by rE{T,}/n..
Denoting it by E{D,}, we get E{D4} = n. and E{D.} = 2Hn,.

Discussion and Conclusion

We first examine the accuracy of the theory. Takahata and
Nei (4) have conducted a time-consuming simulation to
observe F, n,, E{T.}, E{T4}, and a. Although the value of s
(=0.5) taken in their simulation might be too large and that of
N (=200) too small, it is interesting to compare the two
results. Table 1 shows that the theory is generally in fairly
good agreement with simulation results, even though the
value of Ns (=100) used is not enormous. This might be
unexpected because we have used crude approximations in
various places in manipulating the diffusion equation. There
are some discrepancies, however, about allelic divergence
times in particular. Part of the reason for this is that the
selection coefficient s = 0.5 in the simulation (S = 200) is not
small enough that sF in Eq. 1 can be neglected. If § is
converted to S/(1 — sF), the value of S in the theory may
actually be 220, in which case and for M = 0.001, E{T.}/N =
402 and E{T4}/N =~ 248 (Table 1). Another cause comes from
Eq. 5, which tends to overestimate F to some extent (4). If the
true value of F is 0.188 for S = 200 and M = 0.001, f; in Eq.
15 would be 12% larger than that expected from Eq. 5. Then
E{T.}/N and E{T4}/N become 450 and 277, respectively,
which are closer to the simulation values. Using the variance
b(x) = x instead of x(1 — x) is also an approximation.
However, these causes should not affect the Ry value and
indeed the expected values agree well with those obtained by
the simulation even when f; is not accurately estimated. The
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Table 1. Comparison between simulation results and theoretical
values for various values of M

M F n, E{T} E{T4} a Ry
M = 0.001
Simulation 0.188 59 468 31 10.2 1.50
Theory 0.195 5.1 384 238 10.7 1.61
M =0.01
Simulation 0.158 7.2 80.8 51.6 7.7 1.57
Theory 0.163 6.2 68.7 40.9 7.5 1.67
M=0.1
Simulation 0.123 10.9 19.3 10.8 4.3 1.83
Theory 0.122 9.4 17.1 9.8 3.0 1.74

In Takahata and Nei’s simulation (4), N = 200 and s = 0.5 were
used and the number of replicates for each set of parameter values
was 20. The values of E{T.} and E{Ty4} are measured in units of N
generations. Results for M = 1.0 are not shown, because, in this case,
there are always several rare alleles and the theory does not provide
accurate predictions, particularly for the divergence time of alleles.

same conclusion was drawn about E{D4} and E{D.;}. As
shown in Fig. 1, the expected values of D4 and D, are 5.9 and
9.7, and those observed in this particular replicate were 7.4
and 9.8, respectively. Considering this, I conclude that the
present theory can satisfactorily describe most aspects of
allelic genealogy when V'S/M = 100 (data not shown) and
that the genealogical structure is exactly the same as that of
the coalescence process. The only important difference be-
tween the two theories is their different time scales; allelic
genealogy is magnified by a factor f; relative to neutral gene
genealogy.

Let us apply the theory to some of the unusual features of
MHC polymorphisms (6-10). As pointed out (8-10), such
features are always related to the antigen recognition site in
a MHC molecule that is composed of 57 amino acid residues
and to which processed foreign peptides can bind. Most
extraordinary is the long persistence time of polymorphic

500(
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0

Fic. 1. Computer-generated allelic genealogy for S = 266 and M
=0.001. There are six allelic lines at the time of sampling. Each allelic
turnover, a new line starting with frequency-1/(2N), is indicated by
a small circle. The time scale of the ordinate is in units of 2N
generations. Note that the coalescence time between genes belonging
to the same allelic line cannot exceed the most recent allelic
divergence time but coalescences of genes between different lines
occur prior to the divergence of these lines.
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alleles. One instance clearly shows that a pair of polymorphic
alleles predated the divergence between mice and rats, ca. 13
million years ago (10). This characteristic specific to MHC
molecules is designated as trans-species evolution of poly-
morphism (7, 24). It is enormously long compared with 4N
generations for the mean coalescence time of neutral genes
(3). In fact, if there are two or more generations per year in
these rodents and if N = 10° (25), such alleles must have
diverged at least 260N generations ago. To examine whether
this figure is compatible with the present theory, we need to
estimate the mutation rate and selection coefficient. It was
shown that the synonymous substitution rate (2.9 x 10~° per
site per year) in the region of MHC is somewhat lower than
that in other regions (26). Assume, under neutrality, that this
synonymous substitution rate is an estimate of the mutation
rate per site. Since about 80% nucleotide changes are non-
synonymous, assume also that the relevant mutation rate (&)
of amino acid replacements per antigen recognition site can
be estimated as 2.9 X 107 x 57 X 3 X 0.8 = 3 x 107 per year
and therefore about 10~7 per generation. If all amino acid
replacements at-the antigen recognition site are not selected
for (6, 9), the estimate of u here and in the discussion below
should be decreased appropriately. On the other hand, there
is little information about the value of s. Suppose, however,
that Ns = 10 is satisfied for selection to be effective. Table
2 shows then that s = 0.001 is too small, suggesting that s =
0.01 or more. If s = 0.01 in rodents, then F = 0.057 (n. = 17.6)
and T./N =~ 182 + 98, which are compatible with the
observations. But we must assume a lower mutation rate,
stronger selection, larger population size, or all three if the
persistence time of polymorphic alleles is even longer.

During such a long persistence time, allelic lines must have
accumulated not only selected but also neutral mutations and
must have had more descendant allelic lines. It may therefore
be interesting to infer their relative contributions. Using Eqgs.
3and 5 for N = 10°, s = 0.01, and # = 1077, we have E{D.}
~ 2Hn. = 33 for selected mutations while the expected
number of neutral mutations E{T.}v is 193Nv (v, neutral
mutation rate per locus per generation). Even if v is as large
as 107 so that Nv = 0.1, selected mutations would have
contributed more to differentiate MHC molecules in terms of
nucleotide differences among alleles. Such a rapid accumu-
lation of selected mutations is reflected in Eq. 10;i.e.,a =9.1
for this case.

We may also ask how many different neutral alleles there
are in each selected line on the average. The average age of
each selected line (from a tip to the nearest circle along a line
in Fig. 1) is given by a reciprocal of « in Eq. 10. It becomes
11N generations in our example. This might be sufficiently
large to apply sampling theory (27). The bottleneck phase
during which a rare allele becomes common is much shorter
than the persistence time of a common allele, the proportion
being t*(x)/(n.t(m)) = t(m)/(n.t(m)) = m. Furthermore, the

Table 2. Expected values of the rescaling factor f;, the
persistence time of polymorphic alleles E{T}/N, and
the number of common alleles 7.

N 0.0001 0.001 0.01 0.1

10¢ f — 4.1 7.5 16.0
E{(T}/N — 10.4 26.0 60.8
ne — 2.8 7.3 20.1

10° f 9.4 20.5 483 119
E{T}/N 20.4 68.7 182 468
ne 2.2 6.2 17.6 51.3

The mutation rate u per locus per generation is assumed to be 4.5
x 1076 for N = 10* and 10~7 for N = 10° to mimic the situation of
humans and of rodents, respectively. —, Ns is too small for the
theory to be valid.
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effective gene number in each selected line is 2N, = 2N/n,,
in terms of which 11N is about 186N, generations. Therefore
the mean number of neutral alleles in each line is likely to be
at its equilibrium value. In the population of a selected line,
the corresponding value of M (=N_v) is approximately 0.005
so the mean number of neutral alleles is only about 1.15 (18,
27). However, the number in the whole population may be
1.15 X n. = 20.0, which is much larger than the value of 3.79
expected from a panmictic population with Nv = 0.1. Clearly,
balancing selection plays the same role in the evolution of
neutral genes as does subdivision in a population. This
tremendous increase of genetic variability due to neutral
alleles is, however, consistent with their smaller contribution
to the divergence of alleles in terms of nucleotide changes;
neutral alleles within a selected line are closely related to
each other and neutral mutations between different selected
lines accumulate more slowly than selected mutations.

As another example of our main concern, consider the
human population with long-term generation time and pop-
ulation size being 15 years and 104, respectively (25). If
humans diverged from chimpanzees or gorillas ca. 5 million
years ago, this amounts to 33N generations. Assume that s =
0.01 and u = 4.5 x 1076 per antigen recognition site (M =
0.045) because of the long generation time. If s is not as large
as 0.1 as might be argued from the monomorphism at MHC
loci in small isolated populations (8, 9, 28), N must be larger
than 10* for the theory to account for HLA polymorphisms.
If N = 10* the divergence time of the human lineage
corresponds to 2.1 for s = 0.01 and 1.0 for s = 0.1 (Table 2).
A recent attempt for estimating the number of individuals at
speciation (29) makes use of a large number and long persis-
tence times of polymorphic alleles at MHC loci. My approach
to this problem is as follows.

First, to estimate the average number (k) of distinct lines
in a sample of size i that existed 5 million years ago, we use
Eq. 16 or the distribution itself for the number of distinct lines
(3, 22) if the maximum likelihood approach is preferred. For
i = 47 as in HLA-B (29), k; = 1.4 for s = 0.01 and 2.3 for s
= 0.1. It is thus likely that there were at least two distinct
allelic lines of the sample of i = 47 when the human lineage
originated. Now, suppose that there was a severe bottleneck
in the founding population of human lineage as described in
Genesis. The strength of a bottleneck can be determined by
not only the reduced population size (Np) but also the
duration time (#,). The finding of shared polymorphisms
between humans and chimpanzees imposes a strong require-
ment on the value of N,. A necessary condition for shared
polymorphisms is that plural alleles were passed on from the
common ancestral species. For two neutral genes (assuming
that Ny s < 1), this probability is given by exp{—t,/(2Np)} (3,
30). For it to be as high as 0.99, N, = 501, is necessary.
Hence, even for a one-generation bottleneck (t, = 1), the
founding population must have consisted of at least 50
breeding individuals. This conclusion is reinforced if the
mutation rate « in the human lineage is smaller than that in the
rodent (31). If u = 107, the human divergence time becomes
0.77 (kg = 2.8) for s = 0.01 and 0.33 (k¢ = 5.7) for s = 0.1. The
larger the number of shared alleles and the longer the
bottleneck phase, the more founding individuals required.

Of course, there is no good reason to believe that there was
only one such bottleneck event along the human lineage. If N
were reduced such that Ns < 1 during these 5 million years,
population genetics theory (17-19) predicts that effects of
selection must have ceased and that polymorphism would
have been lost. Hence, the passing on of MHC polymor-
phisms through such events, if ever, requires that, at any
moment in the course of human evolution, the number of
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individuals is as large as Ns = 10 or more. This implies that
N is at least of the order of 10/s and that it may well be larger
than 100. In other words, though rather redundant, the
evolution of Homo sapiens sapiens or speciation in general
could take place without any genetic revolution mediated
directly through extreme founder or bottleneck effects (32).

If the history of organisms is inscribed in the chromo-
somes, we can hope to decipher it, if only partially. Popu-
lation dynamics could be read from polymorphic loci but not
from monomorphic loci. In case of neutral polymorphic loci,
population history and dynamics may be traced back to about
4N generations ago. This period might be too short for some
organisms with short generation times and small population
sizes as compared to their life times in the evolutionary
scene. In contrast, polymorphic loci that have been main-
tained by balancing selection are worth scrutiny in the
present context and, among such candidates (25, 33), MHC
loci will provide a unique opportunity for studying palaeo-
population biology.
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