
1 
 

Supplemental Materials 

Sections 
Section 1: Normalizing the decoding matrix……………………………………………………………………………………………2 

Section 2: Movement time model fitting………………………………………………………………………………………………..3 

Section 3: Neural modulation and noise model………………………………………………………………………………………4 

Section 4: Comparing the noise properties of our iBCI to the able-bodied motor system…………………..…5 

Section 5: Decoding from a simulated ensemble of Poisson-distributed neural features………………………6 

Section 6: Statistical analysis of decoding from Poisson-distributed neural features…………………………….7 

 

Tables 
Table 1: Random target sessions……………………………………………………………………………………………………..……..9 

Table 2: Center-out-back sessions………………………………………………………………………………………………….…….10 

Table 3: Able-bodied vs. iBCI SNR data……………………………………………………………………………………….………..11 

 

Figures 
Figure 1: Quantifying the unequal effect of radius and distance for comparison with prior work.........12 

Figure 2: ID vs. movement Time plots for all datasets ……………………………………………………………………..….13 

Figure 3: ID vs. movement time plots with logarithmically spaced bin edges ………………………………..……14 

Figure 4: Examples of how LinPow better explains the effect of target radius and gain ……………….…...15 

Figure 5: Cross-validated comparison of LinPow and other candidate equations………………………….…….16 

Figure 6: Signal-dependent variability of threshold crossing and spike power features ………………….….18 

Figure 7: Joystick simulation results for volunteer B ………………………………………………………………….………..19 

Figure 8: Joystick simulation results for volunteer C ……………………………………………………………….…….…….20 

 

References 
References..................................................................................................................................................21 

  



2 
 

Section 1: Normalizing the decoding matrix  

Normalizing the decoding matrix D allows the gain of the cursor to be reported precisely (otherwise, D 

contains an unknown gain multiplier embedded within it). We normalized D so that 𝐷𝑓𝑡~𝑁([
cos 𝜃
sin 𝜃

] , 𝑃) 

when the user is trying to move at full speed in direction θ (where P is a 2 x 2 covariance matrix that 

describes the decoding noise). To normalize it, we projected ut at each time step onto a unit vector 

pointing from the cursor to the target, averaged the magnitude of these projections when the cursor 

was far from the target, and divided D by this average value [this procedure was employed previously in 

(Willett et al. 2017)].  

This procedure can be justified as follows. First, we start with the assumption that ut is the sum of an 

encoded control vector ct and a decoding noise vector et: 

𝑢𝑡 = 𝑐𝑡 + 𝑒𝑡 . 

Our intent is to normalize D such that ‖𝑐𝑡‖ = 1 when the user is intending to move the cursor at 

maximum speed. To do this, we first estimate ‖𝑐𝑡‖ using unnormalized ut from time steps when the user 

intends to move at maximum speed. We then divide D by this estimate (which we call cmax) to normalize 

it. Note that simply averaging ‖𝑢𝑡‖ over time steps when the user intends to move at maximum speed 

does not accurately estimate cmax (since ‖𝑢𝑡‖ = ‖𝑐𝑡 + 𝑒𝑡‖ follows a “Rice” distribution whose mean is 

not equal to ‖𝑐𝑡‖ in general).  

To estimate cmax we made the assumption that, when far from the target and when the cursor gain is 

slow, the encoded control vector ct points straight from the cursor to the target at its maximum 

magnitude. Then, we can estimate cmax by taking the average of the projection of ut onto a unit vector 

that points from the cursor to the target: 

𝐸 [(
𝑔𝑡 − 𝑝𝑡
‖𝑔𝑡 − 𝑝𝑡‖

) ∙ (𝑢𝑡)] = 𝐸 [(
𝑔𝑡 − 𝑝𝑡
‖𝑔𝑡 − 𝑝𝑡‖

) ∙ (𝑐𝑡 + 𝑒𝑡)]

= (
𝑔𝑡 − 𝑝𝑡
‖𝑔𝑡 − 𝑝𝑡‖

) ∙ (𝑐𝑡) + 𝐸 [(
𝑔𝑡 − 𝑝𝑡
‖𝑔𝑡 − 𝑝𝑡‖

) ∙ (𝑒𝑡)]

= ‖𝑐𝑡‖ + 0

 

where gt is the position of the target and pt is the position of the cursor at time step t. The final step 

follows based on the assumption that ct is parallel to 
𝑔𝑡−𝑝𝑡

‖𝑔𝑡−𝑝𝑡‖
 and that the error vector is independent of 

the gt  and pt and has zero mean. 

D can be normalized by dividing by an empirical estimate of cmax: 

1

𝑁
∑[(

𝑔𝑡 − 𝑝𝑡
‖𝑔𝑡 − 𝑝𝑡‖

) ∙ (𝑢𝑡)]

𝑁

𝑡=1

, 

where t indexes over time steps where the user is far from the target (at a distance from the target that 

is greater than 80% of the starting target distance). We used closed-loop decoder calibration blocks to 

compute the normalization coefficient, since cursor gain was kept intentionally slow during these blocks.  
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Section 2: Movement time model fitting 

We fit the parameters for the LinPow movement time equation (and other candidate equations that 

were non-linear in the parameters) iteratively using Matlab2014b’s lsqcurvefit function (using the “trust-

region reflective” algorithm). To determine an exponent for the R term of the proposed LinPow 

equation, we used lsqcurvefit to find the exponent that led to the largest fraction of variance accounted 

for (FVAF) across all “datasets” (unique combinations of session date and dwell time setting). To 

estimate a 95% confidence interval, we used a bootstrapping procedure. We randomly resampled 

10,000 times from the 14 datasets to yield 10,000 new sets of 14 datasets; for each set, we found the 

exponent that led to the greatest mean FVAF across all conditions. We found a lower bound of -3.28 and 

an upper bound of -1.78. We chose to round the exponent to -2 since it performed similarly to -2.21 

when cross-validated and the extra precision was unwarranted given the wide confidence interval.  
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Section 3: Neural modulation and noise model 

To study the properties of each participants’ decoding noise, we needed to determine which part of 
what we decoded was “noise” and which part corresponded to volitional modulation. To do so, we 
followed the approach taken in (Willett et al. 2017) and modeled the decoded control vector (ut) as the 
sum of an underlying “encoded” control vector (ct) and decoding noise (et): 

𝑢𝑡 = 𝑐𝑡 + 𝑒𝑡 . 

We modeled the encoded control vector as a non-linear function of target position and cursor position: 

𝑐𝑡 =
𝑔𝑡 − 𝑝𝑡
‖𝑔𝑡 − 𝑝𝑡‖

𝑓𝑡𝑎𝑟𝑔(‖𝑔𝑡 − 𝑝𝑡‖), 

where gt is the target position, pt is the cursor position, and ftarg is a nonlinear, scalar weighting function 
that we fit empirically. This equation is a simplified version of the feedback control model reported in 
(Willett et al. 2017) and states that the user pushes the cursor straight towards the target with a force 
described by ftarg as a function of distance from the target. We parameterized ftarg as a continuous, 
piecewise linear function with 12 breakpoints set at the (0, 8.33, 16.66, ... 100) percentiles of target 
distance (‖𝑔𝑡 − 𝑝𝑡‖). Values of the function at the breakpoints were determined using least squares 

fitting (minimizing the error ∑ ‖𝑢𝑡 − 𝑐𝑡‖
2𝑁

𝑡=1  over all time steps of a block, excluding a brief reaction 
time interval at the beginning of each movement). 

To make the session-specific ftarg curves appearing in Figure 6D and 6E, we averaged the ftarg functions fit 
to each block in the session. We only included sessions that had enough blocks to accurately fit a radius-
specific ftarg curve. To yield the block-specific noise signal-dependency curves shown in Figure 6G, the 
noise standard deviation was estimated separately in each of 20 bins corresponding to 20 levels of 
control vector magnitude ‖𝑐𝑡‖, then normalized by the total noise standard deviation to yield a signal-
dependency curve. 
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Section 4: Comparing the noise properties of our iBCI to the able-bodied motor system 

To estimate the SNR of the iBCI, we used data from closed-loop decoder calibration blocks (where the 

gain was always kept low), so that we could make the safe assumption that the user’s encoded control 

vector was pointing straight from the cursor towards the target at full magnitude. We averaged the pre-

smoothed decoder output (ut) in a 300 ms time window at the beginning of each movement and 

modeled it as the sum of a vector pointing straight from the cursor to the target (signal) and neural 

variability (noise) by fitting the following linear model: 

𝑢𝑖 = 𝑏0
𝑔𝑖 − 𝑝𝑖
‖𝑔𝑖 − 𝑝𝑖‖

+ 𝜀𝑖  

where ui is the averaged pre-smoothed decoder output for trial i, gi is the target position, pi Is the 

average cursor position, b0 is a scalar model parameter and εi is spherical Gaussian noise. We fit b0 (the 

signal) and the standard deviation of ε (the noise) using least squares regression. This can be done by 

stacking the X and Y components of the 2D vectors on top of each other to convert it into a univariate 

regression problem. After computing the SNR, we then used the signal-dependency curves in Figure 6G 

to estimate how the magnitude of the noise would attenuate with a smaller motor command. 

Importantly, for our SNR computations we accounted for each participant’s reaction time by starting the 

300 ms window after a reaction time interval (first 260 ms after target appearance for T6 and 340 ms for 

T8). These reaction times were determined by visual inspection of the mean angular deviation between 

ut and 
𝑔𝑡−𝑝𝑡

‖𝑔𝑡−𝑝𝑡‖
 as a function of time after target appearance.  

To estimate the SNR of able-bodied movements, we used published measurements in the literature 

(Schmidt et al. 1979; Meyer et al. 1988) or re-analyzed publically available data (Young, Pratt, and Chau 

2009; Liao and Kirsch 2014) (Supplemental Table 3). When re-analyzing the stylus movements and 

reaching movements in (Young, Pratt, and Chau 2009; Liao and Kirsch 2014), we measured the accuracy 

of only the “ballistic” phase of the movement (which we defined to be equal to the first half of the 

movement, defined by the peak speed). This was necessary because the full movements lasted longer 

than 200 or 300 ms and included finer, near target corrections. To measure the signal-to-noise ratios of 

these “ballistic” half movements, we defined the signal as the movement amplitude (the mean distance 

traveled) and the noise as the standard deviation of the trial-to-trial movement amplitudes.  

To make the signal to noise ratio curves plotted in Figure 8D that quantify decoder performance as a 

function of the number of electrodes used, we generated a single (SNR) vs. (# of Channels) curve for 

each random target session included in the study (using closed-loop calibration data from that session, 

as described above). Each point in the curve was generated by randomly sampling 50 times from the 

pool of available channels and measuring the SNR of a cross-validated decoder (10-folds), averaging 

across the re-samplings.  
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Section 5: Decoding from a simulated ensemble of Poisson-distributed neural features 

To make the simulated noise curves in Figure 7C, we simulated 1,000 ensembles of 60 Poisson-

distributed neural features whose mean firing rates at each time step were determined as follows:  

𝑓𝑡,𝑖 = (𝑏0𝑖 + 𝑏1𝑖𝑐𝑡 + 𝑏2𝑖|𝑐𝑡|), 

where ft,i is the mean rate of the ith feature at time bin t, b0i is the baseline rate, b1i and b2i are tuning 

parameters, ct is the (one-dimensional) control vector at time bin t, and |𝑐𝑡| is the magnitude of the 

control vector at time step t. The baseline rates were drawn randomly from a uniform distribution 

between 1 and 20 Hz. The 𝑏1𝑖 coefficients were drawn from a Gaussian distribution with a mean of 0 Hz 

and a standard deviation of 5 Hz. If |𝑏1𝑖| was larger than the baseline rate, it was re-drawn (to prevent 

mean firing rates less than zero). The 𝑏2𝑖 coefficients were either set equal to zero (model A) or to the 

baseline rate (model B). 

With each ensemble, we first generated a calibration dataset for calibrating the decoding matrix. The 

calibration dataset consisted of 4,000, 20 ms samples of spike counts drawn from a Poisson distribution 

with mean rates determined by the above equation. For each time step, the control vector was 

randomly drawn from a uniform distribution between -1 and 1. To calibrate the decoder, we first 

centered the spike counts and then used “full OLE” (Chase, Schwartz, and Kass 2009) on the individual 

time step data to build a decoding matrix to predict the control vectors from the mean-subtracted spike 

counts. 

To measure the decoding noise, a separate dataset was generated where the control vector was varied 

from -1 to 1 in steps of 1/7; at each step, 1,000 samples of spike count data were generated. First, we 

subtracted the mean of each feature (as estimated from the calibration dataset) from these spike 

counts. Then, we applied the decoding matrix to each sample and computed the decoding error (the 

difference between the decoded vector and the true control vector). The 1,000 estimates of decoding 

error were then used to estimate the noise standard deviation at that control vector magnitude. 

Finally, to generate the curves in Figure 7C, we averaged together the control vector magnitude vs. 

noise magnitude curves estimated from each of the 1,000 simulated ensembles.    
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Section 6: Statistical analysis of decoding from an ensemble of Poisson-distributed neural 

features 

The simulation results shown in Figure 7 can be further clarified with a simple mathematical model of 

linear decoding using neural features that are Poisson distributed. We model each neural feature as 

follows: 

𝑓𝑡,𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑏0𝑖 + 𝑏1𝑖𝑐𝑡 + 𝑏2𝑖|𝑐𝑡|) 

where ft,i is the spike count of the ith feature at time bin t, b1i is the baseline mean spike count, 𝑏1𝑖 and 

𝑏2𝑖 are tuning parameters, ct is the (one-dimensional) control vector at time bin t, and |𝑐𝑡| is the 

magnitude of the control vector at time step t. We assume that the baseline spike counts are large 

enough relative to the size of the tuning parameters such that the formula for mean spike count is 

always above zero. 

A linear decoding matrix D transforms the observed spike counts from all N features into a decoded 

control vector as follows: 

𝑢𝑡 = ∑𝐷𝑖(𝑓𝑡,𝑖 − 𝑏0𝑖)

𝑁

𝑖=1

 

where Di is the ith element of the decoding matrix and ut is the decoder output. Note that, as part of the 

decoding process, the mean spike count for each feature is subtracted from the observed spike count 

before the decoding matrix is applied. We can now write an expression for the variance of the decoder 

output as follows: 

𝑣𝑎𝑟[𝑢𝑡] = 𝑣𝑎𝑟[∑𝐷𝑖𝑓𝑡,𝑖 − 𝐷𝑖𝑏0𝑖]

𝑁

𝑖=1

 

𝑣𝑎𝑟[𝑢𝑡] = 𝑣𝑎𝑟[∑𝐷𝑖𝑓𝑡,𝑖]

𝑁

𝑖=1

 

The resultant expression is a sum of independent, Poisson-distributed random variables multiplied by 

constant coefficients from the decoder. Using the property that the variance is equal to the mean for a 

Poisson-distributed random variable and making the assumption that each variable is independent, the 

variance can be expressed as follows: 
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𝑣𝑎𝑟[∑𝐷𝑖𝑓𝑡,𝑖]

𝑁

𝑖=1

= ∑𝐷𝑖
2

𝑁

𝑖=1

(𝑏0𝑖 + 𝑏1𝑖𝑐𝑡 + 𝑏2𝑖|𝑐𝑡|)

= ∑𝐷𝑖
2

𝑁

𝑖=1

𝑏0𝑖

+ ∑𝐷𝑖
2

𝑁

𝑖=1

𝑏1𝑖𝑐𝑡

+ ∑𝐷𝑖
2

𝑁

𝑖=1

𝑏2𝑖|𝑐𝑡|

 

The first term of the final sum describes the “baseline” variance caused by the baseline firing rate of 

each feature. This term describes signal-independent noise that is not affected by the encoded control 

vector. The second term describes the change in variance caused by cosine tuning to the encoded 

control vector. This term will be approximately zero as long as the 𝑏1𝑖 coefficients are “uniformly 

distributed” with both positive and negative values. The third term describes the change in variance 

caused by tuning to control vector magnitude. This term may cause an increase in variance with an 

increase in the control vector magnitude if the 𝑏2𝑖 coefficients are not uniformly distributed and are 

instead mostly positive. This would cause the decoding noise to have some signal-dependency. 

However, unless this increase in firing rate is substantial compared to the baseline firing rate, the overall 

noise will still be predominantly signal-independent.  

For example, suppose that tuning to control vector magnitude is 100% of the baseline rate; that is, 

neurons increase their firing rate by 100% overall when the encoded control vector is at its maximum 

value (as simulated in Figure 7). In this case, the standard deviation of the decoding noise when the user 

is holding still (c=0) would be  √∑ 𝐷𝑖
2𝑁

𝑖=1 𝑏0𝑖  while the standard deviation of the decoding noise when 

the user is pushing the cursor at full force would be √2 ∗ ∑ 𝐷𝑖
2𝑁

𝑖=1 𝑏0𝑖 ≈ 1.41√∑ 𝐷𝑖
2𝑁

𝑖=1 𝑏0𝑖 , only a ~41% 

increase in noise from baseline. This would appear as weak signal-dependence in the decoding noise. 

Overall, however, the decoding noise would predominantly be signal-independent. 
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Supplemental Table 1. A list of all random target sessions included in this paper. WW stands for 

“workspace width” and refers to the length of a side of the workspace square in which targets randomly 

appeared (18.5 cm for T6 and 20.5 cm for T8). Note that all target radii are reported as “effective” target 

radii (target radius plus cursor radius).   

 

Participant Condition(s) Trial Day 

(Post-

Implant 

Day) 

Cursor 

Gains 

(WW/s) 

Cursor 

Smoothing 

(α) 

Dwell 

Times (s) 

Target Radii 

(WW) 

Task 

Visualiza

tion 

Motor Cue 

T6 Mixed Gain 

& Dwell 

Time (2 Blocks 

Each) 

727 0.44, 0.77 0.92 0.75, 1.5 0.07, 0.10, 

0.13 

Cursor Imagined 

Index + 

Thumb 

T6 Mixed Gain 

& Dwell 

Time (2 Blocks 

Each) 

729 0.51, 0.86 0.92 0.75, 1.5 0.07, 0.10, 

0.13 

Cursor Imagined 

Index + 

Thumb 

T6 Two Gains (5 

Blocks Each) 
820 0.52, 1.04 0.92 0.75 0.07, 0.10, 

0.13 

Cursor Imagined 

Index + 

Thumb 

T6 Single Gain 
(10 Blocks) 

830 1.09 0.92 0.75 0.07, 0.10, 

0.13 

Cursor Imagined 

Index + 

Thumb 

T6 Single Gain 
(6 Blocks) 

837 3.06 0.92 0.15 0.07, 0.10, 

0.13 

Cursor Imagined 

Index + 

Thumb 

T8 Single Gain 
(15 Blocks) 

101 0.43 0.96 0.5 0.11, 0.14, 

0.17 

Cursor + 

Arm 

Attempted 

Arm 

T8 Single Gain 
(16 Blocks) 

107 0.74 0.94 0.75 0.10, 0.12, 

0.16 

Cursor + 

Arm 

Attempted 

Arm 

T8 Single Gain 
(8 Blocks) 

163 1.2 0.94 0.75 0.10, 0.12, 

0.16 

Cursor + 

Arm 

Attempted 

Arm 

T8 Single Gain 
(4 Blocks) 

179 0.57 0.94 0.75 0.10, 0.12, 

0.16 

Cursor + 

Arm 

Attempted 

Arm 

T8 Three Gains 
(2 Blocks Each) 

239 0.66, 1.00, 

1.33 

0.94 0.75 0.10, 0.12, 

0.16 

Cursor + 

Arm 

Attempted 

Arm 

T8 Two Gains (7 

Blocks Each) 
274 0.40, 0.64 0.94 0.75 0.10, 0.12, 

0.16 

Cursor + 

Arm 

Attempted 

Arm 

T8 Single Gain 
(8 Blocks) 

354 0.26 0.96 0.75 0.10, 0.12, 
0.16 

Cursor + 
Arm 

Attempted 
Arm 
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Participant Conditions Date (& Post-

Implant Day) 
Cursor 

Smoothing 

(α) 

Dwell 
Time (s) 

Target 

Radius / 

Target 

Distance 

Task 

Visualization 

Motor Cue 

T6 8 Gain Conditions 
(1 Block Each) 

734 0.91 0.15 0.15 Cursor Imagined 

Index + 

Thumb 

T6 8 Gain Conditions 
(1 Block Each) 

769 0.91 0.15 0.15 Cursor Imagined 

Index + 

Thumb 

T8 4 Gain Conditions 
(4 Blocks Each) 

114 0.94 0.15 0.26 Cursor + 

Arm 

Attempted 

Arm 

 

Supplemental Table 2. Center-out-back sessions included in the paper.  
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Task Scale A Scale B Scale C Scale D Scale E Mean Duration 
of “Ballistic” 
Component 

T6 iBCI 0.1 ± 0.29 0.25 ± 0.30 0.5 ± 0.31 0.75 ± 0.33 1 ± 0.34 300 ms 

T8 iBCI 0.1 ± 0.42 0.25 ± 0.43 0.5 ± 0.43 0.75 ± 0.43 1 ± 0.44 300 ms 

Schmidt 1979 
(Hand Force) 

0.1 N ± 
0.02 

1 N ± 0.075 10 N ± 
0.52 

  “Shots” of pre-
programmed 
force impulses 
(Figures 2 and 3) 

Meyers 1988 
(Wrist Rotation) 

10 ° ± 1.5 16 ° ± 1.85 25 ° ± 3.2 40 ° ± 4  226 ms (Table 6) 

Young 2009 
(Stylus 
Movement, re-
analyzed ballistic 
portion) 

3.0 cm ± 
0.6 

6.1 cm ± 
0.85 

9.2 cm ± 
1.05 

12.8 cm ± 
1.86 

 133 ms 

Liao 2014 (3D 
Reaching, re-
analyzed ballistic 
portion) 

11.5 cm ± 
1.5 

15.4 cm ± 
1.85 

19.9 cm ± 
2.1 

24 cm ± 
2.48 

 190 ms 

 

Supplemental Table 3. Data used to compare the “ballistic” signal to noise ratios of the iBCI to the able-

bodied motor system (illustrated in Figure 8). Data is reported in the format [movement amplitude] ± 

[standard deviation of the movement error].  
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Supplemental Figure 1. Quantifying the unequal effect of target radius and target distance on iBCI 

movement times for comparison with previous studies. The degree of asymmetry can be quantified by 

first fitting the Shannon-Welford movement time model: 𝑀𝑇 = 𝑎 + 𝑏 𝑙𝑜𝑔2(𝐷 + 2𝑅) − 𝑐 𝑙𝑜𝑔2(2𝑅). The 

value 𝑘 = 𝑐/𝑏 then quantifies how much greater an effect target radius has on movement time than 

target distance does (Shoemaker et al. 2012; Matlack, Chizeck, and Moritz 2016). When k=1, the 

Shannon-Welford model reduces to the Shannon model, a variant of Fitts’ law: 𝑀𝑇 = 𝑎 +

𝑏 𝑙𝑜𝑔2(
𝐷

2𝑅
+ 1). Deviations from 1 indicate a departure from Fitts’ law. We computed k for each 

“dataset” (each set of trials corresponding to a unique combination of session date and dwell time 

setting) and estimated a 95% confidence interval using bootstrapping (we resampled from individual 

trials 10,000 times).  For some datasets, we found very large values of k (several > 3) which significantly 

exceed the departures from Fitts’ law previously reported for able-bodied pointing movements (where k 

sometimes significantly differed from 1 but did not exceed 1.69) (Shoemaker et al. 2012). In a recent 

study on iBCI movement times, the value of k reported for the single dataset that was found to be 

inconsistent with Fitts’ law was 1.4, substantially closer to 1 than many of the k values reported here 

(Matlack, Chizeck, and Moritz 2016).  
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Supplemental Figure 2. Index of difficulty (ID) vs. movement time plots for every unique combination of 

gain, dwell time, and session date included in the study (some sessions included multiple conditions with 

different gains and/or dwell times). Six of these plots were chosen as examples to display in Figure 3. 

Each set contains data corresponding to a certain participant and dwell time. For each individual plot, 

gain (G), smoothing parameter α (A), noise standard deviation (N), and number of cursor movements (R) 

are indicated. Bin edges are linearly spaced (compare to Supplemental Figure 3).  
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Supplemental Figure 3. Same as Supplemental Figure 2 except that logarithmically spaced bin edges 

were used (bin edges at 0.15, 0.22, 0.34, 0.50, and 0.75 workspace widths). Results are not substantially 

affected by the binning method (panels that depart from Fitts’ law do so under either binning method). 

We used linearly spaced bin edges for all other figures because it resulted in the most balanced 

distribution of data points across the bins. 
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Supplemental Figure 4. Examples of how the proposed equation (LinPow) can better explain iBCI 
movement time data that departs significantly from Fitts’ law. (A,B) ID vs. Movement Time curves from 
two random target sessions. Since LinPow has separate radius and distance terms, there is a separate ID 
vs. movement time line for each target radius (colored dotted lines). In contrast, Fitts’ law can only fit a 
single line (black solid line). (C) LinPow can also explain how changing the cursor gain results in a U-
shaped movement time curve (colored dashed lines, one for each session, show the LinPow model). In 
contrast, Fitts’ law predicts that movement time is invariant to cursor gain (horizontal, colored dotted 
lines).  

To use the LinPow equation to describe the effect of changing the cursor gain while target distance and 

radius is held constant, we can divide the target distance and radius by the cursor gain to yield: 

𝑀𝑇(𝑔) = 𝑎 + 𝑏
𝐷

𝑔
+ 𝑐(

𝑅

𝑔
)−2 

𝑀𝑇(𝑔) = 𝑎 + 𝑏𝑔−1 + 𝑐𝑔2, 

where D and R have been absorbed into the parameters. The resulting function is a U-shaped function of 

g. In this form, the LinPow equation can be used to predict and understand how changing the cursor 

gain will affect iBCI performance.   

Note that the Welford model,  𝑀𝑇 = 𝑎 + 𝑏 log2(𝐷) − 𝑐 log2(2𝑅), and the Shannon-Welford model, 

𝑀𝑇 = 𝑎 + 𝑏 log2(𝐷 + 2𝑅) − 𝑐 log2(2𝑅), also have separate terms for the target distance and radius 

(Welford, Norris, and Shock 1969; Shoemaker et al. 2012; Matlack, Chizeck, and Moritz 2016). Thus, they 

also yield a non-constant gain vs. movement time curve. However, this curve is monotonically increasing 

or decreasing and is not U-shaped. This can be demonstrated for the Welford model as follows (a similar 

demonstration can be made for the Shannon-Welford model):  

𝑀𝑇(𝑔) = 𝑎 + 𝑏 log2(𝐷/𝑔) − 𝑐 log2(2𝑅/𝑔) 

𝑀𝑇(𝑔) = 𝑎 + 𝑏 log2(𝐷) − 𝑏log2(𝑔) − 𝑐 log2(2𝑅) + 𝑐 log2(𝑔) 

𝑀𝑇(𝑔) = [𝑎 + 𝑏 log2(𝐷) − 𝑐 log2(2𝑅)] + (𝑐 − 𝑏)log2(𝑔). 

The constant terms that don’t depend on gain have been grouped to the left. The term on the right 

varies as a function of gain but monotonically, either increasing towards infinity if c is larger than b or 

otherwise decreasing.  
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Supplemental Figure 5. (A) Cross-validated (leave one out) prediction performance of six different 
movement time equations and fourteen different “datasets” (sets of trials corresponding to a unique 
session date and dwell time combination). Each symbol corresponds to one dataset. Jitter has been 
added in the x-direction to aid visualization. Performance is measured by fraction of variance accounted 
for (FVAF), and is normalized with respect to LinPow (the proposed equation) by dividing by the FVAF of 
LinPow. Normalization facilitates comparison across datasets with different levels of intrinsic 
predictability. Values below one indicate worse performance than LinPow. LinPow significantly 
outperforms the alternative models (t-tests performed on the 14 normalized FVAF scores for each 
alternative model indicate a mean significantly less than 1 with p<0.01). (B) Same as in(A) except the raw 
FVAF is reported instead of the normalized version. 

We briefly explain each alternative model here.  

The Shannon model modifies Fitts’ law based on information-theoretic considerations and can 

sometimes better describe movement times when D/R is close to zero (MacKenzie 1992). The equation 

is: 

𝑀𝑇 = 𝑎 + 𝑏 log2(
𝐷

2𝑅
+ 1) 

The Shannon model performs very similarly to Fitts’ law for our datasets. 
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Welford’s model has the same logarithmic proportionality as Fitts’ law, but separates the target distance 

and radius effects into separate terms (Welford, Norris, and Shock 1969): 

𝑀𝑇 = 𝑎 + 𝑏 log2(𝐷) − 𝑐 log2(2𝑅). 

Welford’s model does not imply scale invariance. Consequently, it describes the data better than Fitts’ 

law, but still not as well as LinPow, since it retains a logarithmic proportionality.  

The “Shannon-Welford” model, a modification of the Welford model (Shoemaker et al. 2012), has 

recently been used to explain iBCI movement times (Matlack, Chizeck, and Moritz 2016): 

𝑀𝑇 = 𝑎 + 𝑏 log2(𝐷 + 2𝑅) − 𝑐 log2(2𝑅). 

The Shannon-Welford model performs similarly to the Welford model and is based on the same basic 

idea: using separate terms to describe the unequal effects of target distance and radius on movement 

time. 

The power law relaxes the logarithmic constraint of the Fitts and Welford models but retains scale 

invariance (Kvålseth 2013): 

 𝑀𝑇 = 𝑎 + 𝑏 (
𝐷

2𝑅
)
𝑐
. 

The fact that LinPow outperforms the Welford model and the power law suggest that both the non-

logarithmic relationship and the separate D and R terms are important for describing iBCI movement 

times.  
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Supplemental Figure 6. The variance of the neural features we used for decoding (threshold crossing 

rates and spike power) increased with their mean as expected from previous studies on the firing rates of 

single neurons. Data is from a single session with participant T8 and T6. Dots of the same color are from 

the same feature. The gray lines in the threshold crossing and sorted unit panels indicate the minimum 

possible variance for a given mean (since the spike counts are integers they must have a non-zero 

variance to obtain non-integer values; de Ruyter van Steveninck et al. 1997). No sorted units are shown 

for T6 since few isolatable single units were present on the array at that time (trial day 830).  

To make this figure, we analyzed the random target datasets and grouped trials together according to 

target direction and distance. We used 8 direction categories (grouping trials where the target appeared 

at an angle from the cursor of 0° to 45°, 45° to 90°, etc.) and 4 distance categories (evenly spaced from 

the minimum to maximum distance in the dataset). This yielded 8 x 4 = 32 groups of trials. Within each 

group, we took the neural activity from between 300 and 700 ms after target appearance (using 20 ms 

bins) and computed the mean and variance of this data, concatenating all samples together within a 

group. This yielded 32 estimates of mean and variance for each neural feature, which we plotted against 

each other for each feature that met a significance threshold (cross-validated R2>0.01 when fitting a 

linear tuning model to the modeled control vector). 
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Supplemental Figure 7. Movement time vs. ID curves for able-bodied volunteer B completing the joystick 

experiment. 
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Supplemental Figure 8. Movement time vs. ID curves for able-bodied volunteer C completing the joystick 

experiment. 
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