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Figure S1: Elementary Flux Modes of E. coli central carbon metabolic model.
The elementary flux modes individuated in a stoichiometric model of central
carbon metabolism in E. coli when growing in a glucose minimal medium (A)
and acetate minimal medium (B). EFMs supporting growth are highlighted in
orange.
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Figure S2: The R” values derived
from the sigmoidal fitting analysis,
were averaged across the 4
lineages evolved under a common
selective pressure (medium -
antibiotic). KEGG  enrichment
analysis was performed using the
method described in (Konig et al,

2007). Enrichment analysis was
performed separately for
intracellular and  extracellular

metabolome profiles. For each
condition, annotated metabolites
were ranked according to their
averaged R’ values. A statistical
score that models the probability
of overrepresented metabolite
sets in different KEGG pathways is
based on the collective activities of
multiple metabolites following the
approach described in (Konig et al,
2007). Specifically, the rank
distribution of all metabolites
belonging to the same pathway is
examined and a p-value is assigned

following an iterative
hypergeometric test (Konig et al,
2007). The iterative

hypergeometric test evaluates the
significance of the rank distribution
of all metabolites annotated to the
same pathway, indicating the
statistical relevance of metabolites
in a common cellular process being
distributed toward the top ranking
ones. P-values were corrected for

multiple test by means of g-value correction (Storey, 2002). Pathways with a g-
value significance of overrepresented altered metabolites lower or equal to

0.01 are highlighted in purple.
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Figure S3: Pareto optimality. (Left-panel) The pareto surface estimated by
simulating a glucose minimal medium is shown as a 3D surface. Each color-
coded dot corresponds to one of the evolved strains. (Right-panel) minimum
distance of the metabolic flux distributions in the evolved strains to the pareto
optima is shown for each strain. Evolved strains have been grouped accordingly
to the antibiotic selective pressure.
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Figure S4: Estimation of shadow prices. In maximization problems, the
constraints can often be described as restrictions on the amount of resources
available, and the objective as a measure of profit. Here we show a
hypothetical problem where a set of linear constraints (thick blue and black
lines) limits the availability of two resources (Vi and V,). Only one combination
of V; and V, is optimal for maximizing the sum of 2V,+V, (objective function red
dashed line). The shadow price associated with a particular constraint reveals
how much the optimal value of the objective would increase per unit increase
in the amount of resource available (right panel). In other words, the shadow
price associated with a resource tells how much more profit you would get by
increasing the amount of that resource by one unit. In this particular problem,
small changes on the upper limit of available resource V, is irrelevant for the
objective.
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Figure S5: Sensitivity parameters - Shadow prices estimated from the dual
solution to the FBA problem. (A) Here we show a toy model of a metabolic
network consisting of 3 metabolites and 5 reactions. (B-C) Under assumption of
steady-state and R1 to be limiting, we can calculate the shadow prices
associated to metabolite A, B and C when maximizing the outputs R5 or R3. A
negative shadow price (i.e. -1) reflects the sensitivity of the objective function
to an imbalance of the corresponding metabolite (i.e. sink flux). In this example
maximization of fluxes through R5 or R3 vyields different shadow prices as
reported in the figure.
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Figure S6: Metabolic
changes after one
hour from drug
exposure. For all three
antibiotics, we
calculated the number
of significantly
changed metabolites
within each metabolic
pathway relative to
the total number of
significant changes.
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Figure S7: Measurement of acrB expression. AcrAB promoter activity was
monitored using a GFP reporter (Bumann & Valdivia, 2007). Wildtype E. coli
was treated with different concentrations of chloramphenicol (blu line) and 80
ng/ml of norfloxacin (black line). The average GFP levels divided by the
corresponding OD values during exponential growth are shown. Basal AcrAB
promoter activity was measured upon normal growth without antibiotics (red
line). We observed that the higher is the chloramphenicol concertation the
higher is the induction of the AcrAB expression, up to a plateau around 25
ug/ml. Differently, norfloxacin induces only a nonsignificant increase of the
promoter activity.
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Figure S8: Epistatic interactions scores reported in (Nichols et al, 2011)

between chloramphenicol and single gene deletion mutants of E. coli. Boxplots
represent the median and first and third quartiles of the different dosages
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tested for chloramphenicol. Top/Bottom 20 genes are reported in the figure

insets on the right. Blu, yellow and green line represent respectively AmarR,

AacrB and AacrA.
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Figure S9: Epistatic interactions scores reported in (Nichols et al, 2011)
between norfloxacin and single gene deletion mutants of E. coli. Boxplots
represent the median and first and third quartiles of the different dosages
tested for chloramphenicol. Top/Bottom 20 genes are reported in the figure
insets on the right. Blu, yellow and green line represent respectively AmarR,
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AacrB and AacrA. Differently from chloramphenicol, other gene-knockout
mutants seem to be more effective in mediating tolerance to norfloxacin.
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Figure S10: Enzyme cost in central carbon metabolism. Protein copy numbers
for all annotated enzyme in the genome-scale model of E. coli metabolism
(Orth et al, 2011) were collected from (Li et al, 2014). Estimated fluxes in Fig. S6
in a glucose minimal medium were used to calculate the ratio between flux and
corresponding catalyzing enzyme’s copy number. This procedure allows to
compare how much enzyme is needed to catalyze the same metabolic
conversion rate (mmol/gDW/h) across different metabolic reaction. Enzyme
belonging to different pathways, according to the metabolic genome scale
model (Orth et al, 2011) are grouped, and corresponding costs plotted as
boxplots, representing the median and first and third quartiles. Nucleotide
metabolism related enzymes (blue) are on average the most costly ones. As
previously shown in (Li et al, 2014), methionine biosynthesis represents by far
the amino acids requiring the highest proteome investment (green). TCA cycle
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related enzymes are on
average almost 5 times more
costly then glycolytic enzymes
(red boxplots).

Figure S11: Correlated and
anti-correlated phenotypic
signatures to
chloramphenicol. The genetic
interaction between ~100
chemical agents (among
which chloramphenicol) and
~4000 genes in E. coli have
been quantitatively
characterized in (Nichols et al,
2011), using the library of
single gene deletions of E. coli

(Baba et al, 2006). Here,

pairwise correlation of
guantitative fitness
measurements between

chloramphenicol and the
remaining perturbing agents
are reported. Since multiple
concentrations of the same
perturbing agent were tested
the box plot reports median
and first/third quartiles of
Spearman correlation against
each perturbing
agent/dosages. We observed
a tendency for gene knockouts
that aggravate the effect of
chloramphenicol to buffer the
effect of perturbing agents
such as EGTA, ampicillin,
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amoxicillin or CCCP, while knockouts that buffer the action of chloramphenicol
are deleterious for EGTA, ampicillin, amoxicillin or CCCP.

By rearranging the proteome resources to switch from respiratory to more
fermentative metabolism, we move from a condition of high proteome cost
(due to the expression of costly enzymes in TCA) to low energetic yield (Basan
etal, 2015).
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Figure S12: Sensitivity of ampicillin-acetate resistant populations to fosfomicyn
(FOS). The relative growth rate inhibition of different FOS concentrations
relative to antibiotic-free growth is reported for wild-type (wt) and the mutants
evolved in the presence of ampicillin and acetate at the end point of the
evolutionary experiment. Data are the mean £ S.D. of three biological replicates
grown in acetate minimal medium. Overall, E. coli cells exhibited a higher
tolerance to fosfomycin in acetate with respect to glucose minimal medium.
Surprisingly, most of the evolved populations in acetate-ampicillin exhibited a

growth advantage with relatively low fosfomycin concentrations, and one
13
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population in particular (AMP-ACE-7) exhibited a strong benefit from the
presence of fosfomycin. In this evolved population, growth-rate is 60% slower
than wild-type E. coli in antibiotic-free acetate minimal medium, and it
increases with higher fosfomycin concentrations.

Figure S13: Common genetic changes identified by whole-genome sequencing.
Mutations identified in at least two out of the four lineages evolved under the
same selective pressure are retained. Only mutated genes in more than one
condition are shown and linked to the respective selective antibiotic / carbon
source.
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Figure S14: 64 different compounds purchased from Sigma were mixed in M9
minimal medium at an equimolar concentration of 100 uM. Samples were
diluted to a concentration of 5, 2.5. 1.25, 0.625, 0.3125 and 0.1563 puM and
measured intensities of peaks with an equivalent m/z are plotted against each
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of the 64 compounds. Blu dots represent raw intensities from 6 spiking
experiment (e.g. biological replicates) and 2 injections of the same sample (e.g.
technical replicates). Linear regression analysis was performed (red dashed
line) and adjusted R* are reported for each compound.
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