Viral vectors	MIR VIGS plants ^a			Average MIR VIGS
	Group 1	Group 2	Group 3	efficiency (%) ^b
TYLCCNV	0/6	0/6	0/6	0 ± 0
TYLCCNV-amiRPDS(319L)	4/6	5/6	3/6	67 ± 0.14

Supplemental Table S1. The silencing efficiency of *PDS* gene by TYLCCNV-amiRPDS(319L) vectors in *N. benthamiana* plants at 30 dpi.

^a MIR VIGS plants were expressed as *PDS* silenced plants/total agroinoculated plants;

^b MIR VIGS efficiency was the ratio of *PDS* silenced plants to total Agroinoculated plants. Value indicated mean \pm SD (n=3).

Supplementary Table S2. Lists of primers used in this study. Lists of primers used in plasmid construction, virus detection, RT-qPCR and northern blot analysis for genes and small RNAs.

Primer name	Primer sequence (5'-3')*	Brief description			
For plasmid construction					
Xba I-ami-F	GC <u>TCTAGA</u> GTTCATACACTTAATACT				
Sma I-ami-R	TCC <u>CCCGGG</u> TGCCTTAAATAAAGAT				
amiRPDS(athmiR319)-1	GATCAACATAGACTGATTGGGGGCTCT				
	GAGCCCCAATCAGTCTATGTTGATCA	For TVI CCNV-amiRPDS(3191)			
amikPD8(atnmik319)-2	AAGAGAATCAATGA	cloning			
	GAGCACCAATCAGTCAATGTTGTTCA	cioning			
amiRPDS(athmiR319)-3	CAGGTCGTGATATG				
	GAACAACATTGACTGATTGGTGCTCT				
amiRPDS(athmiR319)-4	ACATATATATTCCT				
	GC <u>TCTAGA</u> GAGCACCAATCAGTCAAT				
Xba I-amiRPDS(319)-F	GTTGTTCACAGGTCGTGATATG	For TYLCCNV- amiRPDS(319)			
Construction (210) D	TCC <u>CCCGGG</u> GAGCCCCAATCAGTCTA	cloning			
<i>Sma</i> 1-amiRPDS(319)-R	TGTTGATCAAAGAGAATCAATGA	C C			
Via Lam: DDDS(150) F	GC <u>TCTAGA</u> CCCCCAATGTGTCTATGTT				
<i>X00</i> 1-2000	GAAGAAGATCTAACAGGTTAGA	For TYLCCNV- amiRPDS(159)			
Smg Lom; DDDS(150) D	TCC <u>CCCGGG</u> GCCCCAATCAGTCTATG	cloning			
<i>Smu</i> 1-annikr <i>DS</i> (1 <i>39</i>)-K	TTGAAAATGATCAAACAAAGGGTA				
	GC <u>TCTAGA</u> AAAGTAGAGAAGAATCT				
Xba I-amiRPDS(390)-F	GTATCAACATAGACTGATTGGGGGCAT				
	GATGATCACATTCGTTATC	For TYLCCNV- amiRPDS(390)			
	TGTAGTAAGAAGAGCCAATGTCAAC	cloning			
amiRPDS(390)-R	ATAGAATGATTGGGGGCAAAAAATAGA				
	TAACGAAT				
	GC <u>TCTAGA</u> AAAGTAGAGAAGAATCT				
Xba I-amiR156-F	GTATGACAGAAGAGAGTGAGCAC				
	ATGATGATCACATTCGTTATC	For TVI CCNV-amiR 156 cloning			
	TGTAGTAAGAAGAGCCAATGTGACA	Tor TTECCIV-anniciso cloning			
amiR156-R	GAAGATAGTGAGCACAAAAAATAGA				
	TAACGAAT				
	GC <u>TCTAGA</u> AAAGTAGAGAAGAATCT				
<i>Xba</i> I-5'D(8)-F	GTATCTTGACCTTGTAAGGCCTTTAT				
	GATGATCACATTCGTTATC	For TYLCCNV-5'D8(+) cloning			
	TGTAGTAAGAAGAGCCAATGTCTTG	· ()g			
5'D(8)-R	ACCTTTTAAGGCCCTTAAAAAATAG				
	ATAACGAAT				

	GC <u>TCTAGA</u> AAAGTAGAAAAAATCT						
Xba I-amiRSu-F	GTATAATTAGGATAAATCGGGCCCA						
	TGATGATCACATTCGTTATC	For TVI CCNV amiDSu aloning					
	TGTAGTAAGAAGAGCCAATGTAATT	For TTLCCIVV-anniKSu cloning					
amiRSu-R	AGGATCAATCGGGCCCAAAAAATAG						
	ATAACGAAT						
	GC <u>TCTAGA</u> AAAGTAGAGAAGAATCT						
Xba I-amiRPCNA-F	GTATATAGTGCTCAAAACCCTCACAT						
	GATGATCACATTCGTTATC	For TYLCCNV-amiRPCNA					
	TGTAGTAAGAAGAGCCAATGTATAG	cloning					
amiRPCNA-R							
	ATAACGAAT						
	For virus detection						
DNA-A-F	CATCGTGTTGGTAAGAGGTTTTG	For TYLCCNV DNA-A					
DNA-A-R	TATACAGGATTACTTGCATGGGT	detection					
DNA-mβ-F	ACATCGGTTCCCCTATTAGTGCC	For TYLCCNV DNA-mβ					
DNA-mβ-R	GCTGCTGCGTAGCGTAGTGGT	detection					
For RT-qPCR of genes							
NbelF4a-qF	GCTTTGGTCTTGGCACCTACTC						
NbeIF4α-qR	TGCTCGCATGACCTTTTCAA	R1-qPCR primers for $eIF4\alpha$					
NbPDS-qF	GGCGGCGTTATTATCATC						
NbPDS-qR	ACCAATCTCCATCATCATCT	RT-qPCR primers for <i>PDS</i>					
pri-319-qF	TTCCGACTCATTCATCCAA	RT-qPCR primers for pri-					
pri-319-qR	CTACCGCATCATTCATTCAT	amiRPDS(319)					
pri-159-qF	GCTGCTGACCTATGGATT	RT-qPCR primers for pri-					
pri-159-qR	TCAAACAAAGGGTAAAATAAAGC	amiRPDS(159)					
pri-390-qF	GCGGCAAAGTAGAGAAGAATCTGTA	RT-qPCR primers for pri-					
pri-390-qR	GCGTGTAGTAAGAAGAGCCAA	amiRPDS(390)					
TC17947-qF	GCACAGTGGAAGACAGTA	PT aPCP primars for TC17047					
TC17947-qR	ACGATGATAGTTAGATATGAAGGA	KI-qi CK princis ioi 1C1/94/					
TC24007-qF	CACTCTAACGGTTATCATCCT	RT-aPCR primers for TC24007					
TC24007-qR	CAACAGACAGCCTCACAA	KI-qi ek plinels loi 1024007					
NbARF3-qF	GGCAAGTGATGAGGTCTA	RT_aPCR primers for Nh4RE3					
NbARF3-qR	GTATCCGAAGCAGTGAGA	i qi en primers tor monta J					
NbARF4-qF	TTACCACCACTGAGCATTC	RT_aPCR primers for NhAREA					
NbARF4-qR	GGCGGACTGTCTTATCAC	Al-qi ex primers for <i>WOAM</i> 4					
NbSu-qF	CCAGATGACCAAGAAGTAATG	RT-qPCR primers for Su					

NbSu-qR	TGTCCTCAGTAGCACCTA		
NbPCNA-qF	AGAGATGAATGAGCCAGTAT		
NbPCNA-qR TTAGGTGCCAGGTAGAAC		RT-qPCR primers for <i>PCNA</i>	
	For RT-qPCR of small RNAs		
universal-qR	GTGCAGGGTCCGAGGT	Universal reverse primer for all miRNA end-point stem-loop RT- qPCR	
amiRPDS-RT	GTTGGCTCTGGTGCAGGGTCCGAGG TATTCGCACCAGAGCCAACGCCCCA	RT primer for amiRPDS	
amiRPDS-qF	CCGGCTCAACATAGACTGAT	Forward primer for qPCR analysis of amiRPDS	
amiR156-RT	GTTGGCTCTGGTGCAGGGTCCGAGG TATTCGCACCAGAGCCAACGTGCTC	RT primer for amiR156	
amiR156-qF	CCGGCTGACAGAAGAGAGTG	Forward primer for qPCR analysis of amiR156	
5´D8(+)-RT	GTTGGCTCTGGTGCAGGGTCCGAGG TATTCGCACCAGAGCCAACAAAGGC	RT primer for 5'D8(+)	
5′D8(+)-qF	CCGGCTCTTGACCTTGTAAG	Forward primer for qPCR analysis of 5'D8(+)	
amiRSu-RT	GTTGGCTCTGGTGCAGGGTCCGAGG TATTCGCACCAGAGCCAACGGGCCC	RT primer for amiRPDS	
amiRSu-qF	GCCCGGCGTAATTAGGATAAATC	Forward primer for qPCR analysis of amiRPDS	
amiRPCNA-RT	GTTGGCTCTGGTGCAGGGTCCGAGG TATTCGCACCAGAGCCAACGTGAGG	RT primer for amiRPCNA	
amiRPCNA-qF	CCGGCTATAGTGCTCAAAAC	Forward primer for qPCR analysis of amiRPCNA	
	For northern blot analysis	-	
U6-probe	TTGCGTGTCATCCTTGCGCAGG	For northern blot assay of U6	
amiRPDS-probe	GCCCCAATCAGTCTATGTTGA	For northern blot assays of amiRPDS and pri-amiRPDS	
PDS-PF	GCTCTAGACAAGTGCCACGACCCGA AG	Primers for amplifying PDS	
PDS-PR	PDS-PR CGAGCTCGCATCGAAAGCTCGTCAG		
PDS-PT7R	TAATACGACTCACTATAGGGCGAGCT CGCATCGAAAGCTCGTCAGG	Reverse primer for adding T7 promoter in 3' <i>PDS</i> fragment to produce <i>PDS</i> RNA probe	

*Restriction sites were shown underline.

Supplemental Table S3. The silencing efficiency of *PDS* gene by TYLCCNV-amiRPDS(319), TYLCCNV-amiRPDS(159) and TYLCCNV-amiRPDS(390) vectors in *N. benthamiana* plants at 25 dpi.

Viral vectors	MIR VIGS plants ^a			Average MIR VIGS
	Group 1	Group 2	Group 3	efficiency (%) ^b
TYLCCNV	0/6	0/6	0/6	0 ±0
TYLCCNV-amiRPDS(319)	6/6	6/6	6/6	100 ± 0
TYLCCNV-amiRPDS(159)	6/6	6/6	6/6	100 ± 0
TYLCCNV-amiRPDS(390)	6/6	6/6	6/6	100 ± 0

^a MIR VIGS plants were expressed as *PDS* silenced plants/total agroinoculated plants;

^b MIR VIGS efficiency was the ratio of *PDS* silenced plants to total agroinoculated plants. Value indicated mean \pm SD (n=3).

Viral vectors	MIR VIGS plants ^a			Average MIR VIGS
	Group 1	Group 2	Group 3	efficiency (%) ^b
TYLCCNV	0/6	0/6	0/6	0±0
TYLCCNV-amiR156	4/6	4/6	5/6	72 ± 0.08

Supplemental Table S4. The silencing efficiency of overexpressing miR156 by TYLCCNV-amiR156 vectors in *N. benthamiana* plants at 14 dpi.

^a MIR VIGS plants were expressed as miR156 overexpression plants/total Agroinoculated plants;

 b MIR VIGS efficiency was the ratio of the efficiency of miR156 overexpression plants to total Agroinoculated plants. Value indicated mean \pm SD (n=3).

Viral vectors	MIR VIGS plants ^a			Average MIR VIGS
	Group 1	Group 2	Group 3	efficiency (%) ^b
TYLCCNV	0/6	0/6	0/6	0 ±0
TYLCCNV-5'D8(+)	4/6	5/6	5/6	78 ± 0.08

Supplemental Table S5. The silencing efficiency of overexpressing 5'D8(+) by TYLCCNV-5'D8(+) vectors in *N. benthamiana* plants at 30 dpi.

^a MIR VIGS plants were expressed as 5'D8(+) overexpression plants/total Agroinoculated plants;

^b MIR VIGS efficiency was the ratio of the efficiency of 5 D8(+) overexpression plants to total Agroinoculated plants. Value indicated mean \pm SD (n=3).

vectors in *N. benthamiana* plants at 25 dpi.

Supplemental Table S6. The silencing efficiency of Su gene by TYLCCNV-amiRSu

Viral vectors	MIR VIGS plants ^a			Average MIR VIGS
	Group 1	Group 2	Group 3	efficiency (%) ^b
TYLCCNV	0/6	0/6	0/6	0±0
TYLCCNV-amiRSu	6/6	6/6	6/6	100 ± 0

^a MIR VIGS plants were expressed as *Su* silenced plants/total Agroinoculated plants;

^b MIR VIGS efficiency was the ratio of *Su* silenced plants to total Agroinoculated plants. Value indicated mean \pm SD (n=3).

Viral vectors	MIR VIGS plants ^a			Average MIR VIGS
	Group 1	Group 2	Group 3	efficiency (%) ^b
TYLCCNV	0/6	0/6	0/6	0±0
TYLCCNV-amiRPCNA	6/6	6/6	6/6	100 ± 0

Supplemental Table S7. The silencing efficiency of *PCNA* gene by TYLCCNV-amiRPCNA vectors in *N. benthamiana* plants at 25 dpi.

^a MIR VIGS plants were expressed as *PCNA* silenced plants/total Agroinoculated plants;

^b MIR VIGS efficiency was the ratio of *PCNA* silenced plants to total Agroinoculated plants. Value indicated mean \pm SD (n=3).