Metallacycle-cored supramolecular assemblies with tunable fluorescence including white-light emission

A Submission to the Proceedings of the National Academy of Science USA

PHYSICAL SCIENCES: Chemistry

Mingming Zhang,^a Shouchun Yin,^{a,b,1} Jing Zhang,^b Zhixuan Zhou,^a Manik Lal Saha,^a Chenjie Lu^b and Peter J. Stang^{a,1}

^aDepartment of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112;

^bCollege of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China

¹To whom correspondence should be addressed. Email address: <u>yinsc@hznu.edu.cn</u>; <u>stang@chem.utah.edu</u>

Table of Contents

Secti	Section A. Materials/General Methods/Instrumentation		
1.	Gerneral materials and instrumentation	S3	
Secti	Section B. Synthetic Procedures and Characterization Data		
1.	Synthesis of compound 5	S5	
2.	Synthesis of hexa(ethylene glycol) ditosylate	S5	
3.	Synthesis of compound 6	S 6	
4.	Synthesis of compound 7	S 8	
5.	Synthesis of compound 8	S10	
6.	Synthesis of compound 9	S12	
7.	Synthesis of compound 10	S13	
8.	Synthesis of compound 11	S14	
9.	Synthesis of compound 12	S14	
10.	Synthesis of rhomboidal metallacycle 1	S16	
11.	Synthesis of rhomboidal metallacycle 2	S18	
12.	Synthesis of rhomboidal metallacycle 3	S20	
13.	Synthesis of compound 14	S22	
14.	Synthesis of bis-ammonium salt 4	S24	
Section C. Host-guest complexation study between crown ether 8 and ammonium salt 9 S26			
1.	¹ H NMR spectra of an equimolar acetone solution of 8 and 9	S26	
2.	Determination of association constant (K_a) by ¹ H NMR titration method	S27	
Section D. The characterization of the supramolecular oligomers S2			
1.	The size of the supramolecular oligomers by two-dimensional diffusion-ordered NMR	S29	
	(DOSY) method		

Section E. The effect of counter-ions towards the assembly process		S29
1.	Synthesis of bis-ammonium salt 4 with OTf as counter ions	S29
2.	The ¹ H NMR spectra of the mixture of 1 and 4	S30
Section F. The fluorescence properties of 1 and 4		S30
1.	The aggregation-induced emission (AIE) property of 1	S30
2.	The aggregation-caused quenching (ACQ) property of 4	S31
Section G. References		S31

Section A. Materials/General Methods/Instrumentation

1. Gerneral materials and instrumentation

All reagents and deuterated solvents were commercially available and used without further purification. **9**.^{\$4} **5**.^{S1} glycol) ditosylate,^{S2} $Pt(PEt_3)_4$,^{S3} 10.^{S5} 11^{S6} Compounds hexa(ethylene and 4,4'-((5-bromo-1,3-phenylene)bis(ethyne-2,1-diyl))dipyridine^{S7} were prepared according to the literature procedures. NMR spectra were recorded on a Varian Unity 300 MHz or 400 MHz spectrometer. ¹H and ¹³C NMR chemical shifts are reported relative to residual solvent signals, and ³¹P{¹H} NMR chemical shifts are referenced to an external unlocked sample of 85% H_3PO_4 (δ 0.0). Mass spectra were recorded on a Micromass Quattro II triple-quadrupole mass spectrometer using electrospray ionization with a MassLynx operating system. The melting points were collected on a SHPSIC WRS-2 automatic melting point apparatus. The UV-Vis experiments were conducted on a Hitachi U-4100 absorption spectrophotometer. The fluorescent experiments were conducted on a Hitachi F-7000 fluorescence spectrophotometer. Quantum yields were determined using quinine sulfate at 365 nm $(\Phi_{\rm F} = 56\%).$

Section B. Synthetic Procedures and Characterization Data

Scheme S1. Synthetic routes of rhomboidal metallacycles **1**, **2**, **3** and bis-ammonium salt **4** and chemical structures of compounds used in this study. Conditions: a) K_2CO_3 , CH_3CN , reflux, 72 h; 64%; b) $Pt(PEt_3)_4$, toluene, 95 °C, 72 h; 68%; c) AgOTf, CH_2Cl_2 , room temperature, 12 h; 95%; d) CH_2Cl_2 , room temperature, 12 h; 90-96%; e) K_2CO_3 , $Pd(PPh_3)_4$, dioxane/water (2:1), 90 °C, 48 h; 63%; f) (i) *n*-butylamine, CH_3OH , reflux, 12h; (ii) NaBH₄, room temperature, 24 h; (iii) HCl (aq) and (iv) NH_4PF_6 (aq); 27% in four steps.

1. Synthesis of compound 5

Br

B

Compound **5** was synthesized according to literature procedure.^{S1} The ¹H NMR of **5** matches well with the reported data. ¹H NMR (400 MHz, DMSO, 295K): 9.26 (br, 2H, ArOH), 9.00 (s, 2H), B_{OH} 8.08 (d, J = 8.6 Hz, 2H), 7.76 (d, J = 8.6 Hz, 2H).

2. Synthesis of hexa(ethylene glycol) ditosylate

Hexa(ethylene glycol) ditosylate was synthesized according to literature procedure.^{S2} The ¹H NMR of hexa(ethylene glycol) ditosylate matches well with the reported data. ¹H NMR (400 MHz, CDCl₃, 295K): 7.79 (d, J = 8.2 Hz, 4H), 7.34 (d, J = 8.2 Hz, 4H), 4.15 (t, J = 4.8 Hz, 4H), 3.68 (t, J = 4.8 Hz, 4H), 3.60–3.63 (m, 8H), 3.57–3.59 (m, 8H), 2.44 (s, 6H).

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃, 295 K) recorded for hexa(ethylene glycol) ditosylate.

Compound **5** (500 mg, 1.36 mmol), hexa(ethylene glycol) ditosylate (802 mg, 1.36 mmol), K_2CO_3 (563 mg, 4.08 mmol) and KPF₆ (375 mg, 2.04 mmol) were added into CH₃CN (30 mL) and the whole reaction mixture was heated at reflux for 72 h under nitrogen. Then the system was cooled down and filtered. The filtrate was collected and the solvent was removed with a rotaevaporator. H₂O (100 mL) was added and the

mixture was extracted by ethyl acetate (50 mL × 3), dried over anhydrous Na₂SO₄ and then concentrated. The residue was purified by silica gel flash column chromatography (CH₂Cl₂/ethyl acetate, v/v 1:4) to provide compound **6** (534 mg, 64%) as a white solid. M. P. 160.5–162.8 °C. ¹H NMR (400 MHz, CDCl₃, 295K): 8.64 (d, J = 1.7 Hz, 2H), 8.16 (d, J = 8.8 Hz, 2H), 7.70 (dd, $J_1 = 8.8$ Hz, $J_2 = 1.7$ Hz, 2H), 4.42 (t, J = 4.3 Hz, 4H), 4.00 (t, J = 4.3 Hz, 4H), 3.77–3.85 (m, 4H), 3.71–3.77 (m, 4H), 3.66–3.71 (m, 8H). ¹³C NMR (100 MHz, CDCl₃, 295K): 142.6, 130.2, 128.5, 128.1, 125.0, 124.1, 120.2, 72.4, 71.1, 70.5, 70.4, 70.2. ESI-HR-MS: m/z 637.0221 [**6** + Na]⁺, calcd. for [C₂₆H₃₀Br₂O₇Na]⁺, 637.0236.

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃, 295 K) recorded for **6**.

Figure S5. ESI-HR-MS spectrum of 6.

Compound **6** (0.44 g, 0.72 mmol) and Pt(PEt₃)₄ (1.30 g, 1.95 mmol) were added into a 100 mL Schlenk flask and charged with nitrogen. Freshly distilled toluene (40 mL) was added to the flask under nitrogen by syringe, and the resulting mixture was heated at 95 °C for 72 h. After cooling, the solvent was removed in vacuo to give a crude product, which was purified by flash column chromatography (CH₂Cl₂/ethyl acetate, v/v 1:3) to

afford **7** as a white solid (0.72 g, 68%). M. P. 248.6–250.5 °C. ¹H NMR (400 MHz, CDCl₃, 295K): 8.46 (s, 2H), 7.77 (d, *J* = 8.1 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 4.41 (t, *J* = 4.3 Hz, 4H), 4.03 (t, *J* = 4.3 Hz, 4H), 3.83–3.88 (m, 4H), 3.77–3.82 (m, 4H), 3.68–3.74 (m, 8H), 1.59–1.73 (m, 24H), 1.01–1.13 (m, 36H). ¹³C NMR (100 MHz, CDCl₃, 295K): 141.3, 137.4, 136.3, 129.2, 128.4, 124.8, 120.7, 72.3, 71.4, 71.3, 71.0, 70.8, 70.8, 14.2, 7.9. ESI-HR-MS: *m*/*z* 1465.4180 [**7** + H]⁺, calcd. for [C₅₀H₉₁Br₂O₇P₄Pt₂]⁺, 1465.3275.

Figure S7. ¹³C NMR spectrum (100 MHz, CDCl₃, 295 K) recorded for 7.

Figure S8. Electrospray ionization mass spectrum of 7.

Compound 7 (60 mg, 0.04 mmol) and AgOTf (18 mg, 0.12 mmol) were placed in a 5 mL vial, and then freshly distilled CH_2Cl_2 (4 mL) was added. The resulting mixture was stirred in the dark at room temperature for 12 h. After filtering off the heavy creasy precipitate, a clear solution was obtianed. Then the solvent was removed under a flow of nitrogen to afford **8** as a brown solid (62 mg, 95%). M. P. 216.7–219.3 °C. ¹H NMR

(400 MHz, CDCl₃, 295K): 8.33 (s, 2H), 7.70 (d, J = 8.4 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 4.40–4.46 (m, 4H), 4.07–4.16 (m, 4H), 3.90–3.98 (m, 4H), 3.72–3.85 (m, 12H), 1.50–1.73 (m, 24H), 1.06–1.20 (m, 36H). ¹³C NMR (100 MHz, CDCl₃, 295K): 141.3, 135.0, 127.9, 125.3, 121.1, 72.1, 71.2, 71.0, 70.8, 70.6, 70.5, 13.6, 7.6. ³¹P{¹H} NMR (121.4 MHz, CD₃COCD₃, 295 K) δ (ppm): 17.97 ppm (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2830.5 Hz). ESI-HR-MS: m/z 1638.4294 [**8** + Na]⁺, calcd. for [C₅₂H₉₀F₆O₁₃P₄Pt₂Na]⁺, 1638.3872.

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃, 295 K) recorded for 8.

Figure S12. Electrospray ionization mass spectrum of 8.

Compound **9** was synthesized according to literature procedure.^{S4} The ¹H NMR of **9** matches well with the reported data. ¹H NMR (400 MHz, CD₃COCD₃, 295K): 7.55–7.63 (m, 2H), 7.45–7.51 (m, 3H), 4.58 (s, 2H), 3.43 (t, J = 7.9 Hz, 2H), 2.51 (br, 2H, NH₂), 1.82–1.92 (m,

2H), 1.42–1.53 (m, 2H), 0.94 (t, *J* = 7.6 Hz, 3H).

Figure S13. ¹H NMR spectrum (400 MHz, CD₃COCD₃, 295 K) recorded for **9**.

Compound **10** was synthesized according to literature procedure.^{S5} The ¹H NMR of **10** matches well with the reported data. ¹H NMR (400 MHz, CH₂Cl₂, 295K): 8.63 (dd, J_1 = 6.1 Hz, J_2 = 1.6 Hz, 4H), 7.80 (d, J = 8.9 Hz, 2H), 7.68 (d, J = 8.6 Hz, 4H), 7.61 (s, 1H), 7.51 (dd, J_1 = 6.1 Hz, J_2 = 1.6 Hz, 4H), 7.31 (d, J = 8.6 Hz, 4H), 7.11 (d, J = 8.9 Hz, 2H).

Figure S14. ¹H NMR spectrum (400 MHz, CD₂Cl₂, 295 K) recorded for 10.

Compound **11** was synthesized according to literature procedure.^{S6} The ¹H NMR of **11** matches well with the reported data. ¹H NMR (400 MHz, CD₃COCD₃, 295K): 8.60 (d, J = 6.0 Hz, 4H), 7.61–7.64 (m, 4H), 7.59–7.61 (m, 4H), 7.22 (d, J = 8.5 Hz, 4H), 7.13–7.19 (m, 6H), 7.09–7.13 (m, 4H).

Figure S15. ¹H NMR spectrum (400 MHz, CD₃COCD₃, 295 K) recorded for 11.

9. Synthesis of compound 12

4,4'-((5-bromo-1,3-phenylene)-bis(ethyne-2,1-diyl))dipyridine (430 mg, 1.20 mmol),^{S7} 1-pyrenylboronic acid (595 mg, 2.40 mmol), Pd(PPh₃)₄ (139 mg, 0.12 mmol), and K₂CO₃ (828 mg, 6.00 mmol) were added into a 100 mL Schlenk flask and then charged with nitrogen. Degassed dioxane (30 mL) and degassed H₂O (15 mL) were added to the flask under nitrogen by syringe. The reaction mixture was stirred at 90 °C for 48 h

under nitrogen atmosphere. After cooling, the product was concentrated and purified by flash column chromatography with CH₂Cl₂:CH₃OH (40:1, v/v) as the eluent to afford compound **12** (513 mg, 89%) as white powder. M. P. 218.7–221.1 °C. ¹H NMR (400 MHz, CD₃COCD₃, 295K): 8.65 (dd, $J_1 = 6.0$ Hz, $J_2 = 1.4$ Hz, 4H), 8.41 (d, J = 7.8 Hz, 1H), 8.36 (d, J = 7.6 Hz, 1H), 8.33 (d, J = 7.6 Hz, 1H), 8.26 (s, 2H), 8.24 (d, J = 9.4 Hz, 1H), 8.09–8.18 (m, 3H), 7.98 (t, J = 1.4 Hz, 1H), 7.94 (d, J = 1.4 Hz, 2H), 7.54 (dd, $J_1 = 6.0$ Hz, $J_2 = 1.4$ Hz, 4H). ¹³C NMR (100 MHz, CDCl₃, 295K): 149.9, 142.2, 135.0, 134.4, 133.8, 131.4, 131.1, 130.9, 130.8, 128.4, 128.2, 127.9, 127.3, 126.3, 125.5, 124.9, 124.8, 124.4, 123.0, 92.7, 87.8. HR-MS: m/z 481.1705 ([**12** + H]⁺, calcd. for [C₃₆H₂₁N₂]⁺, 481.2626.

Figure S17. ¹³C NMR spectrum (100 MHz, CDCl₃, 295 K) recorded for **12**.

Figure S18. Electrospray ionization mass spectrum of 12.

10. Synthesis of rhomboidal metallacycle 1

Compound **8** (30.39 mg, 18.81 µmol) and **10** (8.95 mg, 18.81 µmol) were dissolved in dry CH₂Cl₂ (2.0 mL) in a 5 mL vial. The reaction mixture was stirred for 12 h at room temperature. Diethyl ether (10 mL) was added to the resulting homogeneous solution to precipitate the product. The obtained product was dried under reduced pressure as a red solid (36.58 mg, 93%). ¹H NMR (400 MHz, CD₃COCD₃, 295K): 9.11 (dd, $J_1 = 12.1$ Hz, $J_2 = 5.4$ Hz, 8H), 8.70 (s, 4H), 8.18 (d, J = 5.6 Hz, 8H), 8.01–8.23 (m, 18H), 7.82 (d, J = 8.5 Hz, 4H), 7.49 (d, J = 7.8 Hz, 8H), 7.29 (d, J = 7.8 Hz, 4H),

4.37–4.48 (m, 8H), 3.97–4.07 (m, 8H), 3.74–3.83 (m, 8H), 3.69–3.74 (m, 8H), 3.56–3.68 (m, 16H), 1.41–1.66 (m, 48H), 1.15–1.34 (m, 72H). ³¹P{¹H} NMR (121.4 MHz, CD₃COCD₃, 295 K) δ (ppm): 14.17 ppm (s, ¹⁹⁵Pt satellites, ¹J_{Pt-P} = 2674.2 Hz). ESI-TOF-MS: *m/z* 896.3092 [**1** – 40Tf]⁴⁺, 1244.7423 [**1** – 30Tf]³⁺, 1941.5898 [**1** – 20Tf]²⁺.

Figure S20. ³¹P{¹H} NMR spectrum (121.4 MHz, CD₃COCD₃, 295 K) recorded for **1**.

Figure S21. ESI-TOF-MS of 1.

11. Synthesis of rhomboidal metallacycle 2

Compound **8** (30.39 mg, 18.81 µmol) and **11** (9.15 mg, 18.81 µmol) were dissolved in dry CH₂Cl₂ (2.0 mL) in a 5 mL vial. The reaction mixture was stirred for 12 h at room temperature. Diethyl ether (10 mL) was added to the resulting homogeneous solution to precipitate the product. The obtained product was dried under reduced pressure as a yellow solid (37.96 mg, 96%). ¹H NMR (400 MHz, CD₃COCD₃, 295K): 9.06 (t, J = 6.2 Hz, 8H), 8.68 (s, 4H),

8.15 (dd, $J_1 = 16.7$ Hz, $J_2 = 5.3$ Hz, 8H), 8.04 (d, J = 8.4 Hz, 4H), 7.86 (d, J = 8.2 Hz, 8H), 7.82 (d, J = 8.6 Hz, 4H), 7.33 (d, J = 8.2 Hz, 8H), 7.10–7.29 (m, 20H), 4.37–4.52 (m, 8H), 3.98–4.08 (m, 8H), 3.75–3.82 (m, 8H), 3.68–3.75 (m, 8H), 3.61–3.68 (m, 16H), 1.41–1.62 (m, 48H), 1.14–1.30 (m, 72H). ³¹P{¹H} NMR (121.4 MHz, CD₃COCD₃, 295 K) δ (ppm): 14.69 ppm (s, ¹⁹⁵Pt satellites, ¹ $J_{Pt-P} = 2784.6$ Hz). ESI-TOF-MS: m/z 901.3514 [**2** – 40Tf]⁴⁺, 1252.1193 [**2** – 30Tf]³⁺, 1952.6388 [**2** – 20Tf]²⁺.

Figure S23. ³¹P{¹H} NMR spectrum (121.4 MHz, CD₃COCD₃, 295 K) recorded for **2**.

Figure S24. ESI-TOF-MS of 2.

12. Synthesis of rhomboidal metallacycle 3

Compound **8** (30.39 mg, 18.81 µmol) and **12** (9.08 mg, 18.81 µmol) were dissolved in dry CH₂Cl₂ (2.0 mL) in a 5 mL vial. The reaction mixture was stirred for 12 h at room temperature. Diethyl ether (10 mL) was added to the resulting homogeneous solution to precipitate the product. The obtained product was dried under reduced pressure as a yellow solid (35.48 mg, 90%). ¹H NMR (400 MHz, CD₃COCD₃, 295K): 9.09–9.30 (m, 8H), 8.69 (s, 4H), 8.21–8.47 (m, 12H), 7.94–8.18 (m, 24H), 7.79 (d, J = 7.0 Hz, 4H), 4.35–4.50 (m, 8H), 3.97–4.07 (m, 8H), 3.74–3.82 (m,

8H), 3.67–3.74 (m, 8H), 3.57–3.67 (m, 16H), 1.36–1.61 (m, 48H), 1.07–1.31 (m, 72H). ³¹P{¹H} NMR (121.4 MHz, CD₃COCD₃, 295 K) δ (ppm): 13.89 ppm (s, ¹⁹⁵Pt satellites, ¹*J*_{Pt-P} = 2655.5 Hz). ESI-TOF-MS: *m/z* 898.3780 [**3** – 40Tf]⁴⁺, 1247.4213 [**3** – 30Tf]³⁺, 1945.6079 [**3** – 20Tf]²⁺.

Figure S26. ³¹P{¹H} NMR spectrum (121.4 MHz, CD₃COCD₃, 295 K) recorded for **3**.

Figure S26. ESI-TOF-MS of 3.

Compound **13** (1.09 g, 2.0 mmol), (4-formylphenyl)boronic acid (0.90 g, 6.0 mmol), Pd(PPh₃)₄ (0.23 g, 0.2 mmol), and K_2CO_3 (2.76 g, 20.0 mmol) were added into a 100 mL Schlenk flask and then charged with nitrogen. Degassed dioxane (60 mL) and H₂O (30 mL) were added to the flask under

nitrogen by syringe. The reaction mixture was stirred at 90 °C for 48 h under nitrogen atmosphere. After cooling, the product was concentrated and purified by flash column chromatography with CH₂Cl₂:hexane (1:2, v/v) as the eluent to afford compound **13** (0.75 g, 63%) as white powder. M. P. 76.3–78.6 °C. ¹H NMR (400 MHz, CD₂Cl₂, 295K): 10.19 (s, 4H), 7.99 (d, J = 8.3 Hz, 4H), 7.81–7.89 (m, 6H), 7.62–7.70 (m, 4H), 2.03–2.18 (m, 4H), 1.00–1.34 (m, 24H), 0.79 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, 295K): 191.1, 151.3, 146.3, 140.0, 138.0, 134.2, 129.4, 126.8, 125.7, 120.8, 119.6, 54.6, 39.4, 30.8, 29.0, 28.2, 22.9, 21.7, 13.1. ESI-HR-MS: m/z 599.3895 [**14** + H]⁺, calcd. for [C₄₃H₅₁O₂]⁺, 599.3889.

Figure S29. ¹³C NMR spectrum (125 MHz, CDCl₃, 295 K) recorded for 14.

Figure S30. Electrospray ionization mass spectrum of 14.

14. Synthesis of bis-ammonium salt 4

Compound **14** (1.20 g, 2.00 mmol) and *n*-butylamine (0.29 g, 4.00 mmol) were dissolved into CH_3OH (100 mL) and then the reaction mixture was heated at reflux for 12 h. After cooling to room temperature, NaBH₄ (0.23 g, 6.00 mol) was slowly added to the

above solution. The mixture was stirred at room temperature for another 24 h. HCl (1 mol/L, 20 mL) was added to the reaction mixture until there is no more precipitate comes out. The precipitate was filtered and dissolved in water. Then saturated aqueous NH₄PF₆ solution was added to give a precipitate which was collected and washed with large excess of water to afford **4** (0.54 g, 27% in four steps) as a white solid. M. P.: 237.5–239.3 °C. ¹H NMR (400 MHz, DMSO, 295K): 9.02 (br, 4H, NH₂), 7.92 (d, J = 7.9 Hz, 2H), 7.82 (d, J = 7.9 Hz, 4H), 7.79 (s, 2H), 7.69 (d, J = 7.9 Hz, 2H), 7.64 (d, J = 7.9 Hz, 4H), 4.20 (s, 4H), 2.81–3.04 (m, 4H), 1.98–2.21 (m, 4H), 1.55–1.71 (m, 4H), 1.27–1.42 (m, 4H), 0.92–1.25 (m, 20H), 0.90 (t, J = 7.3 Hz, 6H), 0.72 (t, J = 6.9 Hz, 6H), 0.48–0.65 (m, 4H). ¹³C NMR (100 MHz, DMSO, 295K): 151.4, 140.9, 139.9, 138.4, 130.9, 130.6, 126.9, 125.8, 121.1, 120.5, 55.1, 49.6, 46.1, 31.1, 29.1, 28.4, 27.4, 23.3, 22.0, 19.3, 13.9, 13.5. ESI-HR-MS: *m*/*z* 1003.5049 [**4** - H]⁻, calcd. for [C₅₁H₇₃F₁₂N₂P₂]⁻, 1003.5057.

Figure S32. ¹³C NMR spectrum (100 MHz, DMSO, 295 K) recorded for 4.

Figure S33. Electrospray ionization mass spectrum of 4.

Section C. Host-guest complexation study between crown ether 8 and ammonium salt 9

1. ¹H NMR spectra of an equimolar acetone solution of 8 and 9

Figure S34. ¹H NMR spectra (400 MHz, CD₃COCD₃, 295 K) of (A) 2.00 mM **9**, (B) 2.00 mM **8** and **9**, (C) 2.00 mM **8**. Upfield shifts were observed for protons H_d , H_e of **9**, similar with benzo-21-crwon-7 (B21C7)-based system, indicating the formation of inclusion complex **8**·**9**.

2. Determination of association constant (K_a) by ¹H NMR titration methods

Figure S35. ¹H NMR spectra (400 MHz, CD₃COCD₃, 295 K) of **8** at a concentration of 2.00 mM upon the addition of **9**: (A) 0.00 mM, (B) 0.19 mM, (C) 0.32 mM, (D) 0.47 mM, (E) 0.76 mM, (F) 1.23 mM, (G) 1.65 mM, (H) 2.06 mM, (I) 2.95 mM, (J) 3.92 mM, (K) 4.85 mM, (L) 6.06 mM, (M) 7.07 mM, (N) 8.43 mM, (O) 10.08 mM, (P) 12.35 mM, (Q) 14.07 mM, (R) 16.67 mM, (S) 19.48 mM.

Figure S36. Non-linear fitting curve of the chemical shift changes of H_4 versus the concentration of **9**. The association constant K_a was calculated according to the following equation:

 $\Delta \delta = (\Delta \delta_{\text{max}}/[\text{H}]_0) \ (0.5[\text{G}] + 0.5 \ ([\text{H}]_0 + 1/K_a) - (0.5([\text{G}]^2 + (2[\text{G}](1/K_a - [\text{H}]_0)) + (1/K_a + [\text{H}]_0)^2)^{0.5}))$ Where $\Delta \delta$ is the chemical shift change of H₄ on **8** upon titration, $\Delta \delta_{\text{max}}$ is the chemical shift change of H₄ when **8** is completely complexed, [H]₀ is the fixed concentration of **8** (0.002 mol/L), [G] is the concentration of added **9**. Based on the above equation, the association constant (*K*_a) of **8**·**9** was calculated to be 9.4 (± 1.0) × 10² M⁻¹.

Section D. The characterization of the supramolecular oligomers

1. The size of the supramolecular oligomers by two-dimensional diffusion-ordered NMR (DOSY) method

Figure S37. The measured weight average diffusion coefficient D of equal molar 4 and 1 at different concentrations.

Section E. The effect of counter-ions towards the assembly process

1. Synthesis of bis-ammonium salt 4 with OTf as counter ions

Compound 4 (50 mg, 0.05 mmol) and AgOTf (200 mg, 1.31 mmol) were dissolved into the mixted solution of CH_3COCH_3 (4 mL) and H_2O (1 mL). The mixture was stirred at room temperature for 12 h. The filtrate was collected and the solvent was removed by N_2 . The obtained solid was washed five times with water.

2. The ¹H NMR spectra of the mixture of 1 and 4

Figure S38. Partial ¹H NMR spectra (CD₃COCD₃, 295 K, 400 MHz) of equal molar **4** and **1** at the concentration of 5 mM. (*A*) both **1** and **4** with OTf⁻ as counter ions; (*B*) **1** with OTf⁻ and **4** with PF6⁻ as the counter ions

Section F. The fluorescence properties of 1 and 4

1. The aggregation-induced emission (AIE) property of 1

Figure S39. Fluorescence quantum yields of 1 versus hexane fraction in acetone/hexane mixtures ($\lambda_{ex} = 365$ nm, c = 10.0 μ M) which were determined using quinine sulfate at 365 nm ($\Phi_F = 56\%$). Insets: photographs of 1 in acetone and 10%/90% acetone/hexane mixture upon excitation at 365 nm using an UV lamp at 298 K (c = 10.0 μ M).

Figure S40. Fluorescence quantum yields of **4** versus hexane fraction in acetone/hexane mixtures ($\lambda_{ex} = 365$ nm, c = 10.0 μ M) which were determined using quinine sulfate at 365 nm ($\Phi_F = 56\%$).

Section G. References

- S1. Kim HJ, Lee E, Park HS, Lee M (2007) Dynamic Extension-Contraction Motion in Supramolecular Springs. J Am Chem Soc 129(36):10994–10995.
- S2. Zhang CJ, et. al. (2007) Benzo-21-Crown-7/SecondaryDialkylammonium Salt [2]Pseudorotaxane- and
 [2]Rotaxane-Type Threaded Structures. Org Lett 9(26):5553–5556.
- S3. Yoshida T, Matsuda T, Otsuka S, Parshall GW, Peet WG (1990) Tetrakis(Triethylphosphine)Platinum(0). *Inorg Synth* 28:122–123.
- S4. Ashton PR, et. al. (1996) Pseudorotaxanes Formed between Secondary Dialkylammonium Salts and Crown Ethers. *Chem Eur J* 2(6):709–728.
- S5. Qu Y, et. al. (2013) A New Triphenylamine Fluorescent Dye for Sensing of Cyanide Anion in Living Cell. *Tetrahedron Lett* 54(36):4942–4944.

- S6. Yan XZ, et. al. (2015) A Suite of Tetraphenylethylene-Based Discrete Organoplatinum(II) Metallacycles: Controllable Structure and Stoichiometry, Aggregation-Induced Emission, and Nitroaromatics Sensing. J Am Chem Soc 137(48):15276–15286.
- S7. Wei Wang, et. al. (2015) Discrete Stimuli-Responsive Multirotaxanes with Supramolecular Cores Constructed through a Modular Approach. *Chem Eur J* 21(16):6286–6294.