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I. Mathematical derivation of the BPL model. 

In what follows, we provide mathematical details regarding the derivation of our "Bayesian Preference 

Learner" or BPL model. This model essentially describes how Bayesian learners update, on a trial-by-trial 

basis, their estimate of the others' cost-susceptibility parameter   (as well as the inverse-temperature  

 ) from observed choices. 

Recall that mentalizing Bayesian agents assume that the Other's choices obey the softmax decision 

rule of Equation 1 of the main text. This yields the following binomial likelihood  ( )o

tp a   for 

the Other's decision ta  (up to trial t ): 
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where  : 1 1 xs x s x e    is the sigmoid function,  0,1ta   is the Other's binary choice at trial 

t ,     ( ) ( )1o o

ts f p a   is the probability that the Other chooses the first alternative option 

and  ( ) ( ) ( )log , logo o o    gathers both the Other's cost-susceptibility 
( )o  and her inverse-



temperature ( )o . Note that the log transform effectively enforces a positivity constraint on both 

cost-susceptibility and temperature.  

Before having observed any Other's decision, the agent is endowed with some prior belief  ( )op   

about the Other's behavioural trait 
( )o . Without loss of generality, we assume that this prior belief 

   ( ) ( ) ( )

0 0,o o op N    is Gaussian with mean ( )

0

o  (which captures the direction of the agent's 

bias) and variance ( )

0

o  (which measures how uncertain is the agent's prior belief).  

Observing the Other's choices gives the agent information about 
( )o , which can be updated trial 

after trial using the following Bayes-optimal probabilistic scheme: 
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where  ( )o

tp a 
 is the agent's posterior belief about the Other's behavioural trait after trial t  

and the second line highlights the sequential (online) form of Bayesian belief update. 

Equation A2 can be approximated using a variational-Laplace scheme, which essentially replaces 

the integration implicit in Equation A2 with an optimization of the sufficient statistics of the 

approximate posterior distributions (Daunizeau et al., 2014; Friston et al., 2007). This eventually yields 

semi-analytical expressions for the trial-by-trial update rules of two first moments of the posterior 

probability density function. In brief, we approximate the posterior belief 

   ( ) ( ) ( ),o o o

t t tp a N     in terms of a Gaussian distribution with mean ( )o

t  and variance ( )o

t , 

which are updated as follows: 
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where ( )of f      is the gradient of the weighted value difference f  (cf. Equation A1) w.r.t. the 

behavioural trait parameters 
( )o . It can be seen from Equation A3 (first line) that the agent's 

posterior uncertainty about the Other's behavioural trait is monotonically decreasing over trials. 

Moreover, the agent is accumulating information at a rate that depends upon the properties of  the 

choice alternatives (differences in reward and cost). Also, the change in the agent's posterior mean 

( ) ( )

1

o o

t t    is driven by a prediction error (i.e.   ( )

1

o

t ta s f   ), whose impact is modulated by the 

agent's subjective uncertainty ( )o

t . Note that the prediction error   ( )

1

o

t ta s f    can be 

explained away either by updating the posterior estimate of the Other's cost-susceptibility, or by 

increasing the posterior estimate of the temperature. In turn, the impact of the next prediction 

error will be smaller, i.e. it will induce a smaller update ( ) ( )

0

o o

t  . In other words, the rate of 

posterior update ( ) ( )

0

o o

t   decreases as the true Other's cost-susceptibility 
( )o  further departs 

from the prior mean ( )

0

o . This eventually bounds the estimate of Other's cost-susceptibility 
( )o . 

We refer the interested reader to (Devaine et al., 2014b; Mathys, et al., 2011) for further 

mathematical details regarding the derivations of similar meta-Bayesian learning rules.  

Iterated through time or trials, Equation A3 essentially describes how the agent learns about the 

Other's lazy, impatient or prudent attitude. Given the Other's choices up to trial t , the agent can 

now form a prediction about the Other's preference at trial 1t  : 
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Equations A3 and A4 complete the exposition of our "Bayesian Preference Learner" or BPL model.  

 

 



II. Mathematical derivation of the Bayesian model of attitude alignment. 

In what follows, we provide mathematical details regarding the derivation of our Bayesian model of 

attitude alignment. We consider the case of cost-benefit arbitrages, whereby peoples’ subjective 

preferences control the relative weight of rewards and costs. In brief, we suppose that peoples’ 

subjective preferences are essentially peoples’ belief regarding the “best” (domain-specific) policy. More 

precisely, people form a subjective estimate of the “optimal” cost-susceptibility   for each type of cost-

benefit arbitrage. Such “optimal” cost-susceptibility can be thought as yielding cost-benefit arbitrages 

that are most adapted in the agent’s environmental niche. Peoples are endowed with an innate prior 

regarding what   might be, which they update given two sources of information: noisy reinforcement 

signals and uncertain observations of others’ attitudes. We will see that, under these premises, a 

Bayesian agent eventually expresses both false-consensus and influence biases. 

 

Let    ( ) ( ), ,i i

G G G Gp N      be the prior distribution of agent i  about the best policy  , which 

we parameterize in terms of its agent-dependent mean ( )i

G  and variance G . For sake of simplicity, 

we assume that G  is the same for everyone and that the agents' prior mean  ( ) ,i

G G GN    is 

scattered across individuals as a Gaussian variable with mean G  and variance G . The 

environment provides agent i  with noisy feedback ( )iy  regarding the optimal policy, i.e. ( )iy  is 

related to   as follows: ( ) ( )i iy    , where  ( ) 0,i N    is the reinforcement noise. 

It is trivial to show that the Bayesian update of peoples’ prior  ( ) ,i

G Gp     with noisy reinforcement 

signals ( )iy  yields the following posterior belief  , , ,i i

G Gp y      about the best policy   (cf. 

Equation 7 in the main text): 
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where 
( )i  is the agent’s posterior estimate of the optimal cost-susceptibility, and 

( )i  is her posterior 

uncertainty. By construction, the agent will arbitrate cost and benefits according to this posterior belief, 

i.e. 
( )i  is also the agent’s own cost-susceptibility. 

 

1. The false-consensus bias 

If one knew others’ reinforcement signals and priors, Equation A5 could be used to form a prediction 

about other’s cost-susceptibility. In turn, any (prior) information regarding others’ reinforcement signals 

and priors can be used as follows. 

First, let us replace ( )oy  by its definition in Equation A5: 
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One can derive the moments of the conditional distribution of 
( )o  from priors about feedback noise 

 ( ) 0,o N   : 
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One can then marginalize over others’ priors  ( ) ,o

G G GN   , as follows: 
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where the variance 2

2

1 G

G

S



 

 
  

 
. 

If one knew what the best policy   is, one could use Equation A8 to derive a prediction regarding the 

subjective preference of any individual in the population. People, however, have only uncertain (and 

subjective) information regarding  . Thus, marginalizing over the best policy   yields agent-dependent 

predictive densities: 
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where 
( )

0

o  and 
( )

0

o  are the first two moments of the agent’s prior belief regarding any other 

individual’s cost-susceptibility: 
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Now, note that Equation A5 implies G

G 



  



 and 

G G







  



. This can be used to express 

Equation A10 directly in terms of the model native parameters:  
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This concludes the demonstration of Equation 9 in the main text. 

 

2. The influence bias 

Although at first glance counterintuitive, the influence bias is another consequence of the fact that 

people subjective preferences are belief about the “best” policy  . This essentially makes other’s 

attitudes another source of information, which can be used to update one’s belief. 

Let us consider an agent mentalizing about an Other’s attitude. After having observed t  cost-benefit 

arbitrages, she holds the following posterior belief about the Other’s cost-susceptibility (see main 

manuscript): 

   ( ) ( ) ( ) ( ) ( )

0 0, , ,o o o o o

t t tp a N              (A12) 



This estimate can be related to the best policy   because the Other’s subjective cost-susceptibility 

also obeys Equation A5. 

First, let us consider the information one holds about  , given the other’s cost-susceptibility 
( )o : 
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where  ( ) ,...op    simply derives from Equation A1 and  ( ) ,...sp y  is the agent’s posterior belief 

about  , before knowing the other’s cost-susceptibility 
( )o . In the following, 

( )

1

s  denotes the 

agent’s cost-susceptibility before mentalizing about the other.  

One can show (using simple density calculations) that, given the other’s cost-susceptibility, the 

agent’s posterior belief     ( ) ( ) ( ), ,... ,s o op y N A C    about the optimal policy   is a 

Gaussian distribution with mean  ( )oA   and variance C : 
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Of course, Equation A14 cannot be used directly, because the other’s cost-susceptibility 
( )o  is not 

known with infinite precision. Rather, the agent’s updated belief relies upon marginalizing over 

likely values of 
( )o , as follows: 
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One can show that the first two moments 
( )

2

s  and 
( )

2

s  of the updated posterior density 

 ( ), ,...s

tp a y   on the optimal policy   are given by: 
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where the "learning rate"   is: 
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This completes the derivation of Equations 14-15 in the main text. 

The qualitative predictions of the holistic model are described in the main text (cf. Figure 2). However, 

we would like to extend these analyses, and explore the predicted attitude change ( ) ( )

2 1

s s  , in 

response to a mismatch ( ) ( )

1

o s   between the agent and the Other. This is depicted on Figure A1 

below. 
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Figure A1: Qualitative predictions of the holistic model. We simulated a virtual population (endowed 

with arbitrary cost-susceptibilities), who learn about agents performing cost-benefit arbitrages (also 

endowed with arbitrary cost-susceptibilities). In all panels, the social influence bias is depicted in terms 

of the relationship between peoples’ preference change (y-axis) and mismatch (x-axis). Left: each dot is 

one Monte-Carlo simulation (n=128×128=16,384 in total), where we sample from a broad range of cost-

susceptibilities. Middle: same as in A, but in terms of the density of dots. Right: same as in A, but in 

terms of the mean (plain lines) and standard deviation (shaded areas) of the preference change for 20 

equally-spaced bins of the mismatch. 

 

One can see that, for intermediate mismatches, the average preference change increases 

monotonically with mismatch. In this intermediate regime, a unit change in mismatch ( ) ( )

1

o s   

approximately yields 10% of preference change ( ) ( )

2 1

s s   (one order of magnitude below). 

However, more extreme mismatches eventually yield decreasing preference changes. It is as if the 

influence bias magnitude behaved as an inverted U-shaped function of mismatch magnitude. In 

other words, the holistic model predicts that when the mismatch between the agent and the Other 

is too high, the agent reduces his preference alignment. 

 

 

 

 



III. VBA online adaptive design procedure 

During both Decision 1 and Prediction phases, we used an adaptive online design optimization procedure 

in the aim of maximizing the statistical power of post-hoc model-based data analysis. For example, the 

model-based analysis of trial-by-trial choice data acquired during the Decision phases proceeds by fitting 

the relevant cost-benefit arbitrage model (cf. Equations 1-4 of the main text). However, there might be 

an optimal manipulation of the features (e.g., reward and delay) of both choice alternatives, such that 

choice data yields maximal information regarding the underlying unknown parameters (i.e. the cost-

susceptibility   and the behavioural temperature  ). Would the cost-benefit arbitrage models be 

linear, the optimal sequence of choice features could be determined prior to performing the experiment. 

This is, however, not the case. We thus resort to an online adaptive design optimization procedure, 

which is tailored to the subsequent variational Bayesian data analysis (Daunizeau et al., 2014b). We 

summarize its rationale below. 

Let u  be the set of stimuli features that constitutes our design, y  the data measured experimentally, 

and   the unknown parameters of our generative model (which we denote as m ). We start with the 

premise that the data analysis aims at deriving the posterior density  , ,p y u m  given the set of 

sampled measurements y . Nonlinearities in the generative model eschew exact analytical solutions to 

this problem, which is finessed using variational Bayesian (VB) approaches (Beal, 2003). In brief, under 

the Laplace approximation, VB yields a Gaussian approximate posterior    , ,q p y u m  , whose 

first- and second-order moments are given by (Daunizeau et al., 2009; Friston et al., 2007): 
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where      log , logI p y m p m     is entirely specified by our generative model. As an example, 

for the Decision phase, the likelihood  ,p y m  is derived from inserting Equations 2-4 into Equation 1. 

Importantly here, diagonal elements of the posterior covariance matrix   measure how uncertain or vague 

information about the model parameters is. Note that it is an implicit function of design features (  u  

), through their impact on the likelihood function. Thus, if the aim is to maximize estimation efficiency, 

design optimization proceeds from minimizing the trace of the expected posterior matrix w.r.t. candidate 

design features (cf. so-called "design A-optimality"; Myung and Pitt, 2009). At each trial t , we thus update 

the approximate posterior moments according to Equation A16 and chose the design features 1
ˆ

tu   such 

that: 

  1 1

1
2

2

ˆ arg min

arg max

t

t t
u

u

u E trace u

I
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where t  and t  are the update posterior moments. We refer the interested reader to (Daunizeau et al., 

2011) for further mathematical details. 

Practically speaking, the optimization in Equation A18 is performed by evaluating the A-optimality metric on 

a predefined 3D search grid of design features (in all conditions, one of the four features is fixed throughout 

the experiment; see main text). It turns out that the most informative design features are those design 

features that span the maximal curvature points of the sigmoid mapping of the likelihood function. This 

means that there are always two local design optimizers, which are likely to induce opposite behavioural 

tendencies. We exploit this symmetry to impose the constraint that the frequency of the Other's "impulsive" 

choices (low-reward/low-cost choices) is fixed to 50% during the Prediction phase (over the 40 trials). 



IV. Supplementary results: model inversions diagnostics 

 

1. Cost-benefit arbitrage models 

 

Table A1 below reports the summary statistics of inversions of cost-benefit arbitrage models (given 

participants’ behaviour in Decision phases 1 and 2), based upon the cost-dependent utility functions 

given in Equations 2-4 of the main text.  

 

 

̂  ̂  log-evidence fit accuracy 

Dec1 Dec2 Dec1 Dec2 Dec1 Dec2 Dec1 Dec2 

Delay 1.4 (1.6) 1.2 (1.6) .1 (.8) .1 (.6) -20 -18 80% 81% 

Effort -.8 (1.2) -.7 (1.3) .1 (1.3) -.2 (1.1) -17.5 -15 77% 83% 

Risk -2.5 (.9) -2.6 (.9) -3.0 (.8) -3.2 -20 -18 78% 80% 

Table A1. For each cost type (and each Decision phase), we report the group-average of 

estimated parameters (cost-susceptibility ̂  and behavioural temperature ̂ ), log-evidence and 

balanced fit accuracy. 
 

 

We also inverted a cost-benefit arbitrage model based upon a linear utility function (of the form 

( , ) exp( )u R C R C   , where C is the cost), which serves as a reference point for cost-benefit arbitrage 

models. Table A2 reports the corresponding summary statistics. 

 

 

 



 

̂  ̂  log-evidence fit accuracy 

Dec1 Dec2 Dec1 Dec2 Dec1 Dec2 Dec1 Dec2 

Delay -1.6 (1.2) -1.8 (1.3) .5 (1.2) .3 (1.0) -77 -73 72% 75% 

Effort .6 (1.4) .9 (1.4) .1 (1.4) -.1(1.2) -19 -17 83% 88% 

Risk -.9 (.1) -.8(.7) 2.9 (1.3) 2.9 (1.3) -48 -48 51% 55% 

Table A2. For each cost type (and each Decision phase), we report the group-average of 

estimated parameters (cost-susceptibility ̂  and behavioural temperature ̂ ), log-evidence and 

balanced fit accuracy. 
 

One can see that for delay and risk, the linear utility model provides a less likely explanation of peoples’ 

behaviour than the utility models given in Equation 2-4 of the main text. In fact, a group-level Bayesian 

model comparison largely favours the latter models against the linear utility model (exceedance 

probability –EP- and protected exceedance probability –PEP- larger than .999). 

Although RFX-BMS still favours the nonlinear discounting model of effort (EP>.99 for both Decision 1 and 

Decision 2, PEP=.83 for Decision 1 and PEP=.95 for Decision 2), a fixed-effect BMS at the group-level gives 

inconclusive results. In addition, the fit accuracy is similarly good for both models. This suggests that, 

within the range of demanded efforts, the effort discounting model given in Equation 4 of the main text 

eventually behaves almost linearly.  

Figure A2 below also reports the best and worst fit (across subjects) of utility-based arbitrage models, 

when inverted given participants’ behaviour during Decision phases 1 and 2. 

 

 



 

 

 

 

 

 

 

 

 

2. BPL model 

The BPL was used in the main text to provide model-inspired evidence for false-consensus and influence 

biases. These analyses implicitly rely on the assumption that the utility functions underlying Bayesian 

mentalizing during the Prediction phase properly account for participants’ intuitions about others cost-

benefit arbitrages. Here, we provide evidence in favour of this assumption.  

In brief, we wanted to control that (1) participants did not make predictions at random, (2) they did not 

use simple heuristics to derive their predictions about the Other’s choice, (3) they did not always 

simulate their own choices during the Prediction phase, (4) nonlinearities in the utility functions given in 

Figure A2: Worst and best fits of the cost-benefit arbitrage models for each cost type. Each graph 
shows the participant’s observed choice data (y-axis) as a function of the model’s fitted data (x-
axis). Recall that the model’s fitted output is the expected choice data at each trial, marginalized 
over model parameters. Here, the series of expected choice data was binned into eight quantiles, 
each of which corresponds to a subset of observed choice data with a given mean (black dots) and 
standard deviation (black errorbars). An ideal model fit would align along the plain red line, with 
errorbars matching the dashed red ellipse. Worst fits: Delay : fit accuracy=45%; Effort : fit 
accuracy=45%; Risk : fit accuracy=41%. Best fits: fit accuracy>99% for all cost types. 

. 



Equation 2-4 are needed to explain peoples’ predictions about others. We thus performed a statistical 

comparison of the BPL model with the following alternative models for peoples’ guesses in the Prediction 

phase: 

(1) Random model: at each trial, the observer randomly selects his bet according to a bias 

for the low-cost option (NB: this bias can be negative). 

(2) Fictitious Play: at each trial, the observer updates (in a Bayesian way) his estimate of the 

probability that the Other will choose the low-cost option (see e.g. (Devaine et al., 

2014b)).  

(3) Self Preference: at each trial, the observer’s guess about the Other’s choice reproduces 

what he would have chosen himself (this prediction can be derived from the estimated 

participant’s cost-susceptibility during Decision phase 1). 

(4) Linear BPL: at each trial, the observer the observer updates his estimate of the Other’s 

cost-susceptibility according to Equation 7 of the main text, under a linear utility model. 

When pooling evidence over cost types, RFX-BMS revealed that the nonlinear BPL was the most 

likely explanation to peoples’ guesses during the Prediction phase (EP=1, PEP=1). 

 

Figure A3 below also reports the best and worst fit (across subjects) of the nonlinear BPL model, 

when inverted given participants’ behaviour in the Prediction phase. 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

3. Bayesian model of attitude alignment 

Let us first summarize the prior distributions we used to perform the Bayesian inversions of the different 

variants of the model. Recall that the holistic model has seven unknown parameters. The first four 

parameters are the sufficient statistics of peoples’ priors regarding the scattering of information 

regarding the “best” policy, namely:  , G , G  and G , whose meaning is given in the main text. 

Here, we have re-parameterized the model, mostly in the aim of enforcing positivity constraints on 

variances, as follows: 1exp( )  , 2exp( )G    , 3exp( )G     and 4G   .  

The last five unknown parameters are the initial cost-susceptibility 
( )

1

s , the behavioural log-

temperature ( )s  in Decision phases, the log-temperature ( )s  in the Prediction phase as well as the 

sufficient statistics 
( ),2

0

o  and 
( ),2

0

o   describing the prior distribution over the log-temperature of the 

Other. Based on this model we defined 4 variants with and without false-consensus and influence biases. 

Figure A3: Worst and best fits of the BPL model for each cost type. This figure uses the same format 
as Figure S2. Worst fits: Delay : fit accuracy=65%; Effort : fit accuracy=55%; Risk : fit accuracy=55%. 
Best fits: Delay : fit accuracy>99%; Effort : fit accuracy>99%; Risk : fit accuracy=95%. 



The variants without influence ( 1m  and 2m ) simply equated peoples' cost-susceptibility in Decision 

phases 1 and 2 (
( ) ( )

2 1

s s  ). The variants without false-consensus ( 1m  and 3m ), two parameters were 

added to the model: namely the prior mean 
( ),1

0

o  and variance 
( ),1

0

o  on the Other's cost-susceptibility 

( )o  (since they are not constrained by the "holistic" model anymore).  

Table A3 below summarizes the specification of the Gaussian prior distribution of these parameters, in 

terms of its mean and variance. Note: M  and M  are the sample average of peoples’ cost-

susceptibility and behavioural temperature (see Table A1). 

 

Parameter Prior Mean 
Prior 

Variance 1m  2m  3m  4m  

1  0 1  X X X 

2  0 1  X X X 

3  0 1  X X X 

4  M  1  X X X 

1

s  M  1 X X X X 

s  M  1 X X X X 

s  -1 1 X X X X 

,1

0

o  M  1 X  X  

,2

0

o  M  1 X X X X 

,1

0

o  .6 1 X  X  

,2

0

o  .6 1 X X X X 

Table A3: Prior mean and variance for the parameters of the model of attitude alignment. 



Note that the Bayesian model of attitude alignment yielded good fit accuracy (delay: 84%, effort: 81%, 

risk: 85%) in all Decision and Prediction phases. Nevertheless, for completeness, we report here its worst 

and best fits across subjects. These are depicted on Figure A4 below, for each cost type (same format as 

Figures A2 and A3). 

 

 

 

 

 

 

 

 

  

Figure A4: Worst and best fit for each cost type for the Bayesian model 
of attitude alignment. 
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