Supplemental Data

Table of contents

✓ <u>E-Methods</u>

- Isolation of crude central nervous system synaptosomes
- Immunoprecipitation assay
- Electrophoresis and mass-spectrometry analysis
- Differential proteomic and functional analysis
- ✓ <u>**Table e-1**</u>. Shortlisted immunoprecipitated proteins
- ✓ **<u>Table e-2</u>**. Identified precipitated peptides of Caspr2, DCC and UNC5A proteins
- ✓ Figure e-1. Detection of Caspr2, DCC or UNC5A antibodies with a HEK293T cell basedassay
- ✓ <u>Table e-3.</u> Immunohistochemistry of Caspr2, DCC and UNC5A proteins on thymomas and normal thymic tissues
- ✓ **Figure e-2.** Immunohistochemical studies on normal thymic tissues
- ✓ <u>References</u>.

E-Methods

Isolation of crude central nervous system synaptosomes. Crude synaptosme fractions were prepared from whole rat brain by differential centrifugation method with minimal modifications.^{e1} One male Wistar rat (2 months, Charles River Laboratories, Saint-Germain-sur-l'Arbresle, FR) per experiment was euthanized with CO₂ in an appropriate chamber. Brain was quickly removed, dissected on ice, and homogenized in isotonic sucrose/EDTA buffer (0.32 M sucrose, 1mM EDTA, 5mM Tris pH 7.4 with protease inhibitor cocktail III [P8340; Sigma Labs, St.Louis, US]) using 15 mL teflon-glass tissue grinder at 4°C. The homogenate was centrifuged at 1,000g 10 min at 4°C using Sorvall SS34 fixed angle rotor. The supernatant (S1, *total brain homogenate*) was diluted to a final protein concentration of 5mg/ml with isotonic sucrose/EDTA buffer. Afterwards, the diluted S1 supernatant was centrifuged at 15,000g 30 min 4°C, and the pellet (P2) containing the *crude* *synaptosome fraction* isolated. This fraction contains the bulk of the synaptosomes and plasma membrane from nerves and glial cells, myelin and mitochondria.

Immunoprecipitacion assay. Crude synaptosome fractions were incubated with patient's or control serum (1:100) in isotonic sucrose/EDTA buffer (0.32 M sucrose, 1mM EDTA, 5mM Tris pH 7.4 with protease inhibitor cocktail III [all from Sigma Labs]) overnight at 4°C. After the incubation, samples were washed three times with isotonic sucrose/EDTA buffer, and treated with lysis buffer (150mM NaCl, 1mM EDTA, 100mM Tris-HCl, 1% triton X-100 and 1% sodium deoxycholate pH 7.5 with 1:100 protease inhibitor cocktail III [all from Sigma Labs]). Lysed synaptosomes were then centrifuged at 21,300g 30 min at 4°C and supernatant was retained and incubated with protein A/G agarose beads (20423; Pierce, Rockford, US) overnight at 4°C.

Electrophoresis and mass-spectrometry analysis. Antibody coated protein A/G beads were washed three times with phosphate-buffered saline (PBS), and the pellet was resuspended in Laemmli buffer, boiled for 10 min and separated in 4-12% Bis-Tris polyacrylamide NuPAGE precast gels (Invitrogen). EZBlue gel staining (G1041; Sigma Labs) was used to visualize proteins. Because EZBlue gel staining did not identify specific protein bands, gel lanes were cut out and sent to the Proteomics Unit from the University of Valencia (member of Proteored, PRB2-ISCIII). Samples were digested using sequencing grade trypsin (Promega, Madison, WI, USA) as described elsewhere.^{e2} The digestion mixture was dried in a vacuum centrifuge and resuspended in 10µL of 2% acetonitrile (ACN), 0.1% trifluoro acetic acid (TFA). Mass spectrometry analysis was performed by loading 5µL of tryptic peptides onto a trap column (NanoLC Column, 3µ C18-CL, 75µm x 15cm, Eksigent, Dublin, US), desalted with 0.1% TFA at 2µL/min for 10 min, and transferred afterwards onto an analytical column (LC Column, 3µm C18-CL, 75µm x 12cm; Nikkyo Technos, Tokyo, JP) equilibrated in 5% ACN 0.1% formic acid (FA). Elution was carried out with a linear gradient of 5 to 40% B in 45 min (A: 0.1% FA; B: ACN, 0.1% FA) at a flow rate of 300 nL/min. Mass spectrometry analysis was performed in a nanoESI qQTOF (5600 TripleTOF; ABSCIEX, Old Connecticut Path Framingham, USA) mass spectrometer operated in data-dependent

mode. Peptides were ionized applying 2.8kV to the spray emitter. Survey MS1 scans were acquired from 350-1250 m/z for 250 ms. The quadrupole resolution was set to 'UNIT' for MS2 experiments, which were acquired from 100-1500m/z for 50 ms in 'high sensitivity' mode. Following switch criteria were used: charge: 2+ to 5+; minimum intensity; 70 counts per second (cps). Up to 50 ions were selected for fragmentation after each survey scan. Dynamic exclusion was set to 15s.

NCBI database was searched with Mascot v2.3.02 (Matrix Science, London, UK) and ProteinPilot v4.5 (ABSCIEX) search engines using peak list files (mgf) generated with ProteiPilot from the instrument wiff files. Mascot search parameters included tryptic peptides with up to 1 missed cleavage, mass tolerance of 50 ppm in MS mode and 0.6 Da in MS/MS mode, carbamidomethylation of Cys as a fixed modifications, and no taxonomy restriction. ProteinPilot search parameters were trypsin specificity, cys-alkylation, no taxonomy restriction and the search effort set to through. A 95% protein confidence cut-off value was used (ProteinPilot, Unused>1.3; http://sciex.com/Documents/tech%20notes/ProteinPilot-Software-Overview-RUO-MKT-02-1777-A.pdf).

Differential proteomic and functional analysis. Protein abundance was estimated by a label-free approach based on peptide signal intensity.^{e3} The signal of the three most intense peptides with confidence > 95% was used as a measure of the protein abundance in each sample. Immunoprecipitated proteins by patients with neuromyotonia and tymoma were compared with those identified with controls. All proteins identified with control sera were not considered for further analysis. Universal Protein Resource (UniProt; available at www.uniprot.org) and Online Mendelian Inheritance in Men (OMIM; available at www.omim.org) databases were used to evaluate subcellular location and functional analysis of the proteins respectively.

Protein name	Gene	Gi number	Subcellular location
60S ribosomal protein L18	Rpl18	gi 89573867	Cytoplasm
Adenylate cyclase type 5	Adyc5	gi 149060612	Membrane, cell projection (cilium)
Aquaporin-4	Aqp4	gi 6978531	Membrane
Capping protein (actin filament) muscle Z-line	N/A	gi 149065041	Cytoplasm
Choline O-acetyltransferase	Chat	gi 282154809	Cytoplasm, nucleus
Collapsin response mediator protein 3	Crmp3	gi 3122037	Cytoplasm
Collapsin response mediator protein 5	Crmp5	gi 6714522	Cytoplasm, dendrite
Contactin-associated protein-like 2	Caspr2	gi 7662350	Membrane, cell projection (axon)
Deleted in colorectal carcinoma	Dcc	gi 149064590	Membrane
Furry-like protein	Fry	gi 189342174	Cytoplasm
Golgin subfamily A member 3	Golga3	gi 157822655	Golgi apparatus
Leucine-rich repeats and immunoglobulin-like domains pro- tein 2	Lrig2	gi 68299752	Membrane, cytoplasm
Malonyl-CoA decarboxylase	Mlycd	gi 67460103	Cytoplasm, mitochondrion and peroxisome matrix
Metabotropic glutamate receptor 3	Grm3	gi 157787068	Membrane
Metabotropic glutamate receptor 5	Grm5	gi 8393490	Membrane
Netrin receptor UNC5A precursor	Unc5a	gi 11559980	Membrane, membrane raft, cell projection
Neurexin-1	Nrnx1	gi 37620151	Membrane, cell junction (synapse)
Neurocan core protein	Ncan	gi 404312657	Extracellular matrix
Phospholipase C, beta 1	Plcb1	gi 149023393	Nucleus, cytoplasm
Protein furry homolog-like	Fryl	gi 293341689	Cell cortex
Septin 7	Sept7	gi 9789715	Cytoskeleton
Serine/threonine-protein kinase MRCK	Cdc42bpa	gi 16758474	Cytoplasm
Vacuolar protein sorting-associated protein 16	Vps16	gi 53850610	Lysosomal membrane

Table e-1. Shortlisted immunoprecipitated proteins (membrane proteins highlighted).

Sequence identifier GI number from National Centre for Biotechnology Information (NCBI) database available at:

http://www.ncbi.nlm.nih.gov/protein/. N/A: no data available.

Protein name	Peptide sequence	Unused	GI number	%Cov	Specie	
Contactin-associated protein-like 2	DAGFLSYKDHLPVSQVVVGDT- DRQGSEAK, VQFNHIAPLK, VIETGKIDQEIHKYNTPGFTGCLSR.	3.33	gi 7662350	4,8%	Homo sapiens	
Deleted in colorectal carcinoma	GNIQTFTVFFSR, GVGPLSDPILFR, HHKPDEGLYQCEASLGDSGSIISR, VVVLPSGALQISR, NGDVVIPSDYFQIVGGSNLR, DVVPVLVSSR, ILSDPGLHR, VMVAGPLR, FLAYNR, DLTVITR, HGDGGYWPVDTNLIDR.	10.12	gi 6978755	11,7%	Rattus norvegicus	
Netrin receptor UNC5A	tor UNC5A STDSSSGLPTMEVR, FALVGEALSVAATKR, FQLSNGHLLSPLGSGR, GTSNMAYGTFNFLGGR, HTLHHSSPTSEAEDFVSR, IPFLIR, KKEGLDSDVADSSILTSGFQPVSIK PSK, LMIPNTGISLLIPPDAIPR, LSIHDVPSSLWK, NKPVLLVCK, QLGGQLIQEPR, QVDHVIER, VYCLHDTHDALKEVVQLEK.		gi 11559980	21,2%	Rattus norvegicus	

Table e-2. Identified precipitated peptides of Caspr2, DCC and UNC5A proteins.

Contactin-associated protein-like 2

mqaapragcg	aalllwivss	clcrawtaps	tsqkcdeplv	sglphvafss	sssisgsysp
gyakinkrgg	aggwspsdsd	hyqwlqvdfg	nrkqisaiat	qgrysssdwv	tqyrmlysdt
grnwkpyhqd	gniwafpgni	nsdgvvrhel	qhpiiaryvr	ivpldwngeg	riglrievyg
csywadvinf	dghvvlpyrf	rnkkmktlkd	vialnfktse	segvilhgeg	qqgdyitlel
kkaklvlsln	lgsnqlgpiy	ghtsvmtgsl	lddhhwhsvv	ierqgrsinl	tldrsmqhfr
tngefdyldl	dyeitfggip	fsgkpssssr	knfkgcmesi	nyngvnitdl	arrkklepsn
vgnlsfscve	pytvpvffna	tsylevpgrl	nqdlfsvsfq	frtwnpngll	vfshfadnlg
nveidltesk	vgvhinitqt	kmsqidissg	sglndgqwhe	vrflakenfa	iltidgdeas
avrtnsplqv	ktgekyffgg	flnqmnnssh	svlqpsfqgc	mqliqvddql	vnlyevaqrk
pgsfanvsid	mcaiidrcvp	nhcehggkcs	qtwdsfkctc	detgysgatc	hnsiyepsce
aykhlgqtsn	yywidpdgsg	plgplkvycn	mtedkvwtiv	shdlqmqtpv	vgynpekysv
tqlvysasmd	qisaitdsae	yceqyvsyfc	kmsrllntpd	gspytwwvgk	anekhyywgg
sgpgiqkcac	giernctdpk	yycncdadyk	qwrk <mark>dagfls</mark>	ykdhlpvsqv	vvgdtdrqgs
<mark>eak</mark> lsvgplr	cqgdrnywna	asfpnpssyl	hfstfqgets	adisfyfktl	tpwgvflenm
gkedfiklel	ksatevsfsf	dvgngpveiv	vrsptplndd	qwhrvtaern	vkqaslqvdr
lpqqirkapt	eghtrlelys	qlfvggaggq	qgflgcirsl	rmngvtldle	erakvtsgfi
sgcsghctsy	gtncenggkc	leryhgyscd	csntaydgtf	cnkdvgaffe	egmwlrynfq
apatnardss	srvdnapdqq	nshpdlaqee	irfsfsttka	pcillyissf	ttdflavlvk
ptgslqiryn	lggtrepyni	dvdhrnmang	qphsvnitrh	ektiflkldh	ypsvsyhlps
ssdtlfnspk	slflgk <mark>viet</mark>	gkidqeihky	ntpgftgcls	rvqfnqiapl	kaalrqtnas
ahvhiqgelv	esncgasplt	lspmssatdp	whldhldsas	adfpynpgqg	qairngvnrn
saiiggviav	viftilctlv	flirymfrhk	gtyhtneakg	aesaesadaa	imnndpnfte
tideskkewl	i				

Deleted in colorectal carcinoma

menslgcvwv	pklafvlfga	sllsahlqvt	gfqikpftsl	hfvsepsdav	tmrggnvlln
csaesdrgvp	vikwkkdgli	lalgmddrkq	qlpngslliq	nilhsr <mark>hhkp</mark>	deglyqceas
lgdsgsiisr	tak <mark>vmvagpl</mark>	rflsqtesit	afmgdtvllk	cevigdpmpt	ihwqknqqdl
npipgdsr <mark>vv</mark>	vlpsgalqis	rlqpgdsgvy	rcsarnpast	rtgneaevr <mark>i</mark>	lsdpglhr <mark>ql</mark>
yflqrpsnvi	aiegkdavle	ccvsgyppps	ftwlrgeevi	qlrskkysll	ggsnllisnv
tdddsgtytc	vvtyknenis	asaeltvlvp	pwflnhpsnl	yayesmdief	ecavsgkpvp
tvnwmkn <mark>gdv</mark>	vipsdyfqiv	ggsnlrilgv	vksdegfyqc	vaeneagnaq	ssaqlivpkp
aipsssilps	aprdvvpvlv	ssrfvrlswr	ppaeak <mark>gniq</mark>	tftvffsreg	dnreralntt
qpgslqltvg	nlkpeamytf	rvvaynewgp	gessqpikva	tqpelqvpgp	venlhavsas
ptsilitwep	payangpvqg	yrlfctevst	gkeqnievdg	lsykleglkk	fteytlr <mark>fla</mark>
ynrygpgvst	dditvvtlsd	vpsappqnvs	levvnsrsik	vswlpppsgt	qngfitgyki
rhrkttrrge	metlepnnlw	ylftglekgs	qysfqvsamt	vngtgppsnw	ytaetpendl
desqvpdqps	slhvrpqtnc	iimswtppln	pnivvrgyii	gygvgspyae	tvrvdskqry
ysierlesss	hyvislkafn	nagegvplye	sattrsitdp	tdpvdyypll	ddfptsgpdv
stpmlppvgv	qavaltheav	rvswadnsvp	knqktsdvrl	ytvrwrtsfs	asakyksedt
tslsytatgl	kpntmyefsv	mvtknrrsst	wsmtahatty	eaaptsapk <mark>d</mark>	ltvitr <mark>egkp</mark>
ravivswqpp	leangkitay	ilfytldkni	piddwimeti	sgdrlthqim	dlsldtmyyf
riqarnak <mark>gv</mark>	gplsdpilfr	tlkvehpdkm	andqgr <mark>hgdg</mark>	gywpvdtnli	drstlneppi
gqmhpphgsv	tpqknsnllv	itvvtvgvlt	vlvvvivavi	ctrrssaqqr	kkrathsask
rkgsqkdlrp	pdlwihheem	emkniekpag	tdpagrgspi	qscqdltpvs	hsqsesqmgs
ksashsgqdt	eeagssmstl	erslaarrat	rtklmipmea	qsnnpavvsa	ipvptlesaq
ypgilpsptc	gyphpqftlr	pvpfptlsvd	rgfgagrtvs	egptaqqqpm	lppaqpehps
seeapsrtip	tacvrpthpl	rsfanpllpp	pmsaiepkvp	ytpllsqpgp	tlpkthvkta
slglagkars	pllpvsvpta	pevseeshkp	tedpasvyeq	ddlseqmasl	eglmkqlnai
tgsaf					

Netrin receptor UNC5A

mavrpglwpv	llgivlaawl	rgsgaqqsat	vanpvpganp	dllphflvep	edvyivk <mark>nkp</mark>
yllvck <mark>avpa</mark>	tqiffkcnge	wvrqvdhvie	rstdsssglp	tmevrinvsr	qqvekvfgle
eywcqcvaws	ssgttksqka	yiriaylrkn	feqeplakev	sleqgivlpc	rppegippae
vewlrnedlv	dpsldpnvyi	trehslvvrq	arladtanyt	cvaknivarr	rstsaavivy
vnggwstwte	wsvcsascgr	gwqkrsrsct	npaplnggaf	cegqnvqkta	catlcpvdgs
wsswskwsac	gldcthwrsr	ecsdpaprng	geecrgadld	trnctsdlcl	htascpedva
lyiglvavav	clfllllalg	liycr <mark>kkegl</mark>	dsdvadssil	tsgfqpvsik	pskadnphll
tiqpdlsttt	ttyqgslcsr	qdgpspk <mark>fql</mark>	snghllsplg	sgrhtlhhss	ptseaedfvs
rlstqnyfrs	lprgtsnmay	gtfnflggrl	mipntgisll	ippdaipr <mark>gk</mark>	iyeiyltlhk
pedvrlplag	cqtllspvvs	cgppgvlltr	pvilamdhcg	epspdswslr	lkkqscegsw
edvlhlgees	pshlyycqle	agacyvfteq	lgr <mark>falvgea</mark>	lsvaatkrlr	lllfapvact
sleynir <mark>vyc</mark>	lhdthdalke	vvqlekqlgg	qliqeprvlh	fkdsyhnlrl	sihdvpsslw
k <mark>skllvs</mark> yqe	ipfyhiwngt	qqylhctftl	erinastsdl	ackvwvwqve	gdgqsfninf
nitkdtrfae	llaleseggv	palvgpsafk	ipflir <mark>qkii</mark>	asldppcsrg	adwrtlaqkl
hldshlsffa	skpsptamil	nlwearhfpn	gnlgqlaaav	aglgqpdagl	ftvseaec

Figure e-1. Detection of Caspr2, DCC or UNC5A antibodies with a HEK293T cell based-assay. To test for antibodies against Caspr2, DCC or UNC5A, HEK293T cells transfected with the plasmids were exposed to patients' sera. Paraformaldehyde-prefixed cells were incubated with the corresponding commercial Caspr2 or DCC antibodies (A, B: green) and the serum of patients or controls (A-D: red). The UNC5A transfected cells were displayed with a green fluorescent UNC5A-tagged plasmid (C,D: green). The sera of patient, but not that of healthy controls, labeled the surface of cells that specifically expressed the antigens (A-D: merged images). Nuclei were counterstained with 4',6-diamino-2-phenylindole (DAPI). Scale bars: 10 µm.

	Thymoma			Normal thymus						
	patient #1	patient #2	patient #8	C1	C2	C3	C4	C5	C6	C7
Caspr2	+	+++	++	++	++	+	+	+++	+	+++
DCC	+	+++	+	+	+++	0	0	+	0	+
UNC5a	++	+	++	+	+	+	+	+	+	+
CD3	+	++	++	++	++	++	++	++	++	+++
СК	+++	++	++	++	+	+	+	+	+	+
CD20	0	++	+	+	+	+	+	0	0	0
HLA-DR	0	+	+	++	+	+	++	++	++	+

Table e-3. Immunohistochemistry of Caspr2, DCC and UNC5A proteins in thymomas and normal thymic tissues.

Score: 0, negative; 1+, weak immunoreactivity; ++, moderate immunoreactivity; and +++, strong immunoreactivity.

Figure e-2. Immunohistochemical studies on normal thymus. Sections of control #2 were immunolabeled with specific antibodies against Caspr2 (A), DCC (B), UNC5A (C), cytokeratin AE1/AE3 (D), HLA-DR (E), CD3 (F) and CD20 (G). Staining of cell surface neuronal antigens is observed in epithelial stromal cells contained in the thymic cortex and medulla. Staining is especially intense in areas surrounding the Hassall corpuscles. Scale bars: 100µm.

References

e1. Dunkley PR, Jarvie PE, Robinson PJ. A rapid Percoll gradient procedure for preparation of synaptosomes. Nat Protoc 2008;3:1718-1728.

e2. Shevchenko A, Jensen ON, Podtelejnikov AV, et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad U S A 1996;93:14440-14445.

e3. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 2006;5:144-156.