Contents:

X-ray Crystal Data and Structure Refinement

Table S1. Bond lengths [E] and angles [°] for 15.

Gaussian archive log entries for optimized geometries

Table S2. HOMO and LUMO energies from B3LYP/6-311+G(2df,2p) density functional calculations.

Table S3. CHelpG charges from B3LYP/6-311+G(2df,2p)-optimized geometries, calculated at the same level of theory.

Table S4. CHelpG charges from B3LYP/6-31G(d)-optimized geometries, calculated at the same level of theory.

Table S5. Force constants for new chemical groups from B3LYP/6-31G(d)-optimized geometries, calculated at the same level of theory.

Figure S1 Total ion chromatograms (TIC) of time-dependent consumption of (A) SeMet (=SeM) or (B) TFSeM in reactions with MAT.

Figure S2. Total ion chromatograms of boiled crude lysate with (A) SeM (= SeMet) or (B) TFSeM and crude lysate filtrate with (C) SeM or (D) TFSeM (= TFSeMet).

Synthesis and Purity:

- 1. (S)-tert-Butyl 4-selenocyanato-2-(tert-butoxycarbonylamino)butanoate (15)
- 2. (S)-tert-Butyl 4-trifluoromethylselanyl-2-(tert-butoxycarbonylamino) butanoate (16)
- 3. (S)-1-Carboxy-3-((trifluoromethyl)selanyl)propan-1-aminium 2,2,2-trifluoroacetate (7a)
- 4. (S)-1-Carboxy-3-((trifluoromethyl)selanyl)propan-1-aminium chloride (7b)

X-ray Crystal Data and Structure Refinement

Crystal data and structure refinement for (S)-tert-butyl 4-selenocyanato-2-(tert-butycarbonylamino)butanoate (15).

Empirical formula	$C_{14}H_{24}N_2O_4Se$						
Formula weight	363.31	363.31					
Temperature	100(2) K	100(2) K					
Wavelength	0.71073 Å						
Crystal system	Orthorhombic						
Space group	$P2_{1}2_{1}2_{1}$						
Unit cell dimensions	a = 5.3393(16) Å	a= 90°.					
	b = 16.636(5) Å	b= 90°.					
	c = 19.468(6) Å	$g = 90^{\circ}$.					
Volume	1729.3(9) Å ³						
Z	4						
Density (calculated)	1.395 Mg/m ³						
Absorption coefficient	2.187 mm ⁻¹						
F(000)	752						
Crystal size	0.52 x 0.15 x 0.12 mm	0.52 x 0.15 x 0.12 mm ³					
Theta range for data collection	1.61 to 28.30°.	1.61 to 28.30°.					
Index ranges	-7<=h<=7,-21<=k<=2	-7<=h<=7, -21<=k<=21, -25<=l<=25					
Reflections collected	14681	14681					
Independent reflections	4011 [R(int) = 0.1339]					
Completeness to theta = 25.00°	100.0 %						
Absorption correction	Semi-empirical from e	equivalents					
Max. and min. transmission	0.7793 and 0.3959	0.7793 and 0.3959					
Refinement method	Full-matrix least-squa	res on F ²					
Data / restraints / parameters	4011 / 0 / 199						
Goodness-of-fit on F ²	1.004						
Final R indices [I>2 σ (I)]	R1 = 0.0505, wR2 = 0	R1 = 0.0505, wR2 = 0.0950					
R indices (all data)	R1 = 0.0672, wR2 = 0	R1 = 0.0672, wR2 = 0.1008					
Absolute structure parameter	-0.010(12)	-0.010(12)					
Largest diff. peak and hole	1.606 and -0.648 e·Å-	3					

Se(1)-C(1)	1.859(4)
Se(1)-C(2)	1.981(4)
N(1)-C(5)	1.351(5)
N(1)-C(4)	1.439(4)
N(2)-C(1)	1.147(5)
O(1)-C(5)	1.211(4)
O(2)-C(5)	1.349(5)
O(2)-C(6)	1.481(4)
O(3)-C(10)	1.207(5)
O(4)-C(10)	1.317(5)
O(4)-C(11)	1.496(4)
C(2)-C(3)	1.513(5)
C(3)-C(4)	1.533(5)
C(4)-C(10)	1.534(5)
C(6)-C(7)	1.515(5)
C(6)-C(8)	1.518(5)
C(6)-C(9)	1.524(5)
C(11)-C(13)	1.500(5)
C(11)-C(14)	1.509(6)
C(11)-C(12)	1.527(5)
C(1)-Se(1)-C(2)	97.66(18)
C(5)-N(1)-C(4)	118.7(3)
C(5)-O(2)-C(6)	120.4(3)
C(10)-O(4)-C(11)	120.9(3)
N(2)-C(1)-Se(1)	175.2(4)
C(3)-C(2)-Se(1)	112.9(3)
C(2)-C(3)-C(4)	113.3(3)
N(1)-C(4)-C(3)	110.8(3)
N(1)-C(4)-C(10)	114.5(3)
C(3)-C(4)-C(10)	111.1(3)
O(1)-C(5)-O(2)	126.6(3)
O(1)-C(5)-N(1)	124.0(4)
O(2)-C(5)-N(1)	109.4(3)
O(2)-C(6)-C(7)	109.9(3)
O(2)-C(6)-C(8)	103.1(3)

Table S1. Bond lengths [E] and angles [°] for 15

C(7)-C(6)-C(8)	110.3(4)
O(2)-C(6)-C(9)	110.2(3)
C(7)-C(6)-C(9)	112.0(3)
C(8)-C(6)-C(9)	110.9(3)
O(3)-C(10)-O(4)	127.1(3)
O(3)-C(10)-C(4)	120.1(4)
O(4)-C(10)-C(4)	112.9(3)
O(4)-C(11)-C(13)	111.4(3)
O(4)-C(11)-C(14)	107.9(3)
C(13)-C(11)-C(14)	113.6(3)
O(4)-C(11)-C(12)	101.3(3)
C(13)-C(11)-C(12)	111.3(3)

Gaussian archive log entries for optimized geometries:

Methionine, Met

1\1\GINC-N312\FOpt\RB3LYP\6-311+G(2df,2p)\C6H13N1O2S1\MJPUSHIE\05-Jul-2012\0\\#p RB3LYP/6-311+G(2df,2p) opt=(redundant,maxcycle=60) nosymm f req guess=read iop(1/8=8)\\[methionine]charge neutral without continuu m geom opt and freqs\\0,1\N,-1.2009253799,-3.6070091481,0.4665526731\C ,-0.5250778152,-2.7895917017,-0.5521547126\C,0.7192459179,-3.541338326 1,-1.0559233224\0,1.168684072,-4.4836583095,-0.2145592961\0,1.26253976 91,-3.2904403802,-2.096980694\H,-1.149554406,-2.6036981997,-1.42926766 01\C,-0.1159557302,-1.4363042365,0.0592114485\C,0.431349163,-0.4174971 09.-0.9432383666\C.0.8205310829.0.8886629221.-0.2550284302\S.1.3816126 968,2.1162876793,-1.4866970586\C,1.7636484159,3.5062882386,-0.38105685 73\H,0.5150853095,-4.5270274232,0.5139464406\H,-1.7166846884,-3.039164 9331,1.1254122467\H,-1.8460441327,-4.2690103243,0.0543316576\H,-1.0056 062262,-1.0169568412,0.5400905681\H,0.6128819931,-1.6131026023,0.85519 72174\H,-0.3259985521,-0.2160812487,-1.7045198017\H,1.2916563112,-0.83 18653227.-1.4673388452\H.-0.0292989842.1.306266058.0.2894272479\H.1.62 74641377.0.7166910421.0.4598406937\H.2.111261415.4.3234778574.-1.00930 58613\H,2.5526371,3.2441924663,0.3224077727\H,0.8779775997,3.833102661 5,0.1621726908\\Version=EM64L-G09RevC.01\HF=-840.0677176\RMSD=6.139e-0 9\RMSF=1.005e-05\Dipole=-1.6659205,0.46674,1.6680814\Quadrupole=2.4439 055,1.2997952,-3.7437007,13.1513255,4.9883515,-4.5766043\PG=C01 [X(C6H 13N1O2S1)]\\@

Selenomethionine, SeM

1\1\GINC-N309\FOpt\RB3LYP\6-311+G(2df,2p)\C6H13N1O2Se1\MJPUSHIE\05-Jul -2012\0\\#p RB3LYP/6-311+G(2df,2p) opt=(redundant,maxcycle=60) nosymm freq guess=read iop(1/8=8)\\[selenomethionine]charge neutral without c ontinuum geom opt and freqs\\0,1\N,-1.2559226028,-2.6467370517,0.90565 91598\C,-0.5456578177,-1.8366948436,-0.0955127528\C,0.700714194,-2.603 4451954,-0.5707753524\O,1.1165180761,-3.5544107307,0.2778652367\O,1.27 26256142,-2.3564631386,-1.5974205206\H,-1.1466863865,-1.6424182844,-0. 9871070827\C,-0.1352139359,-0.4888177291,0.5268569126\C,0.4573781144,0 .52260356.-0.4589953035\C.0.8299662446.1.8255159701.0.239274859\Se.1.5 247183382,3.1422132124,-1.0588319549\C,1.8171082015,4.6080253027,0.212 1012943\H,0.4449162519,-3.5905420023,0.9902187612\H,-1.7774695322,-2.0 729706308,1.5547819201\H,-1.9017663248,-3.2977654113,0.4773742631\H,-1 .0326792072,-0.0558871194,0.9804172564\H,0.5672244006,-0.6745573426,1. 3441386835\H,-0.2705124801,0.7238562595,-1.2485904783\H,1.3320140698,0 .095904166,-0.9487268488\H,-0.0355173238,2.2730051247,0.7277767624\H,1 .6032078286,1.6593375173,0.988519128\H,2.2032692537,5.4462447947,-0.36 17336372\H.2.5473360729.4.3187144152.0.963048226\H.0.8802657953.4.8944 544254.0.6826466172\\Version=EM64L-G09RevC.01\HF=-2843.3965753\RMSD=4. 033e-09\RMSF=1.063e-05\Dipole=-1.7316416,0.4643737,1.6047841\Quadrupol e=0.6333541,1.1750022,-1.8083562,10.0453333,3.4856962,-0.9520797\PG=C0 1 [X(C6H13N1O2Se1)]\\@

Trifluoromethionine (TFM)

1\1\GINC-N311\FOpt\RB3LYP\6-311+G(2df,2p)\C6H10F3N1O2S1\MJPUSHIE\06-Ju 1-2012\0\\#p RB3LYP/6-311+G(2df,2p) opt=(redundant,maxcycle=60) nosymm freq guess=read iop(1/8=8)\\[methionineCF3]charge neutral without con tinuum geom opt and freqs\\0,1\N,-1.2442268607,-2.6357104984,0.8981733 732\C,-0.5352128579,-1.8191853801,-0.0970449079\C,0.7169349463,-2.5767 223808,-0.5746207561\O,1.1236160206,-3.5455460219,0.2554596103\O,1.298 8427105,-2.3040918159,-1.5894716289\H,-1.1350888377,-1.6237449159,-0.9 892583025\C,-0.1314213084,-0.4721965376,0.5310573684\C,0.4737223126.0. 5341341118,-0.4511224362\C,0.839576013,1.8353367258,0.2605686261\S,1.5 165589164,3.0195165302,-0.9669895309\C,1.7928724419,4.4338836842,0.129 2480112\H,0.4490281326,-3.5941590294,0.9644987899\H,-1.759836445,-2.06 91337508.1.5582155314\H.-1.89452377.-3.2798366497.0.4663913021\H.-1.03 27887226.-0.0375834616.0.9743315046\H.0.5624969588.-0.6585764142.1.355 2391278\H.-0.2442252603,0.7400462832,-1.2481035927\H.1.3536026944,0.10 61520231.-0.9297240517\H.-0.0354923081.2.2873885136.0.7247422709\H.1.5 948261578,1.6600179825,1.0247484965\F,2.28175612,5.4456865557,-0.59953 24237\F,2.6708957185,4.1757244563,1.1173517983\F,0.6670736585,4.866463 6601,0.7313274021\\Version=EM64L-G09RevC.01\HF=-1137.8986607\RMSD=7.71 8e-09\RMSF=7.364e-06\Dipole=-2.040305,-0.6355008,1.1354477\Quadrupole= 3.6407449,-7.0186359,3.377891,5.3202648,2.0961734,-4.1717461\PG=C01 [X (C6H10F3N1O2S1)]\\@

Trifluoroselenomethionine (TFSeM)

1\1\GINC-N309\FOpt\RB3LYP\6-311+G(2df,2p)\C6H10F3N1O2Se1\MJPUSHIE\06-J ul-2012\0\\#p RB3LYP/6-311+G(2df,2p) opt=(redundant,maxcycle=60) nosym m freq guess=read iop(1/8=8)\\[selenomethionineCF3]charge neutral with out continuum geom opt and freqs\\0,1\N,-1.3284999095,-2.6447392382,0. 8333955924\C.-0.4167807302.-1.8595791169.-0.0138924128\C.0.7957560918, -2.7377223783, -0.3939906797, 0.0.5974472939, -4.0472703145, -0.2074574803, -0.207457480, -0.207480, -0.2074\O,1.8184492393,-2.2981900431,-0.8460896643\H,-0.9385685342,-1.6815826 206,-0.9586358804\C,-0.0014411983,-0.502620877,0.5818677441\C,0.556733 8949,0.5021549132,-0.4337769647\C,0.8953258246,1.8291615171,0.23586897 17\Se.1.5531711046,3.1086359515,-1.1252248348\C,1.6501588115,4.6636357 747,0.0740920705\H,-0.2882061964,-4.1281588056,0.2051802258\H,-1.11382 69382,-2.5304529462,1.8172113622\H,-2.294281619,-2.3800080055,0.697086 3849\H,-0.8881445271,-0.0717015092,1.0545401349\H,0.7305977882,-0.6702 220494,1.3767397908\H,-0.1872365024,0.6671408745,-1.2181482301\H,1.438 7284722,0.0786995946,-0.9104170352\H,0.0213743981,2.2791975718,0.70147 09099\H,1.6791661804,1.7104282362,0.9797985006\F,2.0549774237,5.728519 9294,-0.6318200614\F,2.5155387442,4.4897784108,1.0886609381\F,0.463914 9639,4.9680851624,0.6335302239\\Version=EM64L-G09RevC.01\HF=-3141.2250 055\RMSD=5.328e-09\RMSF=5.987e-06\Dipole=-2.0281276,-0.5419253,0.91174 95\Quadrupole=2.6332395,-10.6480759,8.0148364,5.2179076,1.4728544,-4.2 833754\PG=C01 [X(C6H10F3N1O2Se1)]\\@

Methionine, Met, CHelpG output from B3LYP/6-31G(d)-optimized geometry

1\1\GINC-N257\SP\RB3LYP\6-31G(d)\C6H13N1O2S1\MJPUSHIE\27-Jul-2012\0\\# p RB3LYP/6-31G(d) iop(1/8=8) pop=(chelpg)\\[methionine]charge neutral without continuum CHELPG\\0,1\N,0,-1.3740169732,-3.3538669726,0.661102 6855\C,0,-0.4792856029,-2.5295033665,-0.174227603\C,0,0.7616016665,-3. 3705461757,-0.5472705815\0,0,0.5890722754,-4.6903621899,-0.3860018133\ O,0,1.7832231287,-2.9013268259,-0.9722996392\H,0,-1.0005909862,-2.3643 681245,-1.1236293626\C,0,-0.1136135802,-1.1623309336,0.4306477061\C,0, 0.384049488,-0.1245980201,-0.5828208926\C,0,0.7022259419,1.2100274176, 0.0871555879\S.0.1.1693805288.2.4593493626.-1.1709247626\C.0.1.4862238 4,3.8868496185,-0.0827216364\H,0,-0.3033714979,-4.7902430724,0.0151877 986\H,0,-1.1658969809,-3.2338133916,1.6483999468\H,0,-2.3461610978,-3. 1024120586.0.5254166291\H.0.-1.0132245895.-0.7746967994.0.9211313886\H 0.0.6372192925.-1.3071950002.1.2152564192\H.0.-0.3877664989.0.0290423 728,-1.345369647\H,0,1.2682588875,-0.5068675916,-1.0926177558\H,0,-0.1 648568131,1.5839281624,0.639049864\H,0,1.5321948003,1.0961069914,0.789 0770933\H,0,1.7762918229,4.7157483473,-0.7276598987\H,0,2.3013556829,3 .6766631028,0.6106105426\H,0,0.5883562651,4.1661671473,0.4699409308\\V ersion=EM64L-G09RevC.01\State=1-A\HF=-839.8628473\RMSD=5.906e-09\Dipol e=-1.7992981,0.4982078,1.4882054\Quadrupole=1.5589606,-2.7066872,1.147 7266,8.880444,0.6337162,-0.3167806\PG=C01 [X(C6H13N1O2S1)]\\@

Selenomethionine, SeM, CHelpG output from B3LYP/6-31G(d)-optimized geometry

1\1\GINC-N312\SP\RB3LYP\6-31G(d)\C6H13N1O2Se1\MJPUSHIE\27-Jul-2012\0\\ #p RB3LYP/6-31G(d) pop=(chelpg,readatradii)\\[selenomethionine]charge neutral without continuum CHELPG\\0,1\N,0,-1.4211761795,-2.5535437112, 1.0536429835\C,0,-0.7314067401,-1.7248106853,0.049197517\C,0,0.5253532 318, -2.4699022627, -0.4348058953\O,0,0.9563681747, -3.4220176126, 0.40705 75367\0.0.1.0919954562.-2.2061610554.-1.4613524931\H.0.-1.3436528783.-1.5393286154,-0.8384315148\C,0,-0.3403173292,-0.3712778747,0.673358605 5\C.0.0.2303993679.0.6520848263.-0.3150008443\C.0.0.5912660862.1.95783 58689,0.3857850317\Se,0,1.2496384773,3.2951669964,-0.9181022262\C,0,1. 5420924151,4.7594368168,0.3624830397\H,0,0.2810138405,-3.4679011038,1. 1200088306\H,0,-1.9438878025,-1.9863985342,1.7114583201\H,0,-2.0721925 56,-3.2009830581,0.6217999969\H,0,-1.2440863628,0.0464089869,1.1331035 278\H,0,0.3710714758,-0.5474572724,1.4875089916\H,0,-0.5090564615,0.84 63208226,-1.0981555775\H,0,1.1077165342,0.2375552487,-0.814077696\H,0, -0.2762132504,2.3904816588,0.8874638175\H,0,1.3792105135,1.8009088966, 1.1239035088\H.0.1.908852687,5.6072956397,-0.2133355773\H.0.2.28903213 41,4.4727193215,1.1002799815\H,0,0.6064091661,5.0293967024,0.848630135 5\\Version=EM64L-G09RevC.01\State=1-A\HF=-2841.0526939\RMSD=6.396e-09\ Dipole=-1.7497048,0.3925263,1.6030729\Quadrupole=3.3917801,-1.6102301, -1.78155,11.4669884,-0.2454874,-2.385676\PG=C01 [X(C6H13N1O2Se1)]\\@

Trifluoromethionine (TFM), CHelpG output from B3LYP/6-31G(d)-optimized geometry 1\1\GINC-N256\SP\RB3LYP\6-31G(d)\C6H10F3N1O2S1\MJPUSHIE\27-Jul-2012\0\ \#p RB3LYP/6-31G(d) iop(1/8=8) pop=(chelpg)\\[methionineCF3]charge neu tral without continuum CHELPG\\0,1\N,0,-1.4119816626,-2.5331339943,1.0 501443724\C,0,-0.7279139826,-1.6965950551,0.0498042992\C,0,0.526636141 4,-2.436303226,-0.4505808532\0,0,0.9512183632,-3.4117109622,0.36497373 39\O,0.1.0953383552,-2.1456598249,-1.4690622841\H.0,-1.3455703612,-1.5 028004822,-0.8323927965\C,0,-0.3316230128,-0.3488113903,0.6825310484\C ,0,0.2480675741,0.6712940254,-0.3028663128\C,0,0.611843704,1.971188664 7,0.4132071335\\$,0,1.2547349089,3.1757493837,-0.8222489961\C,0,1.49373 06908,4.5980221903,0.2737696822\H,0.0.2797031584,-3.4688198193,1.08081 96911\H.0,-1.9206891816,-1.9736307817,1.7252773383\H,0,-2.0744413776,-3.1682021835,0.6174381877\H.0,-1.2334880481,0.0730136919,1.1414029176\ H.0.0.3774118592.-0.5325897074.1.4968234338\H.0.-0.486470456.0.8760234 374.-1.0873756063\H.0.1.1256735291.0.2539135371.-0.7986539683\H.0.-0.2 608661933,2.4132442179,0.8945125709\H,0,1.3856531846,1.8006020893,1.16 17711847\F.0.1.9561127405.5.623047539.-0.4575638642\F.0.2.3796266329.4 .3651753117.1.2638068762\F.0.0.3556974335.5.0028043387.0.8768792118\\V ersion=EM64L-G09RevC.01\State=1-A\HF=-1137.5744888\RMSD=5.507e-09\Dipo le=-1.9956185,-0.5444505,1.2495399\Quadrupole=6.7771022,-6.4774269,-0. 2996753,11.0790746,-0.0787281,-6.0995991\PG=C01 [X(C6H10F3N1O2S1)]\\@

Trifluoroselenomethionine (TFSeM), CHelpG output from B3LYP/6-31G(d)-optimized geometry

1\1\GINC-N312\SP\RB3LYP\6-31G(d)\C6H10F3N1O2Se1\MJPUSHIE\27-Jul-2012\0 \\#p RB3LYP/6-31G(d) pop=(chelpg.readatradii)\\[selenomethionineCF3]ch arge neutral without continuum CHELPG\\0,1\N,0,-1.4202119906,-2.553446 152,1.0695383216\C,0,-0.7389616132,-1.7282999042,0.0578819069\C,0,0.51 18610075,-2.4754818531,-0.4405513836\O,0,0.9372891588,-3.4444853534,0. 3820835884\O.0.1.0775480568.-2.1953321647.-1.4637825247\H.0.-1.3603995 294,-1.5423398708,-0.8233319678\C,0,-0.3367913263,-0.3749219189,0.6750 415459\C,0,0.2388002044,0.6359017687,-0.3239797879\C,0,0.6138882721,1. 9378771284,0.3770767006\Se,0,1.3049162504,3.2370411412,-0.9559412328\C .0.1.5217913278.4.7267117098.0.3096936995\H.0.0.2676347893.-3.49414900 55.1.1004374922\H.0.-1.9210121241.-1.9864292308.1.7442073661\H.0.-2.08 80748501,-3.1895143061,0.6469063637\H,0,-1.2348910224,0.0531885413,1.1 35407623\H.0.0.3773664818,-0.5516729032,1.4863825355\H.0,-0.5031692433 0.8335999144,-1.1035255377\H,0,1.1090089923,0.2071392593,-0.823339158 9\H,0,-0.2480018155,2.4001664266,0.856476186\H,0,1.3986361603,1.781106 3738,1.1154702976\F,0,1.9797083997,5.7976587799,-0.3570063905\F,0,2.39 49568139.4.452797518.1.2980128731\F.0.0.3665115997.5.0787051015.0.9092 584838\\Version=EM64L-G09RevC.01\State=1-A\HF=-3138.7646675\RMSD=6.783 e-09\Dipole=-1.9659483,-0.5288961,1.1577669\Quadrupole=6.7313934,-6.90 26622,0.1712688,12.4678408,-1.1290624,-7.3584799\PG=C01 [X(C6H10F3N1O2 Se1)]\\@

	Met	SeM	TFM	TFSeM
HOMO (AU)	-0.2246	-0.2151	-0.2698	-0.2521
LUMO (AU)	-0.0208	-0.0214	-0.0275	-0.0359
HOMO-LUMO Gap (kJ/mol)	535.2	508.7	636.1	567.7
Gap Relative to Met	0.0	-26.5	+100.9	+32.5
Gap Relative to SeM	+26.5	0.0	+127.4	+59.0

Table S2. HOMO and LUMO energies from B3LYP/6-311+G(2df,2p) density functional calculations.

			CHelpG	Charges	
Atom No.	Atom Type	Met	SeM	TFM	TFSeM
1	Ν	-0.904	-0.881	-0.886	-0.870
2	H1	0.330	0.326	0.329	0.324
3	H2	0.342	0.328	0.344	0.331
4	С	0.721	0.704	0.705	0.595
5	01	-0.534	-0.528	-0.520	-0.492
6	O2	-0.578	-0.578	-0.570	-0.533
7	H3	0.339	0.331	0.336	0.315
8	CA	0.309	0.361	0.295	0.469
9	HA	-0.039	-0.044	-0.026	-0.027
10	CB	-0.058	-0.226	-0.168	-0.388
11	HB1	0.029	0.059	0.068	0.064
12	HB2	0.009	0.046	0.052	0.092
13	CG	-0.048	0.164	0.002	0.330
14	HG1	0.041	-0.019	0.043	-0.058
15	HG2	0.078	0.028	0.089	-0.004
16	CD	-0.052	-0.089	-0.032	-0.135
17	HD1	0.071	0.061	0.067	0.078
18	HD2	0.080	0.065	0.072	0.069
19	Hetero (S/Se)	-0.261	-0.207	-0.193	-0.111
20	CZ	-0.049	-0.004	0.506	0.444
21	XZ1 (H/F)	0.097	0.068	-0.144	-0.144
22	XZ2 (H/F)	0.039	0.021	-0.183	-0.168

Table S3. CHelpG charges from B3LYP/6-311+G(2df,2p)-optimized geometries, calculated at the same level of theory.

23 XZ3 (H/F) 0	0.038 0.014	4 -0.186 -0.181
----------------	-------------	-----------------

		CHelpG Charges									
Atom No.	Atom Type	Met	SeM	TFM	TFSeM						
1	Ν	-0.956	-0.923	-0.929	-0.906						
2	H1	0.350	0.351	0.351	0.348						
3	H2	0.360	0.352	0.363	0.354						
4	С	0.521	0.617	0.613	0.618						
5	01	-0.499	-0.509	-0.503	-0.503						
6	02	-0.476	-0.526	-0.520	-0.526						
7	H3	0.343	0.342	0.346	0.341						
8	CA	0.523	0.372	0.338	0.349						
9	HA	-0.041	-0.041	-0.031	-0.027						
10	СВ	-0.285	-0.261	-0.205	-0.376						
11	HB1	0.037	0.064	0.069	0.105						
12	HB2	0.057	0.064	0.064	0.105						
13	CG	0.074	0.157	0.014	0.246						
14	HG1	0.017	-0.007	0.038	-0.018						
15	HG2	0.023	0.030	0.079	0.035						
16	CD	-0.039	-0.129	-0.019	-0.164						
17	HD1	0.071	0.076	0.063	0.082						
18	HD2	0.086	0.080	0.069	0.080						
19	Hetero (S/Se)	-0.289	-0.208	-0.213	-0.120						
20	CZ	-0.080	-0.074	0.398	0.340						
21	XZ1 (H/F)	0.110	0.094	-0.100	-0.098						
22	XZ2 (H/F)	0.049	0.042	-0.141	-0.130						

Table S4. CHelpG charges from B3LYP/6-31G(d)-optimized geometries, calculated at the same level of theory.

23 XZ3 (H/F) 0.044 0.037 -0.144 -0.13

	Force Constants ^a											
Bond Type	Met	SeM	TFM	TFSeM								
CH ₂ –S	33223	-	85563	-								
CH ₂ –Se	-	69108	-	69126								
S–CH ₃	98422	-	-	-								
S–CF ₃	-	-	110004	-								
Se–CH ₃	-	62362	-	-								
Se–CF ₃	-	-	-	32235								
(S)CH ₂ –H	389056	-	-	-								
(S)CF ₂ –F	-	-	378016	-								
(Se)CH ₂ –H	-	394856	-	-								
(Se)CF ₂ –F	-	-	-	420014								

Table S5. Force constants for new chemical groups from B3LYP/6-31G(d)-optimized geometries, calculated at the same level of theory.

a – Units are in kJ/mol/nm²

Figure S1. Total ion chromatograms (TIC) of time-dependent consumption of (A) SeMet (= SeM) or (B) TFSeM in reactions with MAT. Consumption of SeMet and formation of both SeSAM and SeAH in panel A indicated MAT was active and contaminated with a methyltransferase, whereas TFSeM remained constant over 18 h, indicating it is not a suitable substrate of MAT.

Figure S2. Total ion chromatograms of boiled crude lysate with (A) SeM (= SeMet) or (B) TFSeM and crude lysate filtrate with (C) SeM or (D) TFSeM (= TFSeMet). In each experiment SeM and TFSeM remained constant throughout the 24 h incubation.

¹³C NMR of 3-selenocyanatopropanenitrile (17)

¹H NMR of **3-(Trifluoromethylselanyl)propionitrile (18)**

¹³C NMR of **3-(Trifluoromethylselanyl)propionitrile (18)**

¹H NMR in CDCl₃ (400 MHz)

¹H NMR in CDCl₃ (400 MHz)

⁷⁷Se-NMR in CDCl₃ (95.3 MHz)

. 10 Junio	ويعام أرقا وأروا	ani ani lui kie ee	فرع المراقعة	ani ni ana	يون وأواحد فعار وأور بقار	her like first and space with	dated associated	خانان أعديه العلي		kada in dei versik dat -	ويتألفان ويقاب	ակակություն	ande meiniskele street	فأمدريات الفام	ada, shihaadi k	stations also della	فيناسهم والمرا	սհետուս
n hurden der andere	ուստեղությ	, n het op staat het o	diates and the first of the second	الأمو لدفا وباريه	ار من مقداراً بان م	يترايد واحتريتهم	րեկրությես։	זאיי דעייק ן אי ויי	, and a start	ula alara ang	ությելու ինչու	ռասեղու	արկեն	und mainaidete.	el el els de se ante	իրվորություն	արութ	, da van de la servició de la servi La servició de la serv
490	480	470	460	450	440	430	420	410	400	390	380	370	360	350	340	330	320	ppm

(S)-1-Carboxy-3-((trifluoromethyl)selanyl)propan-1-aminium 2,2,2-trifluoroacetate (7a)

¹H NMR in D_2O (400 MHz)

⁷⁷Se-NMR in D₂O (95.3 MHz)

	inter and a second state and any inspection of the s					dan mengal							n i dit e ginte stati		a del las models a Barran Agreco y a graposo de las			
490	480	470	460	450	440	430	420	410	400	390	380	370	360	350	340	330	320	ppm

(S)-1-Carboxy-3-((trifluoromethyl)selanyl)propan-1-aminium chloride (7b)

¹H NMR in D₂O (400 MHz)

⁷⁷Se-NMR in D₂O (95.3 MHz)

landarina ati uni kana ku marata ati nakan ku ku marata di alam ku ku marata ata ku marata na	al a lainn ac san ann an san dhaada fa ka lainn lainn fan	alika kali mena di ana kalina pina mila se dan kala a da	a san a la partin a dina dina dina ania a sa ina dina sa ina kata a sa ina dina sa ina kata a sa ina kata a sa	a dala benan lita waka e na daga na aka wana aka mana aka	
na n	Tagan gaga gaga gal ann an 1997 gan afard a na fan an san an s	Penangan penangan penangan penangan penangan penangan	Kata kata kata kata kata kata kata kata	Na kata kata kata na kata na kata kata na kata kat	

420 415	410	405	400	395	390	385	380 ppm

Sample preparation

7.72 mg of **7a** and 2.50 mg of sodium 3-trimethylsilylpropionate (TMSP-2,2,3,3- D_4 internal calibrant) were transferred into standard NMR tube (5 mm) to which 0.6 mL of D_2O was added.

NMR Instrument/Software Controlled Parameters

 Pulse Program:
 Single pulse, without carbon decoupling ('zg' with 90° pulse [Bruker])

 Data Points (acquired):
 64 K

 Zero-Filling (SI or FN): to 256 K

 Dummy Scans:
 4

Pulse Width (P1 or PW)	90° RT
Relaxation delay (D1)	60
Acquisition time (AQ or AT)	3.63
Spectral Window (SW)	30 ppm
Transmitter Offset	7.5 ppm
Number of Scans for 600 MHz	1

C. Hardware dependent parameters

Preacquisition Delay: $DE = 10 \ \mu s$ (600 MHz Bruker Avance III HD equipped with quadruple resonance, HPCN, QCI-P cryoprobes): 90° *Pulse Width* (P1 [Bruker] 9.60 μs)

D. Post-Acquisition Processing and Measurement of Integrals

LB = 0.4 Hz	
to 256K real data	
Bruker-FP-Automatic	
5th order polynomial	

Calculation

$$P[\%] = \frac{n_{IC} \cdot Int_t \cdot MW_t \cdot m_{IC}}{n_t \cdot Int_{IC} \cdot MW_{IC} \cdot m_s} \cdot P_{IC} = 98.06\%$$

Where:

Weight of the internal calibrant IC $(m_{IC})= 2.50 \text{ mg}$ Weight of the sample $(m_S) = 7.72 \text{ mg}$ Area (integral) of the IC resonance signal being used for quantification $(Int_{IC}) = 5.90$ Area (integral) of the target analyte (t) resonance signal being used for Quantification $(Int_t) = 1$ Number of protons that give rise to $Int_{IC} (n_{IC}) = 9$ Number of protons of the target analyte that give rise to $Int_t (n_t) = 1$ Molecular weight of the internal calibrant $(MW_{IC}) = 172.26$ Molecular weight of the target analyte $(MW_t) = 348.96 \text{ g/mol}$ Purity of the internal calibrant, as percent value $(P_{IC}) = 98\%$

Sample preparation

5.52 mg of **7b** and 3.81 mg of sodium 3-trimethylsilylpropionate (TMSP-2,2,3,3-D₄ internal calibrant, IC) were transferred into standard NMR tube (5 mm) to which 0.6 mL of D_2O was added.

NMR Instrument/Software Controlled Parameters

Pulse Program: Single pulse, without carbon decoupling ('zg' with 90° pulse [Bruker])

Data Points (acquired): 64 KZero-Filling (SI or FN): to 256 KDummy Scans:4

Pulse Width (P1 or PW)	90° RT	
Relaxation delay (D1)	60	
Acquisition time (AQ or AT)	3.63	

Spectral Window (SW)	30 ppm
Transmitter Offset	7.5 ppm
Number of Scans for 600 MHz	1

C. Hardware dependent parameters

Preacquisition Delay: $DE = 10 \ \mu s$ (600 MHz Bruker Avance III HD equipped with quadruple resonance, HPCN, QCI-P cryoprobes): 90° Pulse Width (P1 [Bruker] 9.60 μs).

D. Post-Acquisition Processing and Measurement of Integrals

Processing Using Line Broadening:	LB = 0.1 Hz	
Zero Filling:	to 256K real data	
Phasing:	Bruker-FP- Automatic	
Baseline Correction:	5th order polynomial	

Calculation

$$P[\%] = \frac{n_{IC} \cdot Int_t \cdot MW_t \cdot m_{IC}}{n_t \cdot Int_{IC} \cdot MW_{IC} \cdot m_s} \cdot P_{IC} = 98.40\%$$

Where:

Weight of the internal calibrant IC $(m_{IC}) = 3.81 \text{ mg}$

Weight of the sample $(m_S) = 5.52 \text{ mg}$ Area (integral) of the IC resonance signal being used for quantification $(Int_{IC}) = 10.29$ Area (integral) of the target analyte (t) resonance signal being used for Quantification $(Int_t) = 1$ Number of protons that give rise to $Int_{IC} (n_{IC}) = 9$ Number of protons of the target analyte that give rise to $Int_t (n_t) = 1$ Molecular weight of the internal calibrant $(MW_{IC}) = 172.26$ Molecular weight of the target analyte $(MW_t) = 286.53 \text{ g/mol}$ Purity of the internal calibrant, as percent value $(P_{IC}) = 98\%$