Supplementary Information

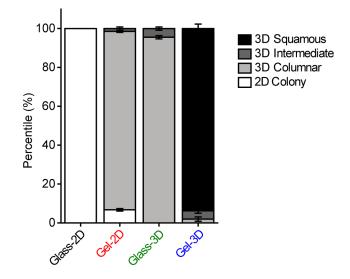
Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche

Yue Shao^{1,†}, Kenichiro Taniguchi^{2,†}, Katherine Gurdziel³, Ryan F. Townshend², Xufeng Xue¹, Koh Meng Aw Yong¹, Jianming Sang¹, Jason R. Spence², Deborah L. Gumucio^{2,*}, Jianping Fu^{1,2,4,*}

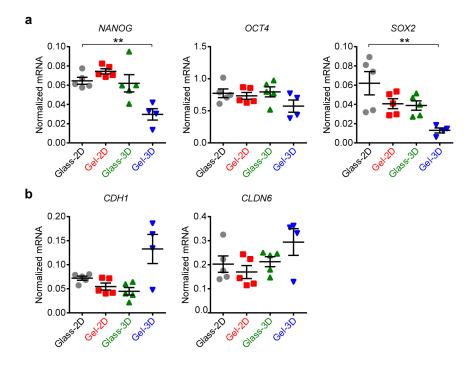
¹Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
²Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
³Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA;
⁴Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA;

[†]These authors contributed equally to this work;

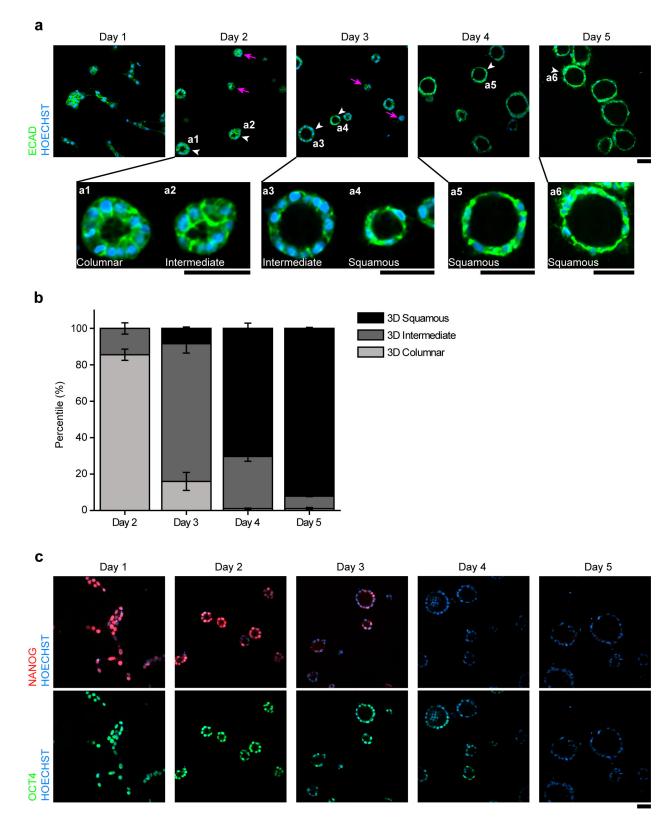
*Correspondence should be addressed to J. F. (jpfu@umich.edu) or D. L. G.

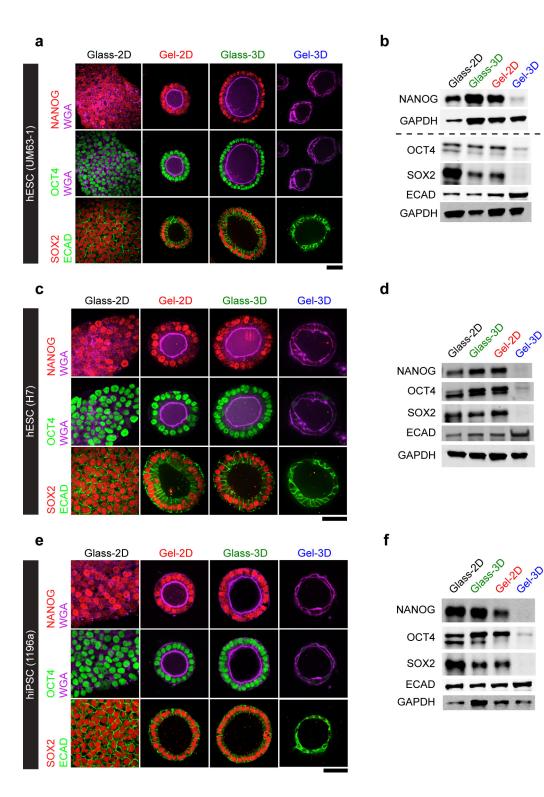

(dgumucio@med.umich.edu).

This document contains:


Supplementary Figures and Captions Supplementary Tables Supplementary References

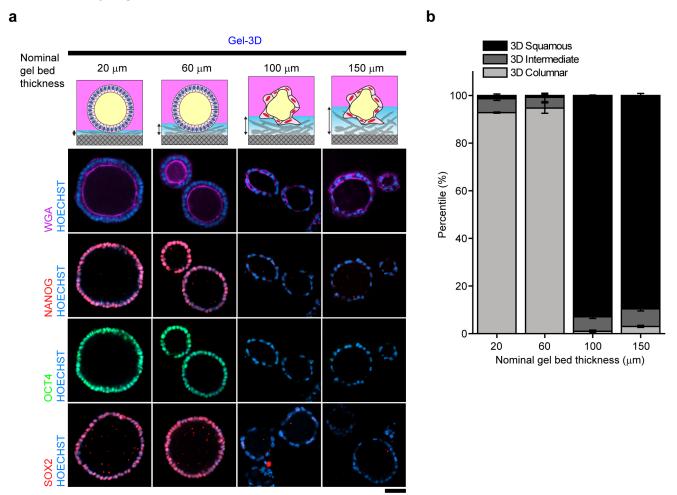
Supplementary Figures and Captions


Supplementary Figure 1


Supplementary Figure 1. Distinct morphogenesis of hPSCs under different culture conditions. Stacked bar plots showing percentages of hPSC colonies or hPSC-derived epithelial cysts with different morphologies under different culture conditions as indicated. Semi-quantitative delineation of 3D columnar versus 3D squamous cysts was provided in **Fig. 1e**. A 3D intermediate cyst is defined as a cyst showing morphological transition from columnar to squamous (see also **Supplementary Fig. 3a**). n_{cyst} (n_{colony}) = 100, 502, 469, and 694 for Glass-2D, Gel-2D, Glass-3D, and Gel-3D conditions, respectively. Data represent the mean ± s.e.m with n = 3 biological replicates from n = 2 independent experiments. Same observation has been successfully repeated in total n = 16 independent experiments.

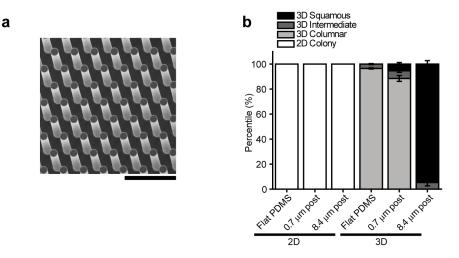
Supplementary Figure 2. Squamous epithelial cysts derived from hPSCs show blunted transcriptional suppression of pluripotency genes while maintaining epithelial features. qRT-PCR analysis of pluripotency genes *NANOG*, *OCT4*, and *SOX2* (**a**), as well as epithelial markers *CDH1* and *CLDN6* (**b**), for hPSCs cultured in indicated conditions. Data were normalized against *GAPDH* and plotted as the mean \pm s.e.m, with n = 4 - 5 biological replicates indicated by individual dots under each condition. n = 2 independent experiments. *P*-values were calculated using unpaired, two-sided Student's *t*-test. **: P < 0.01.

Supplementary Figure 3. Morphogenic cytodifferentiation of hPSCs over time in the implantation-like Gel-3D niche. (a) Confocal micrographs taken at different days (as indicated), showing immunostaining of ECAD (green) and counterstaining by HOECHST (blue) to examine morphological evolution of hPSCs cultured in the implantation-like Gel-3D niche. Magnified views of individual cysts (marked by white arrowheads) at different time points reveal a morphological transition from columnar to intermediate, to squamous cysts (a1-a6). Some hPSC clusters (marked by magenta arrows) did not form recognizable open lumens at day 2 or day 3. Such clusters were excluded from the quantification of time-dependent cyst morphological change in b. (b) Stacked bar plot showing percentages of hPSC-derived epithelial cysts with different morphologies in the implantation-like Gel-3D niche at days 2, 3, 4, and 5. Data represent the mean \pm s.e.m with $n_{cyst} = 424$ (day 2), 534 (day 3), 652 (day 4), and 542 (day 5). n = 3 biological replicates for each condition. (c) Confocal micrographs showing co-staining of NANOG (red) and OCT4 (green) for hPSCs cultured in the implantation-like Gel-3D niche at different days as indicated. HOECHST (blue) counterstains the nucleus. Scale bars in a&c. 50 µm. n = 2 independent experiments.

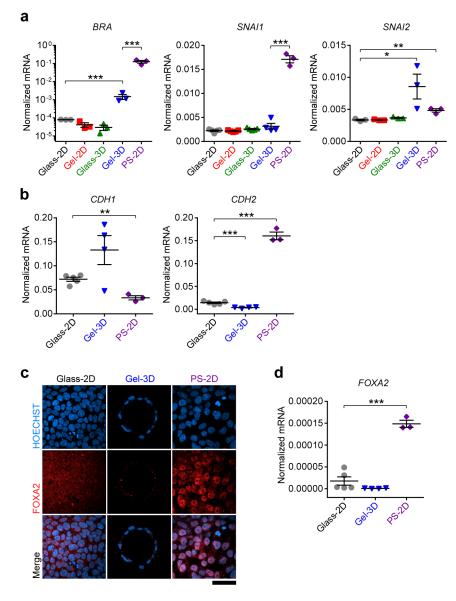


Gehan

Cel3D

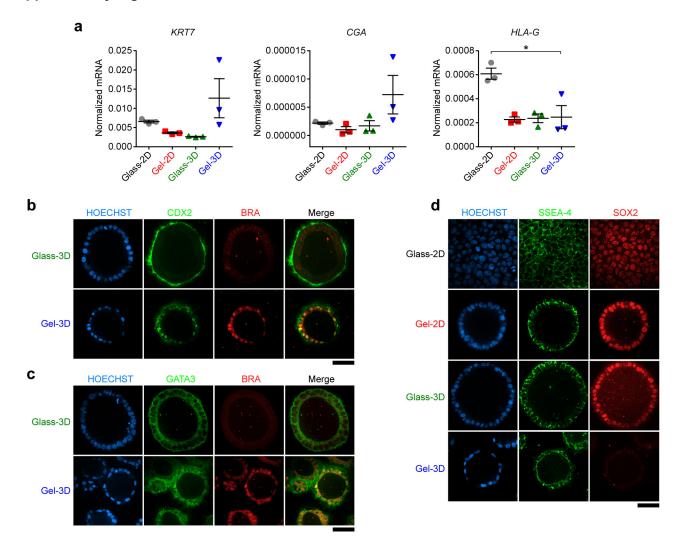

6

Supplementary Figure 4. The implantation-like Gel-3D niche induces spontaneous, selforganized development of squamous epithelial cysts from multiple hPSC lines. Confocal micrographs showing immunostaining of pluripotency markers NANOG (red; *top*), OCT4 (green; *middle*), and SOX2 (red; *bottom*), pan-cell membrane marker WGA (purple; *top and middle*), and basolateral membrane marker ECAD (green; *bottom*), in the UM63-1 hESC line (**a**), H7 hESC line (**c**), and 1196a hiPSC line (**e**) cultured under indicated conditions. Scale bars, 50 µm. Western blot showing expression levels of NANOG, OCT4, SOX2, ECAD, and GAPDH in the UM63-1 hESC (**b**), H7 hESC (**d**), and 1196a hiPSC (**f**) cultured under indicated conditions. Immunofluorescence staining and Western blotting for each cell line was conducted for n = 2 independent experiments.

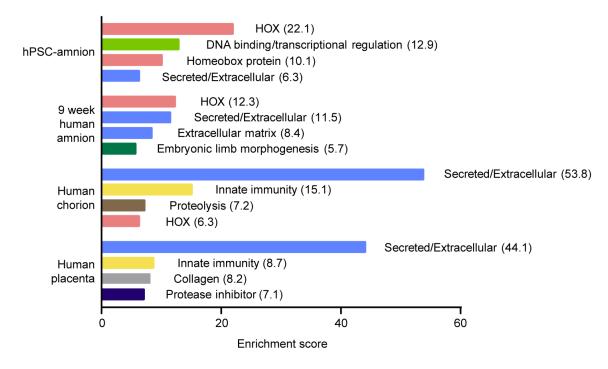


Supplementary Figure 5. Self-organized development of squamous epithelial cystic tissues from hPSCs in the implantation-like Gel-3D niche requires a thick gel bed. (a) Confocal micrographs showing immunostaining of WGA (purple), NANOG (red), OCT4 (green), and SOX2 (red) and counterstaining by HOECHST (blue) for hPSCs cultured in Gel-3D with varying nominal gel bed thicknesses as indicated. Cartoons show the typical epithelial cyst morphology observed under each condition. n = 2 independent experiments. Scale bar, 50 µm. (b) Stacked bar plot showing percentages of hPSC-derived epithelial cysts with different morphologies in Gel-3D as a function of the nominal gel bed thickness. Data represent the mean \pm s.e.m with $n_{cyst} = 306$, 361, 694, and 492 for gel beds of 20, 60,

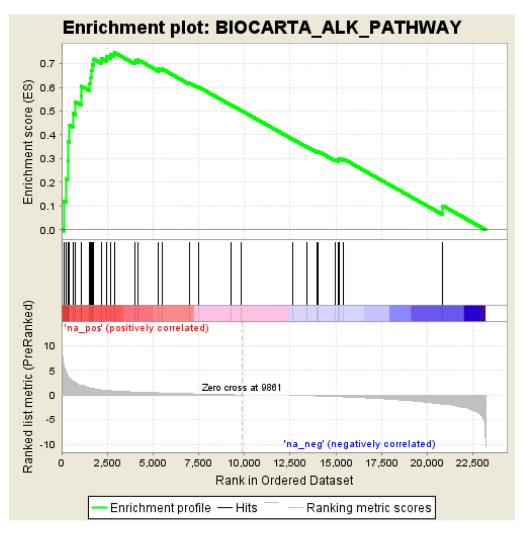
100, and 150 μ m thickness, respectively. n = 3 biological replicates for each condition. n = 2 independent experiments.



Supplementary Figure 6. An artificial matrix containing an elastomeric micropost array supports self-organized development of hPSCs into epithelial cystic tissues with squamous, human amnion-like morphology. (a) Scanning electron microscopy (SEM) image of the elastomeric polydimethylsiloxane (PDMS) micropost array with a post diameter of 1.83 μ m, a post height of 8.4 μ m, and a post center-to-center distance of 4 μ m. Scale bar, 10 μ m. (b) Stacked bar plot showing percentages of hPSC colony or hPSC-derived epithelial cysts with different morphologies as a function of PDMS micropost height and ECM dimensionality. Flat PDMS surfaces without microposts (thus with a micropost height of 0 μ m) were included for comparison. Data represent the mean \pm s.e.m with *n*_{colony} = 100 for all three 2D culture conditions and *n*_{cyst}= 250, 270, and 282 for 3D cultures using flat PDMS, 0.7 μ m tall micropost, and 8.4 μ m tall micropost, respectively. *n* = 3 biological replicates for each condition. *n* = 3 independent experiments.



Supplementary Figure 7. Development of squamous cystic tissues by hPSCs in the implantation-like Gel-3D niche activates a unique subset of epithelial-to-mesenchymal transition-related transcription factors. (a,b) qRT-PCR analysis of *BRACHYURY* (*BRA*), *SNAI1*, *SNAI2* (a), *CDH1*, and *CDH2* (b), for hPSCs cultured in indicated conditions. Data were normalized against *GAPDH* and plotted as the mean \pm s.e.m, with n = 3 - 5 biological replicates indicated by individual dots under each condition, n = 2 independent experiments. Data in b for *CDH1* under both Glass-2D and Gel-3D conditions are the same as those in **Supplementary Fig. 2b**. (c) Confocal


micrographs showing immunostaining of FOXA2 (red) and counterstaining by HOECHST (blue) for hPSCs cultured in Glass-2D, Gel-3D, and PS-2D conditions as indicated. Scale bar, 50 µm. n = 2 independent experiments. (**d**) qRT-PCR analysis of *FOXA2* for hPSCs cultured in different conditions as indicated. Data were normalized against *GAPDH* and plotted as the mean ± s.e.m, with n = 3 - 5 biological replicates indicated by individual dots under each condition. *P*-values were calculated using unpaired, two-sided Student's *t*-test. *: P < 0.05; **: P < 0.01; ***: P < 0.001. n = 2 independent experiments.

Supplementary Figure 8. hPSC-derived squamous cystic tissue lacks molecular features associated with trophoblasts. (a) qRT-PCR analysis of trophoblast markers *KRT7*, *CGA*, and *HLA-G*, for hPSCs under different culture conditions as indicated. Data were normalized against *GAPDH* before being plotted as the mean \pm s.e.m, with n = 3 biological replicates indicated by individual dots for each condition. n = 2 independent experiments. *P*-values were calculated using unpaired, two-sided Student's *t*-test. *: P < 0.05. (b&c) Confocal micrographs showing co-staining of BRA (red) with CDX2 (green; b) or GATA3 (green; c), for hPSCs under both Glass-3D and Gel-3D culture conditions. HOECHST (blue) counterstains the nucleus. n = 2 independent experiments. (d) Confocal micrographs showing costaining of SSEA-4 (green) with SOX2 (red) for hPSCs cultured in different conditions as indicated. HOECHST (blue) counterstains the nucleus. n = 2 independent experiments. Scale bars in **b-d**, 50 µm.

Supplementary Figure 9. Gene ontology (GO) functional annotation clustering. Genes enriched in hPSC-amnion, 9-week human amnion, human chorion, and human placenta, respectively, relative to hPSCs, were subjected to functional annotation clustering analysis using DAVID. For each data set, the four annotation clusters with the highest enrichment scores (plotted along the *x*-axis and also listed in parentheses following the annotation term) are presented. The data sets used for 9-week human amnion, human chorion, and human placenta are from a previous publication (GEO accession number GSE66302)¹.

Supplementary Figure 10. Gene set enrichment analysis (GSEA) for 35 ALK-pathway genes in hPSC-amnion. The entire ranked list of genes, ordered by fold change of expression level in hPSC-amnion relative to hPSCs (as shown in Supplementary Table 1), was queried using the gene set, BIOCARTA_ALK_PATHWAY, which contains 35 genes associated with BMP signaling. Significant enrichment of ALK-pathway related genes was observed in hPSC-amnion. (see Supplementary Table 5 for tabulated enrichment analysis results).

Supplementary Figure 11. BMP signaling is required for the development of amnion-like squamous tissue from hPSCs. (a) Western blot showing expression levels of BMP4 and GAPDH in cells cultured under different conditions as indicated. (b) Stacked bar plot showing percentages of hPSC-derived epithelial cysts with different morphologies in Glass-3D supplemented with DMSO

(Glass-3D; negative control), in Gel-3D supplemented with DMSO (Gel-3D; positive control), and in Gel-3D supplemented with LDN193189 (LDN; 500 nM) on day 2 only (LDN-d2) or on both days 2 and 3 (LDN-d2&3). *n*_{cvst} = 144, 311, 365, and 320 for Glass-3D, Gel-3D, LDN-d2, and LDN-d2&3, respectively. n = 3 biological replicates for each condition. n = 2 independent experiments. (c) qRT-PCR analysis of GATA2, GATA3, CDX2, TP63, BMP4, ITGB6, VTCN1, GABRP, MUC16, HAND1, and POSTN under Glass-3D, Gel-3D, LDN-d2, and LDN-d2&3 conditions. Data were normalized against *GAPDH* and plotted as the mean \pm s.e.m, with n = 4 biological replicates indicated by individual dots for each condition. n = 2 independent experiments. ND, not detected, with its normalized value set to zero. *P*-values were calculated using unpaired, two-sided Student's *t*-test. *P*-value calculation was not performed against "ND" result. *: P < 0.05; **: P < 0.01; ***: P < 0.001. (d) Immunofluorescence analysis of cysts cultured under Gel-3D condition without (top panel) or with (bottom panel) NOGGIN treatment. Cysts were stained for OCT4 (green), SOX2 (red), and WGA (purple). HOECHST (blue) counterstains the nucleus. Scale bar, 50 µm. (e) Stacked bar plots show percentages of hPSC-derived epithelial cysts with different morphologies in the Gel-3D system without ("Gel-3D" group) or with ("NOGGIN" group) NOGGIN treatment. $n_{\text{cyst}} = 131$ and 241 for Gel-3D and NOGGIN groups, respectively. Data represent the mean \pm s.e.m. with n = 3 biological replicates from n = 2 independent experiments.

Supplementary Tables

Supplementary Table 1. Processed RNA-seq reads for control hPSCs (Glass-2D) and hPSCamnion (Gel-3D).

(see separate Supplementary File)

							-
1	CUZD1	28	SCLY	55	TOMM40	82	RLIM
2	CER1	29	TXLNG	56	SEPHS1	83	RC3H2
3	CCL26	30	JMJD1C	57	SLIRP	84	PINX1
4	LEFTY2	31	EIF2AK4	58	EMG1	85	RPRM
5	GDF3	32	TARS	59	DDX18	86	GRPR
6	ADD2	33	SNURF	60	MTAP	87	GNPTAB
7	DDX21	34	RRP15	61	TFAM	88	FGF2
8	PNO1	35	USP45	62	NIP7	89	MYO1E
9	DPPA4	36	SHISA9	63	HSPD1	90	LARP7
10	RRAS2	37	NANOG	64	TIMM8A	91	CACHD1
11	GABRB3	38	CCRN4L	65	POU5F1	92	PHC1
12	RPL22L1	39	C10orf76	66	POU5F1P3	93	VRTN
13	MDN1	40	EXOC2	67	DDX6	94	TERF1
14	GAL	41	G3BP2	68	CENPN	95	CHAC2
15	PMAIP1	42	PHAX	69	TUBB2B	96	TDGF1
16	BICD1	43	CDC25A	70	DENR	97	<i>SLC25A21</i>
17	AKIRINI	44	MTHFD1L	71	CASP3	98	USP44
18	FGD6	45	RNASEH1	72	SKP2	99	LEFTY1
19	MRS2	46	LITDI	73	MKKS	100	NODAL
20	BPTF	47	LRR1	74	NUDT15	101	RRM2
21	KIF13A	48	MRPS30	75	FKBP4	102	GLB1L3
22	RAC3	49	PSME3	76	NUP160	103	C21orf88
23	C9orf85	50	MSH2	77	TMPO	104	SMPDL3B
24	DNAH14	51	EEF1E1	78	MMS22L	105	UNC5D
25	METTL21A	52	NLN	79	ESRP1	106	LECTI
26	METTL8	53	LOC100506054	80	SKIL	107	ZIC3
27	BCAT1	54	NOLC1	81	SNX5	108	RTP1

Supplementary Table 2. List of 108 putative pluripotency genes² detected in hPSCs and hPSCamnion in RNA-seq. Genes are consecutively listed as plotted, from left to right, in Fig. 4f. Supplementary Table 3. List of 50 most up-regulated genes (UP-50) and 50 most down-regulated genes (DOWN-50) in hPSC-amnion compared with hPSCs. Genes are consecutively listed as plotted, from left to right, in Fig. 4f.

	UP-50	genes		DOWN-50 genes					
Rank	Gene	Rank	Gene	Rank	Gene	Rank	Gene		
1	HAND1	26	PLSCR5	1	CUZD1	26	VTN		
2	TFAP2B	27	HOXC13	2	CH25H	27	IFITM5		
3	ISL1	28	MEIS1	3	PTGFR	28	MIRLET7BHG		
4	LUM	29	WNT6	4	TMPRSS3	29	LOC399829		
5	C8orf4	30	NR2F2	5	JAKMIP2-AS1	30	XIST		
6	EVXI	31	MSX2	6	ANKRD22	31	KCNJ1		
7	DLX5	32	CCR1	7	ISL2	32	UCP1		
8	ТВХЗ	33	CYSLTR2	8	RXFP1	33	TNFAIP6		
9	HOXB2	34	EPAS1	9	PCDHB1	34	C3orf72		
10	ERP27	35	KRT23	10	OLIG3	35	SEZ6		
11	COL3A1	36	<i>TP63</i>	11	WDR49	36	CBLN4		
12	GATA3	37	MEIS1-AS3	12	AQP7	37	LOC100127888		
13	GUCY1A3	38	BARX2	13	NLRP10	38	FREM3		
14	P2RY6	39	HMX1	14	NPTX1	39	TMEM114		
15	TNFSF8	40	HOXC6	15	LOC100507387	40	DRD1		
16	TFAP2A	41	HOXB-AS1	16	TACI	41	DSG3		
17	DCN	42	IGFBP7	17	GABRA1	42	PRSS56		
18	VGLL1	43	DIO3	18	FOXE1	43	CCR9		
19	HOXB9	44	HOXB3	19	NXF4	44	GPR17		
20	GATA3-AS1	45	LOC642366	20	TPH2	45	PAPLN		
21	CDX2	46	ITGA8	21	RUFY4	46	COL20A1		
22	PGLYRP4	47	Clorf105	22	HTR1A	47	HMX2		
23	SLC40A1	48	ANKRD1	23	SERPINB4	48	LOC100507244		
24	CHI3L2	49	LCP1	24	NEUROG3	49	TPSB2		
25	HAND2	50	DLX6	25	CDH19	50	MPO		

Supplementary Table 4. List of hierarchically clustered ~4,000 pre-selected genes that have greater expression in hPSC-amnion than in hPSCs and in fetal extraembryonic tissues¹. Genes are consecutively listed as plotted, from top to bottom, in Fig. 4g.

(See separate Supplementary File)

Supplementary Table 5. Tabulated gene set enrichment analysis (GSEA) results. The entire data set (hPSC-amnion versus hPSCs), as ranked and shown in Supplementary Table 1, was queried using the gene set, BIOCARTA_ALK_PATHWAY, a collection of 35 genes related to BMP signaling.

Data set Gene set		Supplementa BIOCARTA	ry Table 1 _ALK_PATHWAY							
Enr	ichment scor	e (ES)	0.7473358							
Nor	malized enrie e (NES)		2.1402795							
Nor valı	ninal p- 1e		0							
FDI	R q-value		0							
	ER p-value		0							
	PROBE	GENE SYMBOL	RANK IN GENE LIST	RANK METRIC SCORE	RUNNING ES	CORE ENRICHMENT				
1	BMP4	BMP4	123	6.028	0.1195	Yes				
2	NOG	NOG	224	4.789	0.2144	Yes				
3	TGFB2	TGFB2	328	3.962	0.2919	Yes				
4	SMAD6	SMAD6	348	3.879	0.3714	Yes				
5	BMP5	BMP5	434	3.509	0.4404	Yes				
6	FZD1	FZD1	618	2.794	0.4904	Yes				
7	NKX2-5	NKX2-5	754	2.632	0.5391	Yes				
8	NPPB	NPPB	1070	1.929	0.5654	Yes				
9	BMP10	BMP10	1088	1.924	0.6045	Yes				
10	BMP2	BMP2	1517	1.479	0.6166	Yes				
11	NPPA	NPPA	1598	1.408	0.6424	Yes				
12	TGFB1	TGFB1	1638	1.381	0.6693	Yes				
13	GATA4	GATA4	1660	1.356	0.6964	Yes				
14	CHRD	CHRD	1747	1.294	0.7195	Yes				
15	BMPR2	BMPR2	2175	1.04	0.7226	Yes				
16	BMP7	BMP7	2468	0.935	0.7294	Yes				
17	GSK3B	GSK3B	2661	0.885	0.7394	Yes				
18	CTNNB1	CTNNB1	2873	0.824	0.7473	Yes				
19	SMAD1	SMAD1	4004	0.62	0.7114	No				
20	BMPR1A	BMPR1A	4196	0.593	0.7154	No				
21	SMAD5	SMAD5	5296	0.452	0.6773	No				
22	MEF2C	MEF2C	5496	0.428	0.6776	No				
23	MAP3K7	MAP3K7	6985	0.268	0.6188	No				
24	HNF1A		7505	0.217	0.6009	No				
25	ATF2	ATF2	9280	0.063	0.5256	No				
26	SMAD4	SMAD4	9814	0.005	0.5027	No				
27	RFC1	RFC1	12640	-0.02	0.3811	No				
28	ACVR1	ACVR1	13433	-0.105	0.349	No				
29	TGFBR2	TGFBR2	13945	-0.164	0.3304	No				
30	AXIN1	AXIN1	14035	-0.175	0.3301	No				
31	DVL1	DVL1	14975	-0.301	0.2958	No				

32	TGFB3	TGFB3	15146	-0.327	0.2953	No	
33	APC	APC	15186	-0.333	0.3005	No	
34	TGFBR1	TGFBR1	15434	-0.371	0.2975	No	
35	MYL2	MYL2	20846	-1.802	0.1011	No	
35	MYL2	MYL2	20846	-1.802	0.1011	No	

Supplementary Table 6. List of primary antibodies used in immunocytochemistry (ICC) and

Western blotting (WB).

Protein	Species	Application	Catalog No.	Vendor
EZRIN	Mouse	1:2000 (ICC)	E8897	Sigma-Aldrich
E-CADHERIN	Mouse	1:500 (ICC) 1:1000 (WB)	610181	BD Biosciences
NANOG	Rabbit	1:500 (ICC) 1:2000 (WB)	4903S	Cell Signaling Technology
OCT4	Mouse	1:200 (ICC) 1:500 (WB)	SC-5279	Santa-Cruz Biotechnology
SOX2	Rabbit	1:1000 (ICC) 1:1000 (WB)	09-0024	Stemgent
GAPDH	Rabbit	1:1000 (WB)	SC-25778	Santa-Cruz Biotechnology
BRACHYURY	Rabbit	1:100 (ICC)	SC-20109	Santa-Cruz Biotechnology
SNAIL	Rabbit	1:100 (ICC)	SC-28199	Santa-Cruz Biotechnology
SLUG	Rabbit	1:400 (ICC)	9585	Cell Signaling Technology
N-CADHERIN	Rat	1:500 (ICC)	MNCD2-c	Developmental Studies Hybridoma Bank
FOXA2	Rabbit	1:500 (ICC)	WRAB-1200	Seven Hills Bioreagents
pSMAD1/5	Rabbit	1:100 (ICC) 1:1000 (WB)	9516S	Cell Signaling Technology
SMAD1/5/8	Rabbit	1:1000 (WB)	SC-6031-R	Santa-Cruz Biotechnology
CDX2	Mouse	1:500 (ICC)	MU392A-5UC	Biogenex
GATA3	Mouse	1:100 (ICC)	SC-268	Santa-Cruz Biotechnology
SSEA-4	Mouse	1:500 (ICC)	MAB4304	EMD Millipore
BMP4	Mouse	1:1000 (WB)	4680	Cell Signaling Technology

Supplementary Table 7. List of qRT-PCR primers.

Gene	Primer Sequences (5' -> 3')	Reference
NANOG	Forward: GATTTGTGGGGCCTGAAGAAA	NA
	Reverse: ATGGAGGAGGGAAGAGGAGA	NA
OCT4	Forward: GTGGAGGAAGCTGACAACAA	NA
	Reverse: GGTTCTCGATACTGGTTCGC	NA
SOX2	Forward: GCTTAGCCTCGTCGATGAAC	NA
	Reverse: AACCCCAAGATGCACAACTC	NA
GAPDH	Forward: CTCTGCTCCTCCTGTTCGAC	NA
	Reverse: TTAAAAGCAGCCCTGGTGAC	NA
CDH1	Forward: TCTTCAATCCCACCACGTACA	NA
	Reverse: TGCCATCGTTGTTCACTGGA	NA
CDH2	Forward: ATCAACCCCATACACCAGCC	NA
	Reverse: GTCGATTGGTTTGACCACGG	NA
CLDN6	Forward: TGTTCGGCTTGCTGGTCTAC	PrimerBank ³
	Reverse: CGGGGATTAGCGTCAGGAC	PrimerBank
BRACHYURY	Forward: TGCTGCAATCCCATGACA	PrimerBank
	Reverse: CGTTGCTCACAGACCACA	PrimerBank
SNAI1	Forward: TCGGAAGCCTAACTACAGCGA	PrimerBank
	Reverse: AGATGAGCATTGGCAGCGAG	PrimerBank
SNAI2	Forward: CGAACTGGACACACATACAGTG	PrimerBank
	Reverse: CTGAGGATCTCTGGTTGTGGT	PrimerBank
FOXA2	Forward: CGACTGGAGCAGCTACTATGC	NA
	Reverse: TACGTGTTCATGCCGTTCAT	NA
GATA2	Forward: CAGCAAGGCTCGTTCCTGTT	PrimerBank
	Reverse: GGCTTGATGAGTGGTCGGT	PrimerBank
GATA3	Forward: GCCCCTCATTAAGCCCAAG	PrimerBank
	Reverse: TTGTGGTGGTCTGACAGTTCG	PrimerBank
CDX2	Forward: GACGTGAGCATGTACCCTAGC	PrimerBank
	Reverse: GCGTAGCCATTCCAGTCCT	PrimerBank
<i>TP63</i>	Forward: CTGGAAAACAATGCCCAGA	Li et al. ⁴
	Reverse: AGAGAGCATCGAAGGTGGAG	Li et al. ⁴
GATA4	Forward: CGACACCCCAATCTCGATATG	PrimerBank
	Reverse: GTTGCACAGATAGTGACCCGT	PrimerBank
GATA6	Forward: CTCAGTTCCTACGCTTCGCAT	PrimerBank
	Reverse: GTCGAGGTCAGTGAACAGCA	PrimerBank
KRT7	Forward: AGGATGTGGATGCTGCCTAC	Li et al. ⁴

	Reverse: CACCACAGATGTGTCGGAGA	Li et al. ⁴
CGA	Forward: CACTCCACTAAGGTCCAAGAAGA	PrimerBank
	Reverse: CCGTGTGGTTCTCCACTTTGA	PrimerBank
HLA-G	Forward: GAGGAGACACGGAACACCAAG	PrimerBank
	Reverse: GTCGCAGCCAATCATCCACT	PrimerBank
ITGB6	Forward: CTCAACACAATAAAGGAGCTGGG	PrimerBank
	Reverse: AAAGGGGATACAGGTTTTTCCAC	PrimerBank
VTCNI	Forward: TCTGGGCATCCCAAGTTGAC	PrimerBank
	Reverse: TCCGCCTTTTGATCTCCGATT	PrimerBank
GABRP	Forward: TTTCTCAGGCCCAATTTTGGT	PrimerBank
	Reverse: GCTGTCGGAGGTATATGGTGG	PrimerBank
MUC16	Forward: GGAGCACACGCTAGTTCAGAA	PrimerBank
	Reverse: GGTCTCTATTGAGGGGAAGGT	PrimerBank
HAND1	Forward: CCAAGGATGCACAGTCTGG	PrimerBank
	Reverse: AGGAGGAAAACCTTCGTGCTG	PrimerBank
POSTN	Forward: GAAAGGGAGTAAGCAAGGGAG	Dobreva <i>et al.</i> ⁵
	Reverse: ATAATGTCCAGTCTCCAGGTTG	Dobreva <i>et al.</i> ⁵
TFAP2A	Forward: GCATATCCGTTCACGCCGAT	Tadeu <i>et al.</i> ⁶
	Reverse: GGGAGATTGACCTACAGTGCC	Tadeu <i>et al.</i> ⁶
TFAP2B	Forward: AGCAAATGTCACGTTACTCACC	PrimerBank
	Reverse: TGTGCTGCCGGTTCAAATACT	PrimerBank
KRT17	Forward: AAGATCCGTGACTGGTACCAGAGG	Sankar <i>et al</i> . ⁷
	Reverse: GATGTCGGCCTCCACACTCAGG	Sankar <i>et al.</i> ⁷
KRT18	Forward: TCGCAAATACTGTGGACAATGC	PrimerBank
	Reverse: GCAGTCGTGTGATATTGGTGT	PrimerBank
BMP2	Forward: ACTACCAGAAACGAGTGGGAA	PrimerBank
	Reverse: GCATCTGTTCTCGGAAAACCT	PrimerBank
BMP4	Forward: TCCACAGCACTGGTCTTGAG	Xu <i>et al</i> . ⁸
	Reverse: GGGATGTTCTCCAGATGTTCTT	Xu <i>et al</i> . ⁸
BMP6	Forward: AGCGACACCACAAAGAGTTCA	PrimerBank
	Reverse: GCTGATGCTCCTGTAAGACTTGA	PrimerBank
BMP7	Forward: TCGGCACCCATGTTCATGC	PrimerBank
	Reverse: GAGGAAATGGCTATCTTGCAGG	PrimerBank

NA: not applicable.

Supplementary Table 8. Summary of normalized gene expression fold change (Gene FC, blue) and corresponding P-values

Gene FC*	Glass-2D	Gel-2D	Glass-3D	Gel-3D	PS-2D	<i>P</i> -Value*	Gel-2D	Glass-3D	Gel-3D	PS-2D
NANOG	1	1.1522	0.9595	0.4603	0.0578	NANOG	0.0598	0.7934	0.0012	2E-05
OCT4	1	0.9478	1.0273	0.7412	0.3924	OCT4	0.6499	0.8433	0.1212	0.0008
SOX2	1	0.6568	0.6266	0.2098	NT	SOX2	0.1442	0.1137	0.0098	NT
CDH1	1	0.7587	0.6224	1.8445	0.464	CDH1	0.0735	0.0154	0.059	0.001
CDH2	1	0.7448	0.801	0.2637	11.195	CDH2	0.0622	0.1887	0.0007	5E-07
CLDN6	1	0.8372	1.05	1.4517	NT	CLDN6	0.4658	0.8044	0.1833	NT
BRA	1	0.5262	0.3759	18.8	1585.6	BRA	0.0544	0.0373	0.0006	2E-06
SNA11	1	0.9643	1.1466	1.4097	7.6408	SNAI1	0.6599	0.1172	0.1472	2E-07
SNAI2	1	1	1.0984	2.5537	1.4433	SNAI2	0.9806	0.0914	0.0238	0.0052
FOXA2	1	0.6132	1.2135	0.0437	8.4235	FOXA2	0.5387	0.8252	0.1609	9E-05
GATA2	1	1.8771	2.0677	160.32	NT	GATA2	0.1114	0.034	0.0005	NT
GATA3	1	8.1577	6.3796	3040.2	NT	GATA3	0.0931	0.0992	0.0008	NT
CDX2	1	9.0195	19.566	530.69	NT	CDX2	0.088	0.2608	0.0011	NT
<i>TP63</i>	1	71.724	12.463	23429	NT	<i>TP63</i>	0.1116	0.0099	0.0295	NT
GATA4	1	0.1935	0.0778	1.7343	NT	GATA4	0.1331	0.093	0.2494	NT
GATA6	1	5.0452	0.4693	3.3463	NT	GATA6	0.0718	0.4822	0.2649	NT
KRT7	1	0.5512	0.3986	1.9239	NT	KRT7	0.0021	0.0004	0.3007	NT
CGA	1	0.4663	0.7821	3.304	NT	CGA	0.1149	0.6359	0.214	NT
HLA-G	1	0.3727	0.3892	0.4052	NT	HLA-G	0.0018	0.0033	0.0277	NT
ITGB6	1	4.7892	0.9671	591.74	NT	ITGB6	0.248	0.9684	0.0044	NT
GABRP	1	0.869	1.1178	24.297	NT	GABRP	0.2839	0.4897	0.0155	NT
VTCN1	1	0.7895	0.0355	104.82	NT	VTCN1	0.6431	0.0102	0.0043	NT
MUC16	1	0.3802	0.786	2.9286	NT	<i>MUC16</i>	0.0201	0.3676	0.0107	NT
HAND1	1	135.68	116.46	30774	NT	HAND1	0.0786	0.1017	0.0014	NT
KRT17	1	0.5576	0.4645	2.9104	NT	KRT17	0.0377	0.0256	0.001	NT
KRT18	1	0.9496	1.071	3.3393	NT	KRT18	0.7013	0.4844	0.0091	NT

(red) in qRT-PCR results shown in Fig. 4a-e and Fig. 5c.

POSTN	1	1.0868	0.8867	3.2717	NT	POSTN	0.8399	0.7694	0.012	NT
TFAP2A	1	72.791	21.807	14184	NT	TFAP2A	0.0665	0.1232	0.0023	NT
TFAP2B	ND	1	0.1237	111.7	NT	TFAP2B	NA	0.1047**	0.0097**	NT
BMP2	1	0.7732	0.4749	2.9862	NT	BMP2	0.2583	0.0147	0.0041	NT
BMP4	1	1.3545	0.8368	66.177	NT	BMP4	0.4753	0.6676	6E-06	NT
BMP6	1	0.7351	0.5598	0.1727	NT	BMP6	0.2505	0.0473	0.0029	NT
BMP7	1	1.0348	0.9192	1.7012	NT	BMP7	0.8611	0.5411	0.0132	NT

ND: not detected;

NA: not applicable;

NT: not tested;

*: Normalized gene expression fold change and P-values were all calculated in comparison to the Glass-2D condition, unless noted

otherwise. P-values were calculated using un-paired, two-sided Student's t-test;

**: *P*-values were calculated in comparison to the Gel-2D condition.

Supplementary Table 9. Summary of normalized gene expression fold change (Gene FC, blue) and corresponding P-values

Gene FC*	Glass-2D	Gel-3D	LDN-d2	LDN-d2&3	<i>P</i> -value*	Gel-3D	LDN-d2	LDN-d2&3
GATA2	1	172.7417	14.0872	4.3722	GATA2	0.0098	0.0538	0.2703
GATA3	1	1531.6606	90.6801	43.6863	GATA3	7.44E-06	7.02E-04	1.20E-03
CDX2	1	49.4718	7.3310	1.1481	CDX2	0.0281	0.2280	0.8820
<i>TP63</i>	ND	12446.1197	1497.5686	1046.1600	TP63	0.0067**	0.5894**	NA
BMP4	1	29.9719	5.8027	3.2391	BMP4	0.0238	0.0945	0.2471
ITGB6	1	723.4922	91.4117	55.6471	ITGB6	0.0016	0.0133	0.0772
VTCN1	1	105.4589	3.1638	1.7348	VTCN1	0.0004	0.0610	0.9567
GABRP	1	20.6821	1.2107	0.9584	GABRP	0.0302	0.3096	0.9878
MUC16	1	1.6520	0.7210	0.5805	MUC16	0.0434	0.1593	0.0495
HAND1	1	21838.7241	1567.4955	838.0578	HAND1	4.55E-06	9.40E-05	1.30E-04
POSTN	1	3.1656	0.9302	1.0339	POSTN	0.0178	0.8984	0.9944

(red) in qRT-PCR results of the BMP inhibition assay (Supplementary Fig. 11c).

ND: not detected;

NA: not applicable;

*: Normalized gene expression fold change and P-values were all calculated in comparison to the Glass-2D condition, unless noted

otherwise. P-values were calculated using un-paired, two-sided Student's t-test;

**: *P*-values were calculated in comparison to the LDN-d2&3 condition.

Supplementary References

1. Roost, M. S., *et al.* KeyGenes, a tool to probe tissue differentiation using a human fetal transcriptional atlas. *Stem Cell Rep.* **4**, 1112-1124 (2015).

2. Mallon, B. S., *et al.* StemCellDB: The human pluripotent stem cell database at the National Institutes of Health. *Stem Cell Res.* **10**, 57-66 (2013).

3. Wang, X. W., Spandidos, A., Wang, H. J. and Seed, B. PrimerBank: A PCR primer database for quantitative gene expression analysis, 2012 update. *Nucleic. Acids. Res.* **40**, D1144-D1149 (2012).

4. Li, Y. C., *et al.* BMP4-directed trophoblast differentiation of human embryonic stem cells is mediated through Delta Np63(+) cytotrophoblast stem cell state. *Development* **140**, 3965-3976 (2013).

Dobreva, M. P., *et al.* Periostin as a biomarker of the amniotic membrane. *Stem Cells Int.* 2012, 987185 (2012).

6. Tadeu, A. M. B., *et al.* Transcriptional profiling of ectoderm specification to keratinocyte fate in human embryonic stem cells. *PLoS One* **10**, e0122493 (2015).

7. Sankar, S., *et al.* A novel role for keratin 17 in coordinating oncogenic transformation and cellular adhesion in ewing sarcoma. *Mol. Cell Biol.* **33**, 4448-4460 (2013).

8. Xu, J., *et al.* Transcriptional regulation of bone morphogenetic protein 4 by tumor necrosis factor and its relationship with age-related macular degeneration. *FASEB J.* **25**, 2221-2233 (2011).