Structural mechanisms for α -conotoxin activity at the human α 3 β 4 nicotinic acetylcholine receptor

Nikita Abraham, Michael Healy, Lotten Ragnarsson, Andreas Brust,

Paul Alewood, Richard Lewis*

Supplementary figure S1: CD spectra for synthetic LsIA analogues. LsIA analogues with modifications to position 6, 10 and 12 were chemically synthesised. R10M, R10D and R10F were synthesised as analogues of position 10. N12Q, N12D and N12L as analogues for position 12. CD spectra for LsIA analogues confirmed that all the analogues preserved the α -helical fold, similar to the native peptide with the exception of R10D-LsIA where the peak at 222 nm was shallower and the peak at 204 nm shifted to 200 nm as compared to LsIA. Suggesting that R10D-LsIA conformation might differ from the conformation of native LsIA, possibly due to global structural changes in the peptide induced by this modification.

Ls-AChBP hα3 rα3	AEHRLF ER LFEDYNEIIRPVANVS D PVII H FEVSMSQLVKVDEVNQIMET AEHRLF ER LFEDYNEIIRPVANVS D PVII H FEVSMSQLVKVDEVNQIMET	50 50 50
Ls-AChBP	VFWQQTTWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYNAIS-KPEVLTPQLARVVS	107
hα3	NLWL <i>K</i> QIWNDYKLKW <mark>N</mark> PSDY <mark>GGA</mark> EFMRVPAQKIWKPDIVLYNNAVGDFQVDDKTKALLKY	110
rα3	NLWLKQIWNDYKLKWKPSDYQGVEFMRVPAEKIWKPDIVLYNNADGDFQVDDKTKALLKY	110
Ls-AChBP	DGEVLYMPSIRQRFSCDVSGVD-TESGATCRIKIG SWT HHSREISVDPTTENSDDSEYFS	166
hα3	TGEVTWIPPAIFKSSCKIDVTYFPFDYQNCTMKFG SWS YDKAKIDLVLIGSSMNLKDYW-	169
rα3	TGEVTWIPPAIFKSSCKIDVTYFPFDYQNCTMKFG SWS YDKAKIDLVLIGSSMNLKDYW-	169
Ls-AChBP hα3 rα3	QYSRFEILDVTQKKNSVT YSCC PEAYEDVEVSLNFRKKGRSEIL-210 ESGEWAIIKAPGYKHDIKYNCCEEIYPDITYSLYIRRLPLFYTIN 214 ESGEWAIIKAPGYKH <mark>E</mark> IKYNCCEEIYQDITYSLYIRRLPLFYTI-213	

Supplementary figure S2: Sequence alignment for the human and rat α 3 subunit ligand binding domain. The human (Uniprot: P32297) and rat (Uniprot: P04757) α 3 are aligned with the Ls-AChBP. The α 3 subunit from the two species share 95% sequence identity with an E value of 1x10⁻¹⁵⁰. The residues varying between the two species are highlighted in red. The residues participating in receptor-ligand interactions are bold with grey back ground.

Ls-AChBP	LDRADILYNIRQTSRPDVIPTQRDRPVAVSV <i>SLK</i> FINILEVNEITNEVDVVF <i>WQQ</i> T	56
hβ2	TDTEERLVEHLLDPSRYNKLIRPATNGSELVTVQL <i>M</i> V <i>S</i> LAQLISVHEREQIMTTNV <i>WLT</i> Q	60
rβ2	TEERLVEHLLDPSRYNKLIRPATNGSELVTVQL <i>M</i> V <i>S</i> LAQLISVHEREQIMTTNV <i>W</i> L <i>T</i> Q	58
Ls-AChBP	TWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYNAIS-KPEVLTPQLARVVSDGEVLY	113
hβ2	EWEDYRLTWKPEEFDNMKKVRLPSKHIWLPDVVLYNNADGMYEVSFYSNAVVSYDGSIFW	120
rβ2	EWEDYRLTWKPEEFDNMKKVRLPSKHIWLPDVVLYNNADGMYEVSFYSNAVVSYDGSIFW	118
Ls-AChBP	MPSIRQRFSCDVSGVD-TESGATCRIKIGSWTHHSREISVDPTTENSDDSEYFSQYSRFE	172
hβ2	LPPAIYKSACKIEVKHFPFDQQNCTMKFRSWTYDRTEIDLVLKSEVASLDDFTP-SGEWD	179
rβ2	LPPAIYKSACKIEVKHFPFDQQNCTMKFRSWTYDRTEIDLVLKSEVASLDDFTP-SGEWD	177
Ls-AChBP hβ2 rβ2	ILDVTQKKNSVTYSCCPE-AYEDVEVSLNFRKKGRSEIL 210 IVALPGRRNENPDDSTYVDITYDFIIRRKPLFYTI- 214 IIALPGRRNENPDDSTYVDITYDFIIRRKP 207	

Supplementary figure S3: Sequence alignment for the human and rat β 2 subunit ligand binding domain. The human (Uniprot: P11787) and rat (Uniprot: P12390) β 2 are aligned with the Ls-AChBP. The β 2 subunit from the two species share 99% sequence identity with an E value of 2x10⁻¹⁵⁸. The residues participating in receptor-ligand interactions are highlighted with grey back ground.

Ls-AChBP	LDRADILYNIRQTSRPDVIPTQRDRPVAVSV <i>S</i> LKFINILEVNEITNEVDVVF <i>W</i> Q <i>Q</i> TT	57
hβ4	-AEEKLMDDLLNKTRYNNLIRPATSSSQLISIKL <i>Q</i> LSL A QLISVNEREQIMTT NV <i>W</i> L <i>K</i> QE	59
rβ4	-AEEKLMDDLLNKTRYNNLIRPATSSSQLISI RL<i>E</i> LSL S QLISVNEREQIMTT SI <i>W</i> L <i>K</i> QE	59
Ls-AChBP	WSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYNAIS-KPEVLTPQLARVVSDGEVLYM	114
hβ4	WTDYRL T WNSS R YEGVN <i>I</i> LRIPAKR I WLPDIVLYNNADGTYEVSVYTN L IVRSNGS VL WL	119
rβ4	WTDYRL A WNSS C YEGVN <i>I</i> LRIPAKR V WLPDIVLYNNADGTYEVSVYTN V IVRSNGS IQ WL	119
Ls-AChBP	PSIRQRFSCDVSGVD-TESGATCRIKIGSWTHHSREISVDPTTENSDDS <i>EY</i> FSQYSRFEI	173
hβ4	PPAIYKSACKIEVK <mark>Y</mark> FPFDQQNCTLKFRSWTYDHTEIDMVL MT PTA S MD <i>DF</i> TP-SGEWDI	178
rβ4	PPAIYKSACKIEVK H FPFDQQNCTLKFRSWTYDHTEIDMVL KS PTA I MD <i>DF</i> TP-SGEWDI	178
Ls-AChBP hβ4 rβ4	LDVTQKKNSVTYSCCPE-AYEDVEVSLNFRKKGRSEIL210VALPGRRTVNPQDPSYVDVTYDFIIKRKPLFYTI212VALPGRRTVNPQDPSYVDVTYDFIIKRKPLFYTI212	

Supplementary figure S4: Sequence alignment for the human and rat β 4 subunit ligand binding domain. The human (Uniprot: P30926) and rat (Uniprot: P12392) β 4 are aligned with the Ls-AChBP. The β 4 subunit from the two species share 93% sequence identity with an E value of $4x10^{-154}$. The residues varying between the two species are highlighted in red. The residues participating in receptor-ligand interactions are highlighted in grey back ground.

Ls-AChBP	LDRADILYNIRQTSRPDVIPTQRDRPVAVSV <i>S</i> L <i>K</i> FINILEVNEITNEVDVVF <i>W</i> QQ 55
hα7	GEFQR <mark>K</mark> LYKELVKNYNPLERPVANDSQPLTVYF <i>S</i> L <i>S</i> LLQIMDVDEKNQVLTTNI <i>W</i> LQ 57
rα7	GEFQR R LYKELVKNYNPLERPVANDSQPLTVYF <i>S</i> LSLLQIMDVDEKNQVLTTNI <i>W</i> LQ 57
Ls-AChBP	TTWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYNAIS-KPEVLTPQLARVVSDGEVL 112
hα7	MSWTDHYLQWNVSEYPGVKTVRFPDGQIWKPDILLYNSADERFDATFHTNVLVNSSGHCQ 117
rα7	MSWTDHYLQWNMSEYPGVKNVRFPDGQIWKPDILLYNSADERFDATFHTNVLVNASGHCQ 117
Ls-AChBP	YMPSIRQRFSCDVSGV-DTESGATCRIKIG SWT HHSREISVDPTTENSDDSEYFSQYSRF 171
hα7	YLPPGIFKSSCYIDVRWFPFDVQ <mark>H</mark> CKLKFG SWS YGGWSLDLQMQEADIS <mark>G</mark> YIP-NGEW 174
rα7	YLPPGIFKSSCYIDVRWFPFDVQQCKLKFG <mark>SWS</mark> YGGWSLDLQMQEADIS <mark>S</mark> YIP-NGEW 174
Ls-AChBP	EILDVTQKKNSVT YSCC PEAYEDVEVSLNFRKKGRSEIL 210
ha7	DLVGIPGKRSERFYECCKEPYPDVTFTVTMRRT 208
ra7	DLMGIPGKRNEKFYECCKEPYPDVTYTVTMRRT 208

Supplementary figure S5: Sequence alignment for the human and rat α 7 subunit ligand binding domain. The human (Uniprot: P30926) and rat (Uniprot: P12392) α 7 are aligned with the Ls-AChBP. The α 7 subunit from the two species share 95% sequence identity with an E value of $5x10^{-156}$. The residues varying between the two species are highlighted in red. The residues participating in receptor-ligand interactions are highlighted in bold with grey back ground (residues of the principle face) and in *italics* with grey background (residues of the principle face).

Supplementary figure S6: Characterisation of LsIA-N6H analogue. A histidine residue at position 6 is a common feature for α -conotoxins that antagonise the α 3 β 4 nAChR. LsIA N6 was substituted with histidine. The N6H analogue had a functional profile similar to LsIA at α 7 and α 3 β 4 subtypes. This suggests that the histidine residue is not critical for the activity and selectivity of antagonists at the α 3 β 4 nAChR.

Ls-AChBP	LDRADILYNIRQTSRPDVIPTQRDRPVAVSVSLKFINILEVNEITNEVDVVFWQ	54
Ac-AChBP	HSQANLMRLKSDLFNRSPMYPGPTKDDPLTVTLGFTLQDIVKADSSTNEVDLVYYE	56
ha7	FQRKLYKELVKNYNPLERPVANDSQPLTVYF <i>S</i> L <i>S</i> LLQIMDVDEKNQVLTTNI <i>W</i> L	54
ha3	AEHRLFERLFEDYNEIIRPVANVSDPVIIHFEVSMSQLVKVDEVNQIMETNLWL	54
hβ2	TDTEERLVEHLLDPSRYNKLIRPATNGSELVTVQLMVSLAQLISVHEREQIMTTNVWL	58
hβ4	AEEKLMDDLLNKTRYNNLIRPATSSSQLISIKLQLSLAQLISVNEREQIMTTNVWL	56
	* *_ *	
Ls-AChBP	QTTWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYNAIS-KPEVLTPQLARVVSDGEV	111
Ac-AChBP	QQRWKLNSLMWDPNEYGNIT DFR SAADIWTPDITAYSSTR-PVQVLSPQIAVVTHDGSV	115
ha7	QMSWTDHYLQWNVSEYPGVK <i>T</i> V <mark>R</mark> FPDGQIWKPDILL Y NSADERFDATFHTNV <i>L</i> VNSSGHC	114
ha3	KQIWNDYKLKWNPSDYGGAEFMRVPAQKIWKPDIVL Y NNAVGDFQVDDKTKALLKYTGEV	114
hβ2	<i>T</i> QEWEDYRLTWKPEEFDNMK <i>K</i> V <mark>R</mark> LPSKHIWLPDVVLYNNADGMYEVSFYSNA <i>V</i> VSYDGSI	118
hβ4	KQEWTDYRLTWNSSRYEGVN IIR PAKRIWLPDIVLYNNADGTYEVSVYTNLIVRSNGSV	116
	*	
Ls-AChBP	LYMPSIRQRFSCDVSGVD-TESGATCRIKIG SWT HHSREISVDPTFENSDS <i>EY</i> FSQYSR	170
Ac-AChBP	MF1PAQRLSFMCDPTGVD-SEEGATCAVKFG SWV YSGFEIDLKTDFDQVDLS <i>SY</i> YA-SSK	173
ha7	QYLPPGIFKSSCYIDVRWFPFDVQHCKLKFG SWS YGGWSLDLQMQEADISGYIP-NGE	171
ha3	TWIPPAIFKSSCKIDVTYFPFDYQNCTMKFG SWS YDKAKIDLVLIGSSMNLKDYWE-SGE	173
hβ2	FWLPPAIYKSACKIEVKHFPFDQQNCTMKFRSWTYDRTEIDLVLKSEVASLD <i>DF</i> TP-SGE	177
hβ4	<i>L</i> W <i>L</i> PPAIYKSACKIEVKYFPFDQQNCTLKFRSWTYDHTEIDMVIMTPTASMD <i>DF</i> TP-SGE	175
	* * *	
Ls-AChBP	FEILDVTQKKNSVT <mark>YSCC</mark> PE-AYEDVEVSLNFRKKGRSEIL 210	
Ac-AChBP	YEILSATQTRQVQH YSCC PE-PYIDVNLVVKFRERRAGNGFFRNLFD 219	
ha7	WDLVGIPGKRSERF YECC KE-PYPDVTFTVTMRRRT 206	
ha3	WAIIKAPGYKHDIK YNCC EE-IYPDITYSLYIRRLPLFYTIN 214	
1 0 0		
nß2	WDIVALPGRRNENPDDSTYVDITYDFIIRRKPLFYTI 214	

Supplementary figure S7: Multiple sequence alignment of the Ac-, Ls-AChBPs, human α 7, α 3, β 2 and β 4 subunits. The alignment highlights residues involved in receptor-ligand interactions. Principle side contacts are in bold with grey background. Complimentary side contacts are in italics with grey background. Residues involved in hydrogen bond are indicated with (*), Residues not in direct contact, but are a part of the interacting surface are boxed.

Supplementary figure S8: Electron density maps of the LsIA/Ls-AChBP co-crystal structure. Shown are the Fo-Fc (3.0 σ) and 2Fo-Fc (1.0 σ) maps for the co-crystal structure before peptide building. The ligand binding pocket shows clear electron density for LsIA. The five interfaces are shown as (a) Subunits A-E interface (b) Subunits B-D (c) Subunits C-A (d) Subunits D-C (e) Subunits E-B.

Ls-AChBP	LDRADILYNIRQTSRPDVIPTQRDRPVAVSVSLKFINILEV	NEITNEV	48
her7		DERNOVI	10
han		UERNQVL	40 52
hed		NEDEOIM	50
ha2		DEVNOTM	10
nas hait		DEVNQIM	40 EE
110/4	UVEIKAUMEEKTTVVTL2010V02KLAUI2DAATAKEGT2IMÄTIDA	DEKNQMM	55
Ls-AChBP	DVVFWQQTTWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYNAIS-KP	EVLTPQLARV	105
Ac-AChBP	DLVYYEQQRWKLNSLMWDPNEYGNITDFRTSAADIWTPDITAYSSTR-PV	QVLSPQIAVV	109
ha7	TTNIWLQMSWTDHYLQWNVSEYPGVKTVRFPDGQIWKPDILLYNSADERF	DATFHTNVLV	108
hβ2	TTNVWLTQEWEDYRLTWKPEEFDNMKKVRLPSKHIWLPDVVLYNNADGMY	EVSFYSNA <mark>V</mark> V	112
hβ4	TTNVWL <mark>K</mark> QEWTDYRLTWNSSRYEGVN <mark>I</mark> LRIPAKRIWLPDIVLYNNADGTY	EVSVYTNL <mark>I</mark> V	110
ha3	ETNLWLKQIWNDYKLKWNPSDYGGAEFMRVPAQKIWKPDIVL <mark>Y</mark> NNAVGDF	QVDDKTKALL	108
ha4	TTNVWVKQEWHDYKLRWDPADYENVTSIRIPSELIWRPDIVLYNNADGDF	AVTHLTKAHL	115
Ls-AChBP	VSDGEVLYMPSIRQRFSCDVSGVD-TESGATCRIKIGSWTHHSREISVDP	TTENSDDSEY	164
Ac-AChBP	THDGSVMFIPAQRLSFMCDPTGVD-SEEGATCAVKFGSWVYSGFEIDLKT	DTDQVDLSSY	167
ha7	NSSGHCQYLPPGIFKSSCYID <mark>V</mark> RWFPFDVQHCK <mark>L</mark> KFGSWSYGGWSLDLQM	QEADISGY	165
hβ2	SYDGSI F W <mark>L</mark> PPAIYKSACKIEVKHFPFDQQNCTMKFRSWTYDRTEIDLVL	KSEVASLDDF	171
hβ4	RSNGSVLWLPPAIYKSACKIEVKYFPFDQQNCTLKFRSWTYDHTEIDMVL	MTPTASMDDF	169
ha3	KYTGEVTWIPPAIFKSSCKIDVTYFPFDYQNCTMKFGSWSYDKAKIDLVL	IGSSMNLKDY	167
ha4	FHDGRVQWTPPAIYKSSCSIDVTFFPFDQQNCTMKFGSWTYDKAKIDLVN	MHSRVDQLDF	174
Ls-AChBP	FSOYSRFEILDVTOKKNSVTYSCCPEAYEDVEVSLNFRKKGRSEIL-	210	
Ac-AChBP	YA-SSKYEILSATOTROVOHYSCCPE-PYIDVNLVVKFRERRAGNGF	213	
hα7	IP-NGEWDLVGIPGKRSERFYECCKEPYPDVTFTVTMRRRT	206	
hβ2	TP-SGEWDIVALPGRRNENPDDSTYVDITYDFIIRRKPLFYTI-	214	
hβ4	TP-SGEWDIVALPGRRTVNPQDPSYVDVTYDFIIKRKPLFYTI-	212	
ha3	WE-SGEWAIIKAPGYKHDIK <mark>Y</mark> NCCEEI <mark>Y</mark> PDITYSLYIRRLPLFYTIN	214	
ha4	WE-SGEWVIVDAVGTYNT R KYECCAEIY P DITYAFVIRRLPLFYTIN	221	

Supplementary figure S9: Residues modulating α -conotoxin activity at nAChRs. Residues influencing α -conotoxin activity at the $\alpha 7^1$ (green), $\alpha 3\beta 2^{1,2}$ (yellow), $\alpha 4\beta 2^{3,4}$ (bold)and $\alpha 3\beta 4^{this study}$ (blue) are shown. Distinct sets of residues influence α -conotoxin activity at the different subtypes. A comparison of residues equivalent to the $\alpha 3\beta 4$ pharmacophore in other nAChRs (boxed) reveal some sequence variations. Therefore, in addition to being primary determinants of $\alpha 3\beta 4$ activity, the $\beta 4$ triad identified is likely to influence the selectivity of α -conotoxins for different nAChR subtypes.

Supplementary Table S1: Data collection and refinement statistics.

	Ls-AChBP - LsIA
Data collection	
Space group	C 2 2 2 ₁
Cell dimensions, Å	a=115.8Å, b=124.5Å, c=154.2Å
Cell dimensions, °	α=90 [°] , β=90 [°] , γ=90 [°]
Resolution, Å	51.40-2.80 (2.95 - 2.80)
Rsym	0.137 (0.934)
Ι/Ισ	14.6 (2.6)
Completeness (%)	96.9 (90.7)
Multiplicity	11.4 (11.2)
Total no. of reflections	306906 (40559)
Unique reflections	26929 (3618)
Refinement	
Resolution, Å	48.44-2.8
Rwork/Rfree	0.2176 / 0.2451
rmsd bond distance, Å	0.008
rmsd bond angle, Å	1.06
Average B-factor	70.0

Supplementary table S2: Receptor-ligand interactions seen in LsIA/Ls-AChBP co-crystal structure.

LsIA	Ls AChBP	
	Principal subunit (+)	Complimentary subunit (-)
Ser1	Ser186#* Cys187*	
Gly2	Tyr185#	
Cys3	Cys187 Cys188	-
Cys4		Tyr164*#
Ser5		Glu163#*
Asn6	Tyr185#	
Pro7	Tyr89* Trp143	Trp53* Met114*
Ala8	Tyr192# Ser142 Trp143	
Cys9	Cys187 Cys188 Tyr192#	
Arg10		Tyr164 * Ser32* GIn55 * Lys34*
Val11		Leu112
Asn12	Thr144* (backbone)	Gln73* Arg104*
Asn13	Glu190 Tyr192*	
Pro14		Leu112*
Asn15		
lle16	Cys187	
Cys17		

(#) interactions seen in \leq 3 pockets.

(**Bold**) Hydrogen bonds (*) Interactions unique to LsIA/Ls-AChBP complex.

Supplementary references

- 1 Hopping, G. *et al.* Hydrophobic residues at position 10 of α -conotoxin PnIA influence subtype selectivity between α 7 and α 3 β 2 neuronal nicotinic acetylcholine receptors. *Biochemical pharmacology* **91**, 534-542 (2014).
- 2 Lin, B. *et al.* From crystal structure of α -conotoxin GIC in complex with Ac-AChBP to molecular determinants of its high selectivity for $\alpha 3\beta 2$ nAChR. *Scientific reports* **6** (2016).
- 3 Beissner, M. *et al.* Efficient binding of 4/7 α-conotoxins to nicotinic α4β2 receptors is prevented by Arg185 and Pro195 in the α4 subunit. *Molecular pharmacology* 82, 711-718 (2012).
- 4 Dutertre, S., Nicke, A. & Lewis, R. J. β2 subunit contribution to 4/7 α-conotoxin binding to the nicotinic acetylcholine receptor. *Journal of Biological Chemistry* **280**, 30460-30468 (2005)