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Supplementary �gures

Supplementary Figure S1: qPCR data. a - Circadian expression of 5 core clock genes in liver and adrenal
gland and regression using Equation S1. b - Phase di�erence in gene expression of 8 clock genes in the liver
and adrenal gland. c - Comparison of phases of genes that are circadian in the liver, adrenal gland, and heart.
Core-clock genes Bmal1, Clock, Dbp, Rev-erbA, Per2 are marked in red. The mean phase di�erence of core
clock genes is 0.8 ± 0.43 hours whereas the mean phase di�erence between other common circadian genes is
3.13 ± 2.01 hours. This con�rms the expectation that the core clock is less variable.
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Supplementary Figure S2: Characterization of the �nal �ts. a - Self-assessed tolerance ranges (tolphase,
tolampl, and tolpwhm from Equation S10) for the descriptive parameters are shown as the colored ranges; the
mean of the tolerance ranges are the measured descriptive parameter values (expphase, expampl, and exppwhm).
Crosses show the �nal values of the �tted model (simphase, simampl, and simpwhm) for adrenal gland and
liver in DD and LD. b - Heat map of scores for di�erent combinations of parameter sets and target expperiod,
expphase, expampl, and exppwhm values. c - E�ects (average fold change) of 10 % parameter variations on score
for di�erent conditions - control analysis. Explicit delays and degradation rates have the strongest e�ect.
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Supplementary Figure S3: a - Simulated phase distribution for output genes with D-boxes, related
to Fig. 3a. Peak expression of D-box targets can be observed at around CT 14. b-d - Comparison of
experimental and simulated peak phase distributions. b - E-box targets have a peak around CT 10
(as predicted by simulations) but many other phases as well. This points to additional regulators as discussed
extensively in the main text. c - A simple superposition of E-box simulations (red) and RRE simulations
(blue) can be compared with peak phase distribution from genes that are BMAL1 and REV-ERBA targets
(grey). Obviously, the experimental data for E-box and RRE-targets are quite di�erent. d - If we simulate the
combinatorial and multiplicative e�ects of E-box and RREs (red) and compare them to peak phase distribution
from genes that are BMAL1 and REV-ERBA targets (gray), we obtain a better agreement with experimental
data. In particular, the RRE-elements shift the distribution to earlier phases (compared to pure E-boxes) and
broaden the distribution. Still, there are clear deviations pointing to co-regulators and post-transcriptional
e�ects.

4



Supplementary Figure S4: Graphical control analysis of the consensus model. a - E�ects of parameters
on period length. b - E�ects of parameters on amplitudes. c - E�ects of parameters on phases. No oscillations
are observed in the areas without plotted values.
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Supplementary Figure S5: The role of the degradation rate an multiple regulators in determining
the phase and amplitude of gene expression. a - single activator. The solution of Equation S11 for the
production term from Equation S15 is plotted. For smaller degradation rates, the gene expression is delayed
and the relative amplitude is decreased. b - single repressor. The solution of Equation S11 for the production
term from Equation S16. Note the out-of-phase oscillations of repressor and target gene. c - Two activators
lead to an intermediate phase. The solution of Equation S11 for the production term from Equation S17.
For two activators with the same amplitude, the phase of the production term is between the peaks of the
activators. The degradation step delays the actual mRNA expression compared to the production term itself.
d - Two out-of-phase activators. The solution of Equation S11 for the production term from Equation S17.
For two out-of-phase activators with the same amplitude, a perfect harmonic oscillation with a 12 h period
length can be observed. In all cases, Aact = Arep = 1; gact = 10; Kact = Krep = 1.
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Supplementary Figure S6: The role of core-clock- and CCG-speci�c parameters in determining phases
and amplitudes of Cyp genes. Above: If core-clock and CCG parameters (including aCCG and dCCG) are
optimized, both resulting scores are below 0.02 (left-most columns). Fixing CCG parameters and changing
core-clock-parameters (liver DD to adrenal DD) leads to a score of about 32. Varying CCG parameters only
leads to similarly high scores. Below: Most of the overall score change comes from the change in the amplitudes
of Cyp genes.
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Supplementary Figure S7: Peak phase distributions of top 500 circadian genes in liver, adrenal gland,
pituitary gland, and heart. There are clear di�erences between peak phase distributions from all tissues.
Especially striking is the di�erence to peak phase distribution in heart even though the peak phases of core
clock genes are similar to other tissues (Fig. 6). Datasets from [1, 2, 3] were used to re-�t the data using our
biharmonic �t for liver, adrenal gland and heart. For pituitary gland we display the phases according to the
analysis in [1].
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Supplementary tables

Supplementary Table S1: Peak characterisation of �ve model genes in the liver and adrenal gland
for DD and LD.

liver DD liver LD

Phase

(CT)

Max

(a.u.)

Min

(a.u.)

PWHM

(h)

Phase

(CT)

Max

(a.u.)

Min

(a.u.)

PWHM

(h)

Bmal1 1.4 2.2 -0.1 10.8 0.7 2.1 -0.1 11.4

Rev-erbα 7.7 2.9 -0.1 7.9 5.9 2.8 -0.2 8.3

Per2 17.7 2.0 0.2 9.6 15.1 2.5 0.2 7.5

Cry1 22.1 2.2 0.2 9.0 20.0 1.9 0.1 11.7

Dbp 11.0 3.0 -0.1 7.9 9.9 3.2 -0.2 7.4

adrenal gland DD adrenal gland LD

Phase

(CT)

Max

(a.u.)

Min

(a.u.)

PWHM

(h)

Phase

(CT)

Max

(a.u.)

Min

(a.u.)

PWHM

(h)

Bmal1 23.1 2.1 0.3 8.8 21.6 2.2 0.2 9

Rev-erbα 8.8 2.0 0.3 9.3 4.6 1.9 0.3 9.3

Per2 16.7 1.7 0.4 10.5 16.2 1.8 0.5 8.5

Cry1 19.3 1.5 0.3 13.8 18.5 2.1 0.3 8.4

Dbp 10.2 2.1 0.2 9.5 8.3 1.7 0.4 12.2

Each gene expression pro�le is characterized by the phase, minimum and maximum (relative amplitude), and
peak width at half of the maximum (PWHM).
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Supplementary Table S2: Literature data for some model parameters for the consensus model.

Symbol Value

(cons)

Unit Literature data

τBmal1 4.76 h Delay of Bmal1. Reported values are between 0 h [4]

and 8 h [5]. [6] and [7] show that BMAL1 binding has a

peak around CT 6, which would suggest a value of

about 4 h.

τRev−erbα 1.79 h Delay of Rev-erbα. A value of approximately 2 h was

reported in [5]. Taking into account ChIP-seq data of

[8], the maximal binding of REV-ERBα occurs at ZT

1-5, which would suggest delays between 0 and 4 h.

τPer2 3.82 h Delay of Per2 . [4] report a value of about 6 h. The

study of [7] found maximal binding of PER2 to

regulatory regions at around CT 17, which suggests

shorter delays of 3-4 h.

τCry1 3.13 h Delay of Cry1 . [4] report a value of about 6 h. Shorter

delays are suggested by the study of [7], where maximal

binding of CRY1 to regulatory regions occurs at around

CT 0, implying delays of 3-4 h.

τDbp 2.08 h Delay of Dbp. Range of 0 - 2 h was reported in [9].

dBmal1 0.40 h−1 Degradation rate of Bmal1 mRNA. The experimentally

determined range is 0.17 - 0.60 h−1 [10, 11, 12].

dRev−erbα 0.67 h−1 Degradation rate of Rev-erbα mRNA. The

experimentally determined range is 0.19 - 0.29 h−1

[10, 11].

dPer2 0.51 h−1 Degradation rate of Per2 mRNA. The experimentally

determined range is 0.24 - 0.80 h−1 [10, 11].

dCry1 0.20 h−1 Degradation rate of Cry1 mRNA. The experimentally

determined range: 0.16 - 0.18 h−1 [10, 11].

dDbp 0.56 h−1 Degradation rate of Dbp mRNA. The experimentally

determined range is 0.18 - 0.36 h−1 [10, 11, 12].

Values are shown for the consensus model (other parameter values are shown in Supplementary Dataset 1).
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Supplementary datasets

Supplementary dataset 1: qPCR data and primers. Experimental data for measured genes in the liver

and adrenal gland and primer sequences used in the study.

Supplementary dataset 2: Control analysis of the consensus model and parameter values. Changes

(in %) of amplitudes, phases, period length and score are shown for a 10 % change of a parameter value.

Supplementary dataset 3: List of circadian transcription factors in the liver and adrenal gland.

Supplementary dataset 4: Gene Ontology analysis of circadian probe sets from liver and adrenal

gland.
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Supplementary methods

Gene expression analysis and choice of model elements

Harmonic regression of gene expression data

Di�erent sampling intervals require careful estimation of phases via harmonic �ts. Experimental data were

�tted by trigonometric functions with 24 h and 12 h period to represent variable waveforms:

xt = a1 sin

(
2π

24h
t

)
+ a2 cos

(
2π

24h
t

)
+ b1 sin

(
2π

12h
t

)
+ b2 cos

(
2π

12h
t

)
+ c. (S1)

To get each gene's circadian parameters, we normalized the data by dividing it by the mean level of expres-

sion. Gene expression of each gene was described by peak phase, relative amplitude, and width (peak width in

hours for the �t with 12 h harmonics). Raw data of qPCR gene expression are presented in the Supplementary

Table 1; di�erences between tissues are larger than typical statistical errors due to sampling. The same �tting

procedure was used for analyzing microarray gene expression data ([2, 1, 3]).

Choice of model components - 5 core clock genes

As in a previous model [13] we decided to limit the number of model components. To model the clock in di�erent

tissues and conditions we studied four data sets: gene expression in mouse liver and adrenal gland under DD

and LD conditions. Our �nal model describes time-dependent expression of �ve genes: Bmal1, Rev-erbα, Per2,

Cry1, and Dbp. Per1,2 and 3 have similar expression pro�les and thus Per2 serves as a representative of this

gene group. The supporting role of Per1 and Per3 is included implicitly in enlarged kinetic parameters of Per2

action. Per2 and Cry1 thus serve as representatives of early and late negative E-box regulation and Bmal1

for positive regulation [14]. We found that pairs of transcriptional activators and repressors (Ror and Rev-erb,

Dbp and E4bp4) peak at nearly opposite phases. Consequently, we chose only one representative of RRE-

and D-box-regulators. Anti-phasic regulators of RREs and D-boxes (E4BP4 for DBP, ROR for REV-ERB)

are implicitly represented through the di�erent parameters values of the corresponding production terms as

discussed previously (Supplement S3 of [13]). Raw data with �ts for the 5 chosen genes are presented in Fig.

S1.

The expression pro�les of each gene can be characterized by descriptive parameters that were later used to

�t the model to the data (Table S1).

Phase di�erence in gene expression between liver and adrenal gland

The work of Oster et al. [2] shows that the genes from peripheral clocks are delayed relative to the SCN clock,

which is in line with our understanding of clock hierarchy. Additionally, the adrenal gland in�uences other

peripheral oscillators through glucocorticoids, which leads to the expectation that the expression of circadian

genes from other peripheral oscillators would be delayed compared to the adrenal gland. Interestingly, liver

genes were expressed earlier than adrenal genes in the data set of [2].
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We plotted phase di�erence in expression of 8 clock genes circadianly expressed in the liver and adrenal

gland from our data set (Fig. S1). For our own data, the expression of liver genes is delayed when compared to

the same genes in the adrenal gland, and the di�erence is larger in LD conditions.
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Modeling using a set of delay-di�erential equations

Our modeling approach is based on the regulatory regions of core clock genes. We de�ned two types of modu-

lators (based on [15]): activator and repressor modulators. The activating modulator describes the activation

action of the two transcriptional activators in our system: Bmal1 (a part of E-box modulator) and Dbp (D-box

modulator). It is given by the following equation:

act(G, bG, baG) =
1 + bG

G(t−τG)

baG

1 +
G(t−τG)

baG

. (S2)

Normalized concentration of an activator (Bmal1 or Dbp) is described by
G(t−τG)

baG
, where G(t−τG) is the the

value of the variable G, taken at time (t − τG). Parameter τG is the explicit delay of gene G, i.e. the time

delay between the peak of mRNA expression and the peak of functional protein in the nucleus. It includes

processes such as translation, post-translation modi�cation, complex formation, and nuclear translocation. It

can be estimated to a certain extent by the literature data of mRNA and protein expression (Table S2). The

parameter bG (bG > 1) represents the fold activation of a target gene through the action of gene G.

Similarly, the repressor modulator is given by

rep(G, ag) =
1

1 +
G(t−τG)

aG

. (S3)

Here, the gene G stands for the three repressors in our system: Rev-erbα, Per2, and Cry1. As above,
G(t−τG)

aG

is the normalized concentration of the repressor, and τG is the explicit delay.

Equations

The chosen modeling system can be described with 5 delay-di�erential equations based on the promoter regions

of selected genes (Fig. 1c):

d[Bmal1]t

dt
= rep2(Rev�erbα, ar1)− dBmal1 · [Bmal1]t; (S4)

d[Rev�erbα]t

dt
= act3(Bmal1, b2, ba2) · rep3(Per2, cr2) · rep3(Cry1, gr2) (S5)

act(Dbp, f2, fa2)− dRev�erbα · [Rev�erbα]t;

d[Per2]t

dt
= act2(Bmal1, b3, ba3) · rep2(Per2, cr3) · rep2(Cry1, gr3) (S6)

act(Dbp, f3, fa3)− dPer2 · [Per2]t;

d[Cry1]t

dt
= act2(Bmal1, b4, ba4) · rep2(Per2, cr4) · rep2(Cry1, gr4) (S7)

rep2(Rev�erbα, ar4) · act(Dbp, f4, fa4)− dCry1 · [Cry1]t;
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d[Dbp]t

dt
= act3(Bmal1, b5, ba5) · rep3(Per2, cr5) · rep3(Cry1, gr5)− dDbp · [Dbp]t. (S8)

The exponents on the modulators represent the numbers of functional clock controlled elements in each

gene's promoter region (number of E-boxes in the case of Bmal1, Per2 and Cry1; number of RREs in the case

of Rev-erbα, and number of D-boxes in the case of Dbp).

E/E'-box RRE D-box

Bmal1 2 [5, 16]

Rev-erbα 3 [5, 17, 6] 1 [17]

Per2 2 [17, 18, 6] 1 [17, 19]

Cry1 2 [20, 6] 2 [20] 1 [20]

Dbp 3 [21, 22, 6]

Note that the activating transcription factors RORα and RORγ bind to RREs as well. As shown in the

Supplementary Dataset 1, these factors have mRNA expression peak around CT 20. Thus after some delay

ROR transcription factors enhance the expression of RRE target genes around CT 0 as well. This e�ect

of additional regulators is implicitly included in our parameters ar1 and ar4. In the same manner, the D-

box acting repressor E4BP4 has nearly the opposite expression phase as the activator DBP and, hence, both

regulators can be modeled by a single activation term ('D-box modulator').

Compared to the previous model [13], we simpli�ed the kinetic terms and added Cry1 repression. We also

excluded RORγ, since it is implicitly considered as an out-of-phase activator of ROR-elements. We thus reduced

our model to a system with 5 DDEs with 34 parameters. Out of those, 5 are degradation rates that can be

quite well approximated by experimental measurements [10, 11, 12] and the 5 delays between peak expression

of mRNA and protein. The range for these values can also be taken from publications as discussed below.

Modeling output genes

Expression of core clock genes does not di�er much between the liver and adrenal gland (Fig. S1, [23]). However,

larger di�erences in phase distributions and small overlap of circadian genes between tissues have been observed

for clock output genes (Fig. 6). In this light, it could be expected that the core clock is only a�ected weakly

by systemic signals while the e�ect of systemic signals is larger for clock-output genes (through secondary TFs,

co-factors, tissue-speci�c nuclear receptors ...). We show that our modeling framework, based on promoter

regions of clock and clock-controlled genes, could explain also the phase and tissue speci�city of some clock

output genes.

Extension of the model to the additional output gene is described with:

d[CCG]t

dt
= actE(Bmal1, b, ba) · repE(Per2, cr) · repE(Cry1, gr) (S9)

repRRE(Rev�erbα, ar) · actD(Dbp, f, fa)− d · [CCG]t.
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Modeling of the output gene follows the same framework as for the core clock model. Bmal1, Per2 and Cry1

describe the potential E-box regulation actE(Bmal1, b, ba) · repE(Per2, cr) · repE(Cry1, gr); the exponent E

stands for the number of E-boxes. RRE regulation is e�ective through Rev-erbα repRRE(Rev�erbα, ar) with

RRE representing the number of ROR-elements. Similarly, D-box regulation is described through the action of

Dbp with a term actD(Dbp, f, fa).
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Fitting

Fitting procedure

To �t the model, we applied evolutionary optimization strategies to estimate unknown parameters. For each

parameter, we chose initial value and a range in which the parameter space will be sampled. In the �rst round,

random values of parameters within the ranges were chosen and the system was evaluated (dde23 solver) by the

score for each parameter set. For the second round, the best scoring parameter set was taken and the process

was repeated with a halved range of possible parameter values for each parameter. In total, 10 such rounds

were performed to get the �nal parameter set.

First, we �tted the consensus model using all 4 data sets. The �nal parameter set was taken as starting

parameter values for �tting the other models. Multiple �ttings were carried out and for each model version

(liver/adrenal gland, DD/LD), multiple minima of the score were examined through control analysis presented

below. Parameter values were rounded to 2-3 digits.

Score and descriptive parameter tolerances

We focused on descriptive parameters for the core clock genes rather than the data points themselves. We

described each gene with its amplitude, peak width, and phase relative to the phase of Bmal1. The model was

�tted based on these descriptive parameters with self-assessed tolerance ranges (explained below). During the

�tting procedure, each step was evaluated by computing the score for a speci�c parameter set (Equation S10):

score =

(
expperiod − simperiod

)2
tol2period

+
∑ (

expphase − simphase
)2

tol2phase
+
∑ (

expampl − simampl
)2

tol2ampl
+
∑ (

exppwhm − simpwhm
)2

tol2pwhm
.

(S10)

The parameters expperiod and simperiod represented measured and simulated period length, respectively.

Terms for phases (expphase, simphase), amplitudes (expampl, simampl), and peak widths are constructed in the

same manner (exppwhm, simpwhm) for all genes.

An important step was assessing the tolerance ranges, since they determine the contributions of all terms in

Equation S10. The tolerance for the period length is strict: tolperiod = 0.1 h. Based on our previous work [13]

we decided that the phases of the core clock genes should have a narrow tolerance range for �tting (tolphase =

10.6min). Thus they contribute more to the score than amplitudes and peak widths.

Amplitudes of the core clock genes vary between 1.3 and 3.5. Some genes (Bmal1 ) have almost constant

amplitudes in all 4 conditions, whereas some genes exhibit quite strong di�erences between conditions (Dbp).

We chose relatively large amplitude tolerances: tolampl = 0.5 a.u. Thus we cover the largest di�erences between

genes but still the amplitudes have somewhat limited impact.

For a perfect sine wave, width of a peak would be 12 h. For the core clock genes, we can observe sharper

peaks (Rev-erbα) or even broader peaks (Cry1 ). Also in the peak width category, the tolerance range is quite

broad: tolpwhm = 1h. By using this framework, we can di�erentiate between really sharp peaks (7-8 h) and

really �at peaks (12-13 h).
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The self-assessed tolerance ranges with target values expphase, expampl, and exppwhm are shown in Fig. S2

together with optimized simulated values simphase, simampl, and simpwhm.

Parameter estimation - literature data

Since the basis of our model is the composition of each gene's regulatory region, the determination of the number

of clock-controlled elements (CCE) is crucial. When possible, we took experimentally validated CCEs as in [13].

Numbers of CCEs and citations are shown in section Equations in Supplementary Methods.

To get experimentally determined ranges for some other parameters, published data were investigated. For

explicit delays τ we took the time di�erence between peak of mRNA and peak of protein expression [5, 4, 9] -

these values were taken into account to get the range of parameter values in the �tting procedure. Similarly, we

determined a range of values for degradation rates from [10, 11, 12]. Deviations of our �tted parameter values

from the measured values are smaller than di�erences between di�erent cell types and di�erent methods.

Transcriptional regulation of clock genes involves many co-factors such as CBP/P300 and numerous epi-

genetic regulations [7]. For parameters describing transcriptional activation and repression almost no direct

measurements are available. Thus kinetic parameters of transcriptional activation and repression can only be

regarded as e�ective values. Consequently, it makes sense to estimate those parameters by �tting our model to

the measured expression pro�les. For the remaining parameters, we started with the parameter values used in

our previously published model [13]. Since we had reasonable starting conditions, parameter values could be

e�ectively optimized with a routine described below.
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Analysis of the �nal model

Comparison of optimized �ts

Fig. S2 shows the ranges and �nal values of the model's descriptive parameters. In addition to the period length,

amplitudes, phases and peak widths, the levels of genes were considered. Out of the best-scoring parameter

sets, we chose the ones that were best representing the measured amounts of mRNA.

We then analyzed the �nal �ts of all model variants (adrenal gland/liver, DD/LD). All �nal scores were

between 3 and 10. We might also ask how a model that was �tted to a given tissue performs for the other

tissues. Calculating a score of a model using other data sets quanti�es the distances between a given model

and other tissues and conditions. We thus used the �ve �nal parameter sets and cross-checked the scores for all

possible combinations of parameter sets and target values expperiod, expphase, expampl, and exppwhm. Fig. S2

shows that we get the lowest scores when the correct combination of parameter set and target values expperiod,

expphase, expampl, and exppwhm is used (diagonal elements). The score increases for all other combinations,

in some cases even above 100 (o�-diagonal). The consensus model is by design somewhere between adrenal

gland and liver target values. Additionally, we can see that the di�erences between tissues are larger that the

di�erences between DD and LD conditions. For example, using a parameter set, optimized for adrenal gland

DD, gives a score above 100 with expperiod, expphase, expampl, and exppwhm from liver DD.

Control analysis

To analyze the behavior of the 5 models for changing parameter values, a simpli�ed control analysis was

performed (Supplementary Dataset 4). We look for changes in system variables in response to changes in

parameter values. Each model parameter was varied by ± 10% and the relative changes in score, period length,

amplitudes, and phases of all genes relative to Bmal1 were calculated.

Control analysis of the consensus model revealed that certain parameters are particularly important. Among

these essential parameters are delays (τBmal1, τRev−erbα, τPer2, τCry1), degradation parameters (dRev−erbα,

dCry1), and parameters quantifying transcription via E-boxes and RREs (gr3, bRev−erbα, bPer2, bCry1). There

are, however, some di�erences between control analyses of 5 model versions. For example, dRev−erbα seems to

play a bigger role in the adrenal gland LD, and dPer2 is the most important degradation rate in adrenal DD.

Among the delays, τBmal1 is much more important in liver DD than in the other models. Some other parameters

(such as bPer2, cr2, cr5, gr3, bRev−erbα) show varying in�uences on the score.

We compare control analysis for all 5 parameter sets (Fig. S2). E�ects of parameters on the score are

the highest for delays and degradation rates, because they in�uence practically all amplitudes, phases, and the

period length. Parameters with smaller in�uence on the score (for example fa2, fa3, fa4) still contribute to

certain properties of speci�c genes. Supplementary Fig. 4 graphically shows the e�ects of changes of parameter

values on period length, phases, and amplitudes of individual model genes. Here parameters were varied over 3

orders of magnitude around the default parameter value (100). The analysis shows that the model is robust with

respect to parameter changes over about one order of magnitude. Large parameter changes lead to bifurcations
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which will be analyzed in a forthcoming study.

Phase determination of CCGs - Cyp genes

It is di�cult to attribute how much core-clock and gene-speci�c parameters contribute to the phase and ampli-

tude of an output gene. We show that variation of just a couple of output parameters sets the balance between

contributions from di�erent promoter elements and their regulators. We can, however, provide some more de-

tailed analysis of Cyp phase determination. In Supplementary Figure S6 we compare the score of the optimized

system to the scores when only core-clock, only CCG, and all parameters are varied. The results indicate that

contributions of core-clock variability and CCG parameters are comparable. For Cyp7a1, the combined e�ect is

greater than the sum of the two individual e�ects. In the lower graph we show the contributions of amplitudes

to the scores. We can see that for Cyp51 most of the contribution comes from the di�erences in the amplitudes

between di�erent conditions.

It was demonstrated in Fig. 2b that the Cry1 modulator leads to large Cyp7a1 amplitudes in liver DD.

Here we discuss the regulation in some detail. According to our measurements shown in Fig. 1a, Cry1 mRNA

peaks at CT 20 (yellow arrow). The delay between Cry1 expression and inhibitory actions is between 3 and 4

h according to the model. Consequently, E-box driven transcription of Cyp7a1 (shown in Fig. 2b) is inhibited

around CT 24. This implies that the Cry1-driven E-box modulator has a peak at around CT 12 leading to

the expression of Cyp7a1. According to the control analysis of our model, D-boxes and RREs have only minor

e�ects on Cyp7a1 transcription. The half-life of Cyp7a1 leads to an additional shift of the mRNA peak time

as discussed previously [13] (section 'Degradation rate and combinatorial action of modulators determine phase

and amplitude of target gene expression' of the Supplementary Experimental Procedures). This example shows

how phases are determined by the combined action of activators such as BMAL1 and E-box repressors (CRY1

and PER2).
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Degradation rate and combinatorial action of modulators determine phase and

amplitude of target gene expression

Rhythmic production term

We can describe the mRNA concentration of a clock output gene as

dx

dt
= p− d · x, (S11)

where x is the concentration of mRNA, p the production term, and d the degradation rate of the mRNA.

If the transcription factor driving the transcription is expressed in a circadian manner, we can assume periodic

production of the mRNA with the production term p

p = a+A cos(ωt). (S12)

Here, a is the basal transcription rate, A the amplitude of the production term, and ω = 2π
24h ≈ 0.26h−1 for

a circadian period length of 24 h. For this case, we can solve the equation analytically and write the asymptotic

solution as

x(t) =
a

d
+

A

d2 + ω2
(d cos(ωt) + ω sin(ωt)) . (S13)

Analysis of the solution shows that the peak of mRNA can be strongly in�uenced by the degradation rate.

For large degradation rates (d� ω), mRNA is nearly in-phase with the production term (cos-term dominates).

For small degradation rates, the sin-term dominates which leads to delays up to 6 h. A more detailed analysis

of the role of the degradation rate on the phase and amplitude is provided in the supplemental material to [13].

Gene expression is driven by activator and repressor interplay

In a more realistic example, gene expression can be driven by activators and repressors with circadian expression.

We can describe the concentration of an activator or a repressor as:

[reg] = 1 +A cos(
2π

24
t), (S14)

where A is the relative amplitude of the regulator's oscillation. According to [15], we can describe the

production term p of Equation S11 for an example with one activator as

p =
1 + gact

[reg]
Kreg

1 + [reg]
Kreg

, (S15)

where gact is the factor with which the activator modi�es the gene expression rate and Kreg is a scaled

dissociation constant for the activator.

For a single repressor, a similar production term can be constructed:
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p =
1

1 + [reg]
Kreg

. (S16)

According to the detailed analysis in [24], interesting behavior arises when two separate circadian transcrip-

tion factors bind to separate binding sites. For two out-of-phase activators, the production term takes the form

of

p =
1 + g1

1+A cos( 2π
24 t)

K1

1 +
1+A cos( 2π

24 t)

K1

×
1 + g2

1+A cos( 2π
24 t−π)

K2

1 +
1+A cos( 2π

24 t−π)
K2

. (S17)

Additionally, an activator and repressor can regulate a target gene transcription independently at the same

time:

p =
1 + gact

1+Aact cos(
2π
24 t)

Kact

1 +
1+Aact cos(

2π
24 t)

Kact

× 1

1 +
1+Arep cos( 2π

24 t)

Krep

(S18)

The solutions of Equation S11 for the production terms described in Equations S15-S17 are shown in Fig.

S5. Solutions for di�erent degradation rates are plotted to show the role of the degradation rate in the phase

determination of gene expression.

23



References

[1] Hughes, M. E. et al. Harmonics of circadian gene transcription in mammals. PLoS Genet 5, e1000442

(2009).

[2] Oster, H., Damerow, S., Hut, R. A. & Eichele, G. Transcriptional pro�ling in the adrenal gland reveals

circadian regulation of hormone biosynthesis genes and nucleosome assembly genes. J Biol Rhythms 21,

350�361 (2006).

[3] Storch, K.-F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417,

78�83 (2002).

[4] Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms

regulate the mammalian circadian clock. Cell 107, 855�867 (2001).

[5] Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the

positive limb of the mammalian circadian oscillator. Cell 110, 251�260 (2002).

[6] Rey, G. et al. Genome-wide and phase-speci�c dna-binding rhythms of bmal1 control circadian output

functions in mouse liver. PLoS Biol 9, e1000595 (2011).

[7] Koike, N. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mam-

mals. Science 338, 349�354 (2012).

[8] Bugge, A. et al. Rev-erba and rev-erbb coordinately protect the circadian clock and normal metabolic

function. Genes Dev 26, 657�667 (2012).

[9] Hamilton, E. E. & Kay, S. A. Snapshot: circadian clock proteins. Cell 135, 368 (2008).

[10] Sharova, L. V. et al. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis

of pluripotent and di�erentiating mouse embryonic stem cells. DNA Res 16, 45�58 (2009).

[11] Friedel, C. C., Doelken, L., Ruzsics, Z., Koszinowski, U. H. & Zimmer, R. Conserved principles of mam-

malian transcriptional regulation revealed by RNA half-life. Nucleic Acids Res 37, e115 (2009).

[12] Suter, D. M. et al. Mammalian genes are transcribed with widely di�erent bursting kinetics. Science 332,

472�474 (2011).

[13] Koren£i£, A. et al. The interplay of cis-regulatory elements rules circadian rhythms in mouse liver. PLoS

One 7, e46835 (2012).

[14] Ko, C. H. & Takahashi, J. S. Molecular components of the mammalian circadian clock. Hum Mol Genet

15 Spec No 2, R271�R277 (2006).

[15] Bintu, L. et al. Transcriptional regulation by the numbers: Models. Curr Opin Genet Dev 15, 116�124

(2005).

24



[16] Yamamoto, T. et al. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC

Mol Biol 5, 18 (2004).

[17] Ueda, H. R. et al. System-level identi�cation of transcriptional circuits underlying mammalian circadian

clocks. Nat Genet 37, 187�192 (2005).

[18] Ogawa, Y. et al. Positive autoregulation delays the expression phase of mammalian clock gene per2. PLoS

One 6, e18663 (2011).

[19] Yamajuku, D. et al. Identi�cation of functional clock-controlled elements involved in di�erential timing of

Per1 and Per2 transcription. Nucleic Acids Res 38, 7964�7973 (2010).

[20] Ukai-Tadenuma, M. et al. Delay in feedback repression by Cryptochrome 1 is required for circadian clock

function. Cell 144, 268�281 (2011).

[21] Ripperger, J. A. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives

circadian Dbp transcription and chromatin transitions. Nat Genet 38, 369�374 (2006).

[22] Stratmann, M., Stadler, F., Tamanini, F., van der Horst, G. T. J. & Ripperger, J. A. Flexible phase

adjustment of circadian albumin D site-binding protein (dbp) gene expression by cryptochrome1. Genes

Dev 24, 1317�1328 (2010).

[23] Oishi, K. et al. Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in

the mouse liver. DNA Res 12, 191�202 (2005).

[24] Westermark, P. O. & Herzel, H. Mechanism for 12 hr rhythm generation by the circadian clock. Cell Rep

3, 1228�1238 (2013).

25


