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1 Urn model with triggering

1.1 Model definition
In the main text we introduced the urn model with triggering. Briefly, an ordered
sequence S was constructed by picking elements (or balls) from a reservoir (or
urn) U initially containing N0 distinct elements. Both the reservoir and the se-
quence increased their size according to the following procedure. At each time
step:

(i) an element is randomly extracted from U with uniform probability and
added to S;

(ii) the extracted element is put back into U together with ρ copies of it;

(iii) if the extracted element has never been used before in S (it is a new element
in this respect), then ν + 1 different brand new distinct elements are added
to U .

Note that the number of elements N of S, i.e. the length |S| of the sequence,
equals the number of times t we repeated the above procedure. If we let D denote
the number of distinct elements that appear in S, then the total number of elements
in the reservoir after t steps is |U|t = N0 + (ν + 1)D + ρt.
In the following, we shall also consider a second and slightly different version of
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the model, in which the reinforcement does not act when an element is chosen for
the first time. Hence, point (ii) of the previous rules will be changed into:

(ii.a) the extracted element is put back in U together with ρ copies of it only if it
is not new in the sequence.

1.2 Computation of the asymptotic Heaps’ and Zipf’s laws
We discuss here the asymptotic behaviour of both the number of distinct elements
D(t) appearing in the sequence and the frequency-rank distribution f(R) of the el-
ements in the sequence S. We will show that both versions of the urn model above
predict a Heaps’ law for D(t) and a frequency-rank distribution f(R) with a fat-
tail behavior. Our calculations yield simple formulas for the Heaps’ law exponent
and the exponent of the asymptotic power-law behavior of the frequency-rank
distribution in terms of the model parameters ρ and ν.

Strictly speaking, Zipf’s law requires an inverse proportionality between the
frequency and rank of the considered quantities [1]. In the following, however,
we shall always refer instead to a generalized version of Zipf’s law, in which
the dependence of the frequency on the rank is power-law-like in the tail of the
distribution, i.e. at large ranks.

Heaps’ law
In the first version of the model, the time dependence of the number D of dif-

ferent elements in the sequence S obeys the following differential equation:

dD

dt
=

UD(t)

U(t)
=

N0 + νD

N0 + (ν + 1)D + ρt
, (1)

where UD(t) is the number of elements in the reservoir that at time t have not yet
appeared in S, and U(t) = |U|t is the total number of elements in the reservoir at
time t. The term νD in the numerator of the rightmost expression comes from the
fact that each time a new element is introduced in the sequence, UD(t) is increased
by ν elements (since ν + 1 brand new elements are added to U , while the chosen
element is no longer new). Due to the inherently discrete character of D and t,
Eq. (1) is valid asymptotically for large values of D and t.

In the second version of the model, Eq. (1) has to be modified by replacing the
denominator with

U(t) = N0 + (ν + 1)D + ρ(t−D) = N0 + (ν + 1− ρ)D + ρt.

2



To analyze both versions of the model simultaneously, it is convenient to de-
fine a parameter a ≡ ν + 1 for the first version and a ≡ ν + 1− ρ for the second
version.

In order to obtain an analytically solvable equation, and since we are interested
in the behaviour at large times t � N0, we approximate equation (1) by

dD

dt
=

νD

aD + ρt
. (2)

By introducing the auxiliary variable z = D
t

and performing some straightforward
algebra we obtain the asymptotic behaviour of D(t) for large t:

1. ρ > ν: D ∼ (ρ− ν)
ν
ρ t

ν
ρ ;

2. ρ < ν: D ∼ ν−ρ
a

t;

3. ρ = ν: D log D ∼ ν
a
t → D ∼ ν

a
t

log t
,

For completeness, we note that both versions of the model can be regarded as
the coarse-grained equivalent of a two-color asymmetric Polya urn model [2]. In
particular, within that finer framework the substitution matrices (denoted M1 for
the first version of the model and M2 for the second) would be:

M1 =

(
ρ 0

1 + ρ ν

)
and M2 =

(
ρ 0
1 ν

)
.

In this interpretation, the elements that have already appeared in S are represented
by balls of one color, while those that have not appeared yet correspond to balls
of the other color.

Zipf’s law
Making the same approximations as above, the continuous dynamical equation

for the number of occurrences ni of an element i in the sequence S can be written
as

dni

dt
=

niρ + 1

N0 + aD + ρt
· (3)

Two cases can be distinguished:

1. ν ≤ ρ, when lim
t→+∞

D/t = 0. By considering only the leading term for

t → +∞, one has
dni

dt
' ni

t
. (4)
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Let ti denote the time at which the element i occurred for the first time in
the sequence. Then the solution for ni(t) starting from the initial condition
ni(ti) = 1 is given by

ni =
t

ti
. (5)

Now consider the cumulative distribution P (ni ≤ n). From Eq. (5), we can
write P (ni ≤ n) = P (ti ≥ t

n
) = 1−P (ti < t

n
). This leads to the estimate:

P (ti <
t

n
) '

D( t
n
)

D(t)
= n−

ν
ρ . (6)

2. ν > ρ, when D ' ν−ρ
a

t. Again considering t � N0, we write:

dni

dt
' ρni

(ρ + aν−ρ
a

)t
=

ρni

νt
, (7)

which yields the solution

ni =

(
t

ti

) ρ
ν

. (8)

Proceeding as in the previous case, we find P (ni ≤ n) = P (ti ≥ t n−
ν
ρ ) =

1− P (ti < t n−
ν
ρ ), and thus

P (ti < t n−
ν
ρ ) ' D(t n−

ν
ρ )

D(t)
= n−

ν
ρ , (9)

obtaining the same functional expression of the asymptotic power-law be-
havior of the frequency-rank distribution as in the previous case.

The probability density function of the occurrences of the elements in the se-
quence is therefore P (n) = ∂P (ni<n)

∂n
∼ n−(1+ ν

ρ), which corresponds to a frequency-
rank distribution f(R) ∼ R−

ρ
ν .

Note that the estimates in equations (6) and (9) have been derived under the
assumption that t/n � 1, i.e. in the tail of the frequency-rank distribution. In
this respect, it is important to recognize that Zipf’s and Heaps’ laws are not triv-
ially and automatically related, as is sometimes claimed. We certainly agree that
Heaps’ law can be derived from Zipf’s law by the following random-sampling
argument: if one assumes a strict power-law behaviour of the frequency-rank dis-
tribution f(R) ∼ R−α and constructs a sequence by randomly sampling from
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this Zipf distribution f(R), one recovers Heaps’ law with the functional form
D(t) ∼ tβ with β = 1/α [3, 4]. But the assumption of random sampling is strong
and sometimes unrealistic. If one relaxes the hypothesis of random sampling from
a power-law distribution, the relationship between Zipf’s and Heaps’ law becomes
far from trivial. In our model, and in work by others [4], the relationship β = 1/α
holds only asymptotically, i.e. only for large times, with α measured on the tail of
the frequency-rank distribution.

In the main text we presented numerical results confirming the above analyti-
cal predictions for the first version of our model. Here we report numerical results
for the second version of the model (employing the definition (ii.a)), summarized
in the top-left panels of Fig. S0 and Fig. S1. The robustness of the results with re-
spect to fluctuations of the model parameters ν and ρ was checked as follows. At
each time step both ρ and ν were sampled from a uniform distribution (top-right),
an exponential distribution (bottom-left) and a fat-tailed distribution with diverg-
ing variance, all with the same mean values ρ̄ = 8 and ν̄ = 5. For the uniform
distribution, ρ and ν were sampled from the intervals [0, 2ρ̄] and [0, 2ν̄], while for
the fat-tailed distribution, the chosen exponents were αρ = 2ρ−1

ρ−1
and αν = 2ν−1

ν−1
,

which ensured the desired average values by choosing 1 as the minimum value.
In the case ρ < ν we recover the results of the well-known Yule-Simon Model

(YSM) [5], originally proposed in the context of linguistics. In YSM, new words
are added to a text (more generally a stream) with constant probability p at each
time step, while with complementary probability (1− p), a word that has already
occurred is chosen uniformly from within the text (or stream) generated so far.
YSM leads to a Zipf’s law with an exponent −(1 − p) compatible with a linear
growth in time of the number of different words. In the framework of our urn
model with triggering we recover the same Zipf’s exponents as well as the linear
growth of D(t) if p = 1− ρ

ν
, with ρ < ν1. The YSM is a paradigmatic example of

a model that generates a fat-tail frequency-rank distribution f(R) ∼ R−α by using
a rich-gets-richer mechanism. But it has the drawback that it does not reproduce
both an f(R) obeying a power-law behavior and a sublinear Heaps’ exponent at
the same time. Moreover, the YSM cannot reproduce values of α larger than 1
(which are found empirically in the frequency-rank distribution of words in cer-
tain texts). These problems were at the basis of the famous Simon-Mandelbrot
dispute [6, 7, 8, 9, 10]. In our model the introduction of the parameter ν (describ-

1We note that if ν � 1 when a = ν + 1 (first version of the model) or ν � ρ and ν � 1 when
a = ν + 1− ρ (second version of the model) our model also reproduces the same prefactor of the
linear growth of D(t) as in the YSM. This is evident by setting a = ν in Eq. (2).
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Figure S0: Growth of the number of distinct elements (Heaps’ law). Top left:
second version of the model without reinforcement on new words. Top right:
original model with ρ and ν sampled from uniform distributions. Bottom left:
original model with ρ and ν extracted from exponential distributions. Bottom
right: original model with ρ and ν extracted from power law distributions. All
distributions bear the same average values ρ̄ = 8 and ν̄ = 5 (see text for details).
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Figure S1: Frequency-rank distribution (Zipf’s law). Top left: second version
of the model without reinforcement on new words. Top right: original model with
ρ and ν sampled from uniform distributions. Bottom left: original model with
ρ and ν extracted from exponential distributions. Bottom right: original model
with ρ and ν extracted from power law distributions. distributions bear the same
average values ρ̄ = 8 and ν̄ = 5. We have checked that the results do not depend
on the initial condition N0. This is set in all the simulations to the value N0 = 100.
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ing the expansion of the adjacent possible) heals these problems by confining the
phenomenology of the YSM to the special case ρ < ν.

1.3 Heaps’ and Zipf’s laws for the urn model with semantic trig-
gering

We turn now to the counterparts of Heaps’ and Zipf’s laws for the urn model with
semantic triggering. For the sake of completeness we recall the model’s defini-
tion. One starts with an urn U with N0 distinct elements, divided in N0/(ν + 1)
groups, the elements in the same group sharing a common label. After choos-
ing the first element at random, the sequence S is constructed according to the
following scheme:

(i) a weight 1 is given to: (a) each element in U with the same label, say A, as
st−1, (b) to the element that triggered the enter in the urn of the elements
with label A, and (c) to the elements triggered by st−1; a weight η ≤ 1 is
given to any other element in U ;

(ii) an element st is chosen from U with a probability proportional to its weight
and appended to the sequence;

(iii) the element st is put back into U along with ρ additional copies of it;

(iv) if the chosen element st is new (i.e., it appears for the first time in the se-
quence S) ν +1 brand new distinct elements, all with a common brand new
label, are added to U . These ν +1 new elements are given a weight η = 1 at
the next time step t+1 and each time the same mother element st is picked.

Note that if η = 1 this model corresponds to the simple urn model with triggering
introduced earlier.

Figures S2 and S3 report numerical results for the Heaps’ and Zipf’s laws
respectively, for some values of the parameters of the model ν, ρ and η. For this
modified model with semantic triggering, the relation between the exponent β of
the Heaps’ law and the exponent α = 1/β of the Zipf’s law continues to hold
asymptotically, i.e. for large times, with α measured on the tail of the frequency-
rank distribution. In particular, the time at which the above relation starts to hold
depends on the exponent β of the Heaps’ law. Larger times are needed for smaller
β. The existence of a pre-asymptotic regime for the Zipf’s law is observed also
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in real datasets both for aggregated (see Fig. 1 of the main text) and for non-
aggregated data (see the corresponding Section below). It is interesting to outline
that this feature is captured only by the model with semantic triggering. This
suggests that taking into account correlations is crucial to explain the apperance
of different regimes in the statistics of real datasets.

We now outline the analysis leading to an estimate for the Heaps’ exponent as
a function of the model parameters ν, ρ and η. Observe that if we know the label
of the last added element to the sequence S, say s, we can write for the number of
distinct elements D(t) appearing in the sequence S:

dD(t)

dt
=

N s(t)

N s(t) + ηN s̄(t)

N s
D(t)

N s(t)
+

ηN s̄(t)

N s(t) + ηN s̄(t)

N s̄
D(t)

N s̄(t)
=

N s
D(t) + ηN s̄

D(t)

N s(t) + ηN s̄(t)
(10)

where N s(t), N s
D(t), N s̄(t) and N s̄

D(t) denote respectively the number of elements
with label s, the number of new (never used in the sequence S) elements with
label s, the number of elements with label different from s, and the number of
new elements with label different from s, that are present in the reservoir U at
time t.

The following relations hold:

νD(t) = N s
D(t) + N s̄

D(t) and U(t) = N s(t) + N s̄(t), (11)

where U(t) is the number of total elements in the reservoir. It is worth remarking
that if η = 1 one recovers Eq. (1).

We now drop the hypothesis of knowing the label of the last added element,
and write a general equation for D(t) of the form:

dD(t)

dt
=

∑
k

P (k)
Nk

D(t) + ηN k̄
D(t)

Nk(t) + ηN k̄(t)
=

∑
k

P (k)
Nk

D(t) + η(νD(t)−Nk
D(t))

Nk(t) + η(U(t)−Nk(t))

(12)
where the sum is over all the labels k present at time t in the reservoir U and P (k)
is the probability that the last added element to the sequence S at time t had the
label k.

In order to close the equation (12), we should estimate Nk(t) and Nk
D(t) for a

generic label k. Let us start by observing that Nk
D(t) ≤ ν + 1, and this term can

be neglected in the large t limit with respect to D(t).
We now leave the more complex problem of estimating Nk(t) and we con-

sider instead the probability P (n) that Nk(t) ≡ n, substituting the sum over k in
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equation (12) with the sum over the labels with the same number of occurrences
n in the reservoir. We can thus write (asymptotically):

dD(t)

dt
=

∑
n

P (n)
ηνD(t)

n(1− η) + ηU(t)
. (13)

We do not explicitly compute P (n), but we consider two opposite limits:

1. We retain in the sum of equation (13) only the terms n ' U(t). This ap-
proximation is sufficiently good when the frequency-rank distribution for
the elements in S is sufficiently steep, corresponding to a high Zipf’s ex-
ponent. Solving the equation (13) within this approximation, we obtain the
result for the Heaps’ exponent β = min(νη

ρ
, 1).

2. When the probability P (n) is large only for n � U(t), we can neglect in
the sum of equation (13) the term n(1 − η) with respect to ηU(t). Solving
the equation (13) within this approximation, we obtain: β ' min(ν

ρ
, 1).

Summarizing, we have obtained lower and upper bounds for β: min(νη
ρ

, 1) ≤
β ≤ min(ν

ρ
, 1), that are satisfied by the simulation results shown in Figs. S2

and S3 .

2 The random walk model for the dynamics of nov-
elties

Our urn model with triggering, both with and without semantics, can be mapped
in the framework of the exploration of an evolving graph G through a random
walker (RW). In particular, the RW dynamics can be constructed as follows (see
also figure S5).

We start with a graph G of N0 nodes, divided in N0/(ν +1) cliques, each node
in the same clique sharing a common label. We then draw a link between each
pair of nodes belonging to different cliques with probability η ≤ 1. Starting with
the RW in a random position, and with a weight wj = 1 for each node j, at each
time step:

(i) move the RW to a neighbour node or keep it on the present node (self-loops
allowed) with a weight-dependent probability;

10



102

103

104

102 103 104 105 106 107 108 109

D

N

ν=8 ρ=8 η=0.3
20 x0.3

102

103

104

102 103 104 105 106 107 108

D

N

ν=8 ρ=8 η=0.5
3 x0.5

102

103

104

105

102 103 104 105 106 107 108

D

N

ν=8 ρ=8 η=0.6
3 x0.6

102

103

104

105

102 103 104 105 106 107

D

N

ν=8 ρ=8 η=0.7
0.5 x0.8

102

103

104

105

106

102 103 104 105 106 107

D

N

ν=8 ρ=8 η=0.8
0.3 x0.9

102

103

104

102 103 104 105 106 107 108 109

D

N

ν=5 ρ=8 η=0.8
x0.5

102

103

104

102 103 104 105 106 107 108

D

N

ν=10 ρ=8 η=0.3
15 x0.375

102

103

104

105

106

102 103 104 105 106 107

D

N

ν=10 ρ=7 η=0.3
0.5 x0.9

Figure S2: Growth of the number of distinct elements (Heaps’ law). Heaps’
law for several values of the parameters of the urn model with semantic triggering.
Straight lines show functions of the form axβ , where a is a constant. In all the
simulations N0 = ν+1. The observed exponents are within the theoretical bounds
min(νη

ρ
, 1) ≤ β ≤ min(ν

ρ
, 1).
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Figure S3: Frequency-rank distribution (Zipf’s law). Zipf’s law for several
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12



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104 105 106 107

S
(k

)/
lo

g(
k)

k

reshuffle L
reshuffle G

model
10−5

10−4

10−3

10−2

10−1

100 101 102 103 104 105 106 107

f(
I)

I

reshuffle L
reshuffle G

model

Figure S4: Entropy (left) and intervals (right) distribution in the random walk
model mapping the urn model with semantic triggering. Left: Entropy of a
sequence associated to a specific label A vs. the number of events, k, with that
label. The entropy is averaged for each k over the labels with the same number of
occurrences. The plot shows an average over 10 realizations of the process with
parameters values: ν = 10, ρ = 7, η = 0.2, and N0 = ν + 1, corresponding to a
Heaps’ exponent of β = 0.29 (see figure S6). In each realization the sequence S
has length N = 107. Right: Results for the time intervals distribution for the same
data as for the entropy. The color code is red for the actual sequence, green for
the global reshuffle of the sequence S, and blue for the local reshuffle (see text).
In the inset a zoom of the first intervals’ lengths is shown.

(ii) reinforce the selected node weight wi → wi + ρ;

(iii) if the node visited is new (i.e., it is visited for the first time) add a clique
with ν + 1 new nodes connected to the just visited node, each node in the
new clique sharing a common label, different from all the preexisting ones.
In addition draw a link between each node in the newly added clique and all
the preexisting nodes of the network with probability η.

If η = 1 this model maps one-to-one to the urn model with triggering introduced in
the main text. When η < 1 the correspondence with the urn model with semantic
triggering is not one-to-one: in the case of the graph the connections between two
nodes are fixed (or quenched), i.e. either they are there or they are not, whether
the possibility of going from one element to each of the others in the urn model is
always probabilistic (one can imagine that this corresponds to an annealed version
of the graph model, where links are continuously re-drawn according to a fixed
probability). Despite this difference, the statistical properties of the two models
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Figure S5: Models Top: scheme of the urn model with semantic triggering. On
the left panel we describe a generic reinforcement step of the dynamics, where
one element already drawn earlier on time is drawn from the urn U (the gray ball).
In this case one adds this element to S (depicted at the center of the figure) and,
at the same time, put ρ additional gray balls to U , all with the same label A of the
parent gray ball. On the right panel we illustrate a generic adjacent possible step
of the dynamics. Here, upon drawing a new ball (red) from U , ν + 1 brand new
balls are added to U , all sharing a brand new label C, along as the ρ red balls of
the reinforcement step that takes place at each time step. Bottom: scheme of the
random walk (RW) based model for the dynamics of novelties. Whenever a RW
visits an already visited node (gray node on the left panel) one adds a gray element
to S and reinforce the node’s weight according to the formula wi → wi + ρ.
Whenever the RW visits for the first time a node i (red node in the right panel), a
new clique (representing the newly created adjacent possible) with ν + 1 nodes is
added to the graph, all the nodes sharing a brand new label C. Each node of the
clique is connected to the red node, and with a probability η to the other already
existing nodes. At the same time one adds the red element to S, always reinforcing
the node’s weight according to the formula wi → wi + ρ.
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turn out to be equivalent from a qualitative point of view also in the case η < 1.
In figure S6 we report some examples of the Heaps’ and Zipf’s laws for the RW
model, for different values of the parameters ν, ρ and η, while in figure S4 we give
an example of the triggering events as measured by the entropy S associated to the
labels and the distribution f(l) of triggering time intervals between two successive
appearance in the sequence S of the same label (see Section Methods in the main
text).

As a final remark, we note that the RW modeling scheme allows one to more
naturally extend the structure of the semantic relations between the different ele-
ments. The semantic relations are in fact encoded in the growing graph topology,
and one can imagine different ways of linking the new nodes, corresponding to
more complex and realistic semantic structures.

3 Details of the datasets used

3.1 Gutenberg Corpus
The corpus of English texts used in the analysis was collected by a crawl of the
material available at the Gutenberg Project ebook collection [11]. The crawl was
carried on February 2007 and resulted in a set of about 7500 non-copyrighted
ebooks in plain ASCII format. After a filtering procedure used to remove from
the analysis all non-English texts, we came up with ca. 4600 texts, dealing with
diverse subjects and including both prose and poetry. In total, the corpus consisted
of about 2.8 × 108 words, with about 5.5 × 105 different words. In the analysis
we ignored capitalization. Words sharing the same lexical root were considered
as different, i.e., the word tree was considered different from trees. Homonyms,
as for example the verbal past perfect saw and the substantive saw, were treated
as the same word. The aggregated analysis is performed by putting all the books
in a random order one after the other in a single text. The texts used in the non
aggregated analysis are listed in Table S1.

3.2 Delicious
Delicious [12] is an online social annotation platform of bookmarking where users
associate keywords (tags) to web resources (URLs) in a post, in order to ease the
process of their retrieval. The dataset used for the present analysis [13] consists of
approximately 5×106 posts, comprising about 650,000 users, 1.9×106 resources
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Figure S6: Growth of the number of distinct elements (Heaps’ law) and
frequency-rank distribution (Zipf’s law) for the RW model. Left: Heaps’ law
for several values of the parameters of the random walk model mapping the urn
model with semantic triggering. Straight lines show functions of the form axβ ,
where a is a constant. Right: Zipf’s law for the corresponding values of the pa-
rameters of the random walk model. The exponent α of the tail of the distributions
is compatible with the exponent β of the Heaps’ law. Straight lines show functions
of the form ax−1/β , where a is a constant. In all the simulations N0 = ν + 1.
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Author Work Total Nr of words Nr of distinct words α β
C. Dickens Hard Times 124109 8747 1.17 0.58
C. Dickens David Copperfield 426904 14026 1.43 0.53
C. Dickens Oliver Twist 191395 10177 1.30 0.55
H. Melville Moby-Dick 252571 17136 1.22 0.60

S. Butler Odyssey (prose) 131444 6363 1.51 0.50
A. Pope Odyssey (verse) 132461 8292 1.37 0.50
Homer Odyssey 86868 17506 1.03 0.70
Homer Iliad 112082 21853 1.05 0.68

Table S1: Texts from the Gutenberg site used in the non-aggregated analysis.
For each text we report the total number of words, total number of distinct words
and the estimated values of the (minus) the Zipf’s exponent and Heaps’ exponent.
Note that 1/α > β since the single texts are not sufficiently long to allow the
asymptotic regime to be visible, and the frequency-rank distribution curve has not
yet gone through the crossover visible around 104 ∼ 105 in the analogous curve
of the whole Gutenberg dataset, showed in the main article.

and 2.5 × 106 distinct tags (for a total of about 1.4 × 108 tags), and covering
almost 3 years of user activity, from early 2004 up to November 2006. Since
Delicious is case-preserving but not case sensitive, we ignored capitalization in
tag comparison, and counted all different capitalization of a given tag as instances
of the same lower-case tag. The time stamp of each post was used to establish
post ordering and determine the temporal evolution of the system.

In the non-aggregated analysis we extracted from the Delicious dataset the
posts of the three most active users (RangerRick, hidekii, PeterPeter) and two
random ones (Vitelot, AndreaB).

3.3 Last.fm
Last.fm [14] is a music website equipped with a music recommender system.
Last.fm builds a detailed profile of each user’s musical taste by recording details
of the songs the user listens to, either from Internet radio stations, or the user’s
computer or many portable music devices. The data set we used [15, 16] contains
the whole listening habits of 1000 users till May, 5th 2009, recorded in plain text
form. It contains about 1.9 × 107 listened tracks with information on user, time
stamp, artist, track-id and track name.

For the non-aggregated analysis we consider only the data of the five most
active listeners.
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3.4 English Wikipedia
The English Wikipedia database we analyzed consists of 323 compressed files
summing up to a total of 48 GB of disk space. The uncompressed overall size is
around 20 TB. The Wikipedia database we collected [17], dates back to March
7th, 2012.
Due to the database huge dimension, we had to develop a special procedure to ex-
tract the information we needed. The computer we used to process the database is
a multi-core machine mounting 8 Intel(R) Xeon(R) X3470 CPU, with a 2.93 GHz
working clock frequency, with a RAM of 16 GB.
The database contains a copy of all pages with all their edits in plain text by using
the XML structure.

In order to perform the analysis related to the detection of triggering events, we
extracted from the database the following information. First of all, we identified
for each new born page, say B, the page, say A, that internally linked the new
born page for the first time. We call the page A the mother page of B and we
identify for each edit its mother page as its label (note that several edits can have
the same mother page, i.e., the same label). We then follow the steps below:

(1) To each edit event we associate: (i) the wikipedia page exclusive identifi-
cation number (ID), (ii) the user (wikipedia contributor) ID (UID), (iii) the
edit ID (EID), (iv) its time stamp (TS), (v) the PID of its mother page;

(2) from the list of all edits endowed with the information discussed in (1),
we removed the multiple edits of the same page done by the same user,
retaining his/her first edit;

(3) we sorted the list (2) according to increasing time stamp.

For the non-aggregated analysis we focused on seven randomly chosen editors.
Special care was needed to understand whether a selected user was human. In
fact, the most active editors of Wikipedia are robots performing minor changes
routinely.

4 Results for non aggregated data
The analysis performed in the main text, involving the previously described datasets
as a whole, is here repeated for some of their selected records. In case of the
Gutenberg dataset, we chose texts; in Wikipedia, Last.fm and Delicious, we chose
editors, listeners and tagging users respectively.
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User ID Total Nr of edits Nr of distinct edits α
1188594 14613 8619 0.45
1638938 6776 3094 0.56

23958 19226 7295 0.70
281454 1480 974 0.41

2829979 11642 4622 0.50
356300 10415 3738 0.83
62662 6118 975 1.06
82835 937852 716418 0.41
99037 128802 78961 0.57

Table S2: Editors of Wikipedia used in the non-aggregated analysis. For each
editor we report: the total number of edited articles; the total number of distinct
edited articles; the observed values α of the (minus) the Zipf’s exponent. The
values of the Heaps’ exponent for all the considered users turn out to be β ' 1, in
agreement with the alpha values α ≤ 1 as predicted by the model.

Heaps’ and Zipf’s law
The analysis of Heaps’ law is displayed in Fig. S7 and shows an asymptotic

sublinear power-law behaviour in the case of texts (see Table S1) and a possible
linear behavior for Wikipedia editors (see Table S2). In the case of Last.fm and
Delicious, the sublinear behavior can still be spotted but the dictionary curves are
less smooth than those of Wikipedia and Gutenberg. The reason is that in both
Last.fm and Delicious, users may import large blocks of music tracks and web-
site bookmarks from their local storage, thus introducing a sort of discontinuity
in time. This discontinuity is obviously less appreciable in figure S8, were we
show the frequency-rank distribution of words in selected texts, lyrics in selected
listeners using Last.fm, wiki-articles for selected editors in Wikipedia and tags for
selected users of Delicious. In fact, the frequency-rank is insensible to the tem-
poral ordering of the elements, being a global statistical property of the sample.
Note how the more inflected ancient Greek language results in a smaller Zipf’s
exponent than that of English texts and correspondingly in a larger Heaps’ expo-
nent (see Table S1). It is also worth noting that the measured exponent β of the
Heaps’ law in the selected texts does not happen to be the reciprocal of the mea-
sured Zipf’s exponent α. In the main text we have shown that the frequency-rank
curve of the whole Gutenberg corpus displayed two main behaviors with different
exponents (an analogous observation was shown in Ref. [18]) so that, when infer-
ring α from texts containing 104 ∼ 105 distinct words, one tends to underestimate
it. The Heaps’ law, instead, is already sufficiently sensible to sample the tail of
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the distribution so that the measured α and β are such that 1/α > β.
It is interesting to observe that the asymptotic validity of the relation between

the Zipf’s and Heaps’ exponents is also captured by our model with semantic
triggering. Fig.s S1 and S6 display the asymptotic correspondence β = 1/α
along as the existence of at least another regime at lower ranks whose extension
depends on the combination of parameters ν, ρ and η.

Another feature is worth to be mentioned. By looking at Fig. S7 we find
that the growth of the number of distinct article edited in Wikipedia by users is
linear. Our Polya’s urn model accounts for this possibility as well, by predicting
a connection between the Zipf’s exponent and the slope of the linear dictionary
growth.
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Figure S8: Frequency-rank distribution (Zipf’s law). Top-left: Selected mas-
terpieces from the Gutenberg dataset (words as elements); Top-right: most active
users in Last.fm (lyrics as elements); Bottom-left: selected (human) random ed-
itors of Wikipedia with appreciable activity (wiki-articles as elements); Bottom-
right: Selected users of Delicious (tags as elements). The straight line shows the
strict Zipf’s law with α = 1 as a guide for the eye.
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Triggering events
To detect whether in a sequence there is a triggering mechanism in play, we

make use of the definition of entropy (see Eq. 2 of the main text) and look at
the distribution of time intervals between elements of the same class (see Section
Methods in the main text).

For example, when listening to a certain lyric of a given artist, we could be
tempted to listen to other of her lyrics. In that case, the occurrences of the lyrics’
artist will be clusterized in the sequence more than an uncorrelated poissonian
process. At the same time, we expect that the distribution of time intervals be-
tween the lyrics of the same artist will be more biased toward small time intervals
than a poissonian process. In the case of lyrics, the class of elements is given by
their artist, in Wikipedia by the wiki-article (mother page) that first linked to a
new wiki-page, while in texts we considered each word as bearing its own class,
lacking of a satisfactory classification of words in semantic areas.

In order to distinguish between sequences ruled by a random poissonian pro-
cess from sequences featuring triggering events, we show (we already reported
the corresponding results for Gutenberg texts in the main text) in figures S9 and
S10 the entropy and interval distribution curves of selected Last.fm listeners and
wiki editors (red dots), together with the correspondingly randomly shuffled se-
quences (blue dots) and the locally shuffled sequences (green dots). The latter are
achieved by shuffling the subsequence that goes from the element following the
first occurrence of a given element, to the end. These figures confirm that also at
the user level one obtains the same results of the whole datasets. In particular, the
drop of the entropy around the value of 10 in the three selected Last.fm listeners
can be a consequence of the typical number of songs in a song album: who listens
one song of an album, tends to browse all of it, so that a dozen of songs with the
same artist appear heavily clusterized at short times, thus dropping the associated
entropy value.

The interest of looking at triggering events on single books (we already re-
ported about individual texts of the Gutenberg corpus in the main text), or consid-
ering a single contributor of Wikipedia or a single Last.fm user is to investigate
the nature of the correlations observed in the whole databases. In particular, the
question is whether the statistical signatures we detected emerge as an effect of a
collective process or are present also at the single user level. The results reported
in figures S9 and S10 show that the adjacent possible mechanism plays a role also
on the individual level, and its effect is enhanced in collective processes.
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Figure S9: Triggering events for single users in the Last.fm dataset. Top:
normalized average entropy in selected listeners (red dot) and in the locally (blue
dots) an globally (green dots) reshuffled playlists. Lower values of the entropy
correspond to higher clusterized occurrences of elements. Bottom: Time intervals
distribution. More clusterized data result in higher values of the distribution at
low interval lengths.
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Figure S10: Triggering events for single users in the Wikipedia dataset. Top:
normalized average entropy in selected editors (red dot) and in the locally (blue
dots) an globally (green dots) reshuffled wiki-articles. Lower values of the entropy
correspond to higher clusterized occurrences of elements. Bottom: Time intervals
distribution. More clusterized data result in higher values of the distribution at
low interval lengths.

24



References
[1] Zipf, G. K. Human Behavior and the Principle of Least Effort (Addison-

Wesley, Reading MA (USA), 1949).
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