Supplementary Information File

Map-based Cloning and Characterization of a Brown Planthopper Resistance Gene *BPH26* from *Oryza sativa* L. ssp. *indica* Cultivar ADR52

Yasumori Tamura^{1*}, Makoto Hattori¹, Hirofumi Yoshioka², Miki Yoshioka², Akira Takahashi³, Jianzhong Wu⁴, Naoki Sentoku⁵ and Hideshi Yasui^{6*}

*To whom correspondence should be addressed.

E-mail: Yasumori Tamura: yasumori@affrc.go.jp

Hideshi Yasui: hyasui@agr.kyushu-u.ac.jp

This PDF file includes:

Supplementary Figures S1–S7

Supplementary Tables S1-S2

а

CTGCCTCCAGGACTTCGCCGTCCGCTTGGGGGGGAAGAGTTCAACCTGGTGGCTCAGCCCTCACACGCTGTGGGAGCGGCCGCATCGCCAAGCAGATGAAGGAGCTGAGGGGCAAGGTT GAGGATGTCAGCCAGAGGAACATGCGCTATCAACTCATCAAGGGCTCCAAGCCTACTGTAGCTACCAATGTCACCACCCAGCAGCACTGCCCGTGCGACCATGTCTGGCGCCGCATGAAGAAC GGTGGCAGCATGAGAAGGCAATAGATCATCTGGTTCGGCTGGTCAAAACCCAAAGTCGATGAACGTAGAGTGATCGCGGGTGTGGGGGAACAAGTGGTGATATCAGGGAAATGTCCATCGTTGG AGGGGCCTATGATCATCTCAAGAGAAACAACAAGTTTGAGTGCTATGCCTGGGTTAATTTGATGCATCCTCTGAACCCAACAAAGCTCCTGCAAACCATTGTTAGGCAATTCTATGTAAGA TGAATGATGAGTTCAATAAATATTTTGAGTGACAAGTGCTACCTCATTGTGCTTAATGACCTATCGACCGCTGAAGAGTGGAAGCAAATTAAAATGCTCTTCCCAGACAACAAGAAAGGAAG CCGAATCATAGTGTTCACACAAACAAGTTGAAGTTGCAAGCTTTTGCGCTAGGACAGAGGAGAGAGGGGGGCACCCGAGCACATGCAGTTGTTTGCTGATCAGACTCTTTATGCTTTTCACTGCAAG GTAATACTAAAAAAAAATCCTCAAACATGCACTGAAAAAGAAAATATTCTATATATCATCATCCATTGAAAGCATACTCTTCTCATTCAACTGCTGCTAATTAAATCAATGTTTTAGCT ATGACATTATGTACACAATAAACTAACAACTAATTAATACCACATAGCTCTGTCTCTTCATCTCTAAGAGCATCTCCAACAACTATATATCGTACTCTCTGTAGTTATAATTCAGCAATT CTCTTTAAAAAAATAACAGCTCCAATAAATCACCCCTATCTTAGTCCCCTAAATTTTAGGTCCCCCCCATAGTGAGTATAATCGACCCCAAATTTTGGGTGCCCCCTGTCCCACTCCCTATGCC AGCCAAGACTCGCTGATCGTTATCGTTTTCCATGCATCCTCCACCTTCCTCCTCCCCCCACATCCCTCGTCTTGGCCTTCGCCTTCGCCTCCGCGACCACCTAGCTGGCCAT TGCTCTCTCACCATCAGGCTCCAACCTCTGTTGAAAGCATATTTCATTTTGCATGTTGGAACGACAACTCTATCTTAAACTTACTGCTTAAAAGCCAACAATTTGTAAGCTATATAGGAC AACATGCCAGCTTATAGGCATACTGCTAAGCCTGTGATTAATTTGCTTGTTTTTAGTATTATGCAATACGGTAGTACTTTGAGCTCAACCTTTAACCCTATCCTGCATAACACATTTTTAGAG GATTTTGAAGTTCACAAATGTGTAGATAGATGCATTTGCACTTATCTGAAAATTCCCATATGGATACTTGATTATTATGTACTATAATCAGGACCCCACCAAATTTACAGATTGATAAGTC TTTTAATTGATCGGGCAAGTACTATATGGAGTAACACTTTAGGGTCGCAAGGCATTTAAAAATTAAGTAGTTCAATTGAGATTGTCTTTTCACTAAAGAATGGTAACCCATTTATACATTT ACAAGAGATTTGTCTTGGGAAACAAGTAAGTATTATCATAGGAAAGTAGACAATTAGACATCATCATCAAATATTCTAAATAATAACTGTTCTGAAGCAGTTGGCTACAATTTGTTGTTGT TGTTTCATTGAAAAGTTCTTGCAACCTTTTTTTTTCATTAAGGGCATGTATGATTCCTTTTTAACTCTCGTCTCGTCTTAAAATATAATGGTGCACACCTCTCATGCGTGTTTAAGAAAA CCTCACTCGCACATATTCAATGGTAACTGCTTTCAAGGAATCTGAGATCGTGGGCGAGTTGATGAAAAGGAGATTATTGAACTGATTTCAAAAGGTAGCCAACAACTTGAGAAGATC CACAACAGAATGGGATGCTATAGAATCATATTTCCCAGCAACGGAAACAGGAAGCCGGATCATAATAACCACAAGGCATGAAAGTATTGCTAAGCATTGTTCAGGGGATCAACAAGGCAAA CTAGCTACCTTTGGAAAGCGAAACGGCTACCTATGAATCCAAACATAAATCATTTGAACTTCTACATAGAGATAATGAAGTGATTGTGTGATTTAATTATCGTTCATTTACACAAAAATCAG AAATTATCAATATATGAAAATGATATTGATAAACTTATGATGAAAATGCTTTAATATAGTTATATTTCAATTATTATAAACATATAGAATTGATGAACATATGCCTTAAAGACTGTA TTCATAATATAACTAACTCACAGTTCACTAGGAACAGGAAAAATCCGCAAATTTTAAACAGGCCATTATATTTTCAGTTACAGGAAGTATTATTTTAGCCGCTCTAGCATAAGATGGAGGG GGAAAACAGTTGGTAGCCAACTAGCTAGCAGCAATTAAACCTCAGGGTTTTGAGGTAGCCTTACAGCCATTTGATAGCAGTAGACTCATACTCTAGGCCTTCTGGGTTATGATCCCATCCT TTTGAACTAGGTAATTTTGCATTTGTCGCAATTTCGACCACCCCAAAACCATTATTTTCAGCACATCGGCTCTAGCGTGCTGAACCATTCTGAACAGTGTGCTAAACCATATCTTTAATA

Supplementary Fig. S1 Genomic sequences containing the ORF regions of *BPH26*.
(a) The genomic sequence of ADR52. The ORF region of *BPH26* is shown in red-color font.
(b) The genomic sequence of Nipponbare. The ORF region of *BPH26* is shown in red-color font. The blue border indicates Os12g0559600 and the yellow border indicates Os12g0559400. Both Os12g0559600 and Os12g0559400 are putative genes. Both putative genes partially overlapped with the ORF of *BPH26*.

ATAAATAGGGAATCAAAAACCCAGATTCCAATCGTAGCAACTGTATCATATAACTCCCTTTATATTAGAATCAACAATTACATTAGTCATAAATGGTTAGCTAATCTTATTGTAGCATAATA TTTTGAATCCAACCCAGGATAGGCTTTGCCGGAACTATATTTTGAAACTATGTATAATACATAACCCAAATTAAACAACAGATAAAGGACGATGCACTTTATTTCATGTTTTAAACTTGTA TATTTATTTTATTTTTGATGTTGAAATTAAAATTATAAATTTAAAATTTAAACCAAAATTTGAAACTTTATGCAAAATTGTAGAACTTTGTAGAACTTTGAAAAACTCTAAAAAACCCAAAAATTGTAGAACTTTGTAGAACTTTGTAGAACACTTTAAAAAACCCCAAAAATT AAATCAAAACTTCAACTCAAAATAACAAATTTGCTCAGATTTTAAGGCTTTCTACCCCAAACTTTATAACTTTCAAGTCCAAAATTTCTGAAAATTTTGTAACTTTCAAGTCA AATATTCAAAACTACCACAAAAAAACTATATAAAAATATGATACTCTGAACTCAAAAATTCAAAAACTTTGTACTCAAAATTTTATCATATAGTACAGAAAGTTAGTATCAATGA GTAAATTACTGCAACAATATGTTCAGAAAAATTCAATCGTAGCCAAACCCTCTGCTGTTCGATTTATCACCCTAAATTACAATACCAGACATTTTTAACCTTGAACTTTACAAACCGAACG CTCCTTTCTTCAGCTAGAACACAAGAGCAGTCAATGCTCAGGCACTGCCGTCGGACGTCGCTAGCCTTCCTCCCCTTCGTCACCGAGAAAGCCAACTCCACCCGCTCTCTATTCCAGATTGG ATCTAGACGCTCCCTCCACCGATTTGGACTCTGCCGCTACGCCTCCTCCTCTTCTTCTCCACCGCTGATTAGATCGTCACTGCCTCTCTGCTCAGGCCGCCGCGATGTGGGCAGGC AGCGCAAAAGGGGCGCGGGCAGCTGTGGCAGCACCCCCTTCTTCCCCATCTACAGCCAAGGCATTTCAGGAGCAGCAGCACCACACACGGTCAACACCGGGGTTCCTCTGCTCCCCCGC CACCCCATCGAATGCCCGAACCTGTTGCTCCCATATGGCCCCTACGACTCCATGGCTCAACGCGGGCGACAGTGAACTCACGGCGGAGGGTGGGACATGTGGCTTCAAACTCACAGTGGAAG CACCCCCAAATCTCAGCGCTGCTTGTCTTGGCTTTGCCTTCAGTGCGCGTCTGGTGGAGATGGTCATCGGCTATAGTAACCGAGATCGAGCGGGAGAAGAAGAAGAAGAAGACGGAT CCGGTTTGTAAAGTTCAGGGTTAAAAAATCTTTTGTATTTAGATGGGGGGTGGGGGGTGGGGGGTAAATTAATCGAACGGATGCAAAAGTTTAGGGGGTAATTCAGACTTTTTCGTTTATTTTGG CAATTGAAATGGACCGCAGTGATATATGTTTGAGCAGTACTATCACATAGGCTAGCTCCAGTAGTGCTGACCGTCACCGCCACTTCCTTGATGGCTTTTTGTGCGAGCAGTGATTCCTCGAGG CAGTCAAGCATCTAGTTGGCCATCCAATGCCCATGCCCACAACCCTTGCCATTGCCGTTGCCCGTGCTTGGACCGACTAGATTTGATGGTCCCGGGCCGGCTCATGGCAACCGGATTCATT AGAGGAGCCGCTTCAGAGGGAGAGCAGCGGCGGCGGCGTGCTCGAGATAGAGATGTAGACCAAGAACGAGAGGTTGATCGAGAGACTTAGCATGCTAGTTCATTGGACGTCTCATAGCCCGTTC ATACTTCTGCTACCGGTTTTTCTCATGAACTGATTAATATATGTTATTAAGCATCGGTTTAGGTTAATCAGCAGCGGTTGCGCTGGTTCAGATTGATGTTCTATACTAGTGCCAG AGATCTTGAATTGATCAAAGAAGCGAAACCGATTCTAAAGAAGTGCAATGGACTTCCCCCCGCAATTGTCACCATAGGTGGTTTCTTGGCAAGCCGCCCCAAAACTACTTTGGAAGTGGAGA AAATTGAATGAAGCATATTAGTGCAGAGTTGGAGACCAAACCCAGGGCTTGAGGCCATCAGAGCTGTCCTTAATATAAGCTACGATGGATTACCTTACCCTCAAGTCTTGCTTCTTGTATC TGTCCATCTTTCCTGAAGATGACAAGATTAGCCGGAAACGTTTGGTGCCCGATGGTGTGCAGAGGGTTACTCAAGGGAGCTATGGGATAAATCTGCAGAGGAAATAGCAAACAACTACT CTTTGAACTCATAGACAGAAGCATGATCCTACCAACTCAAAAATCAACTTACAGCAATAGAGGAGCTGATTCTTGCCAGGTCCACGATATCATGCGCGAGATAGCCATCCGAGAGTCAAAG GAGGAAAATCTTGTTCTTAGACTCGAAGGGGGTCGTAGGCTACACAATCATGACATAGTTCGACATCTTTCCATTACAAACAGCAGCGAGGACTGGGAGACAGATGTCGGTGAATTGAAGA CAACAGTAGACATGTCCCGAATAAGATCATTAACAGTGTTTGGGGAGTGGAGGCCAATTTTCATTTCTGACAAGATGAGGTTGTTGCGTGTGCTCGACTTGGAAGACACAGAAGGTGTACG TAATCACCATATTAAGCAAATAGGGGAGCTTCTTCACCTTAGATACCTTTCTCTAAGAGGATGTACGCACATTGCTTACATGCCTGATTCTTTGGGTAACCTAAGGCAACTGGAGACACTA GATGTCAGAGATACGTTCATACTCAGGTTGCCAAAGACCATCACTAATCTTTGCAAGCTGAAGTATCTCCCGTGCAAGTAAAGACCTCAACTTCTATGAAGGCATAAGAGAGAAACTACCAG AGCTCATGAGGAACAGGCTATGCATTTTTACCGCTGCGTTGGCGGGCTTTGTCTGGCATGCTCAGCTAGTGCGATTGGTAAGTTTGATGAAGAGATTAATACCCGTGATGTCGCACCAT GTGTTGCTGCAGTATTCTCCCTAGCATTGCTATGCGCCTCCAAGGGAATGGTGTAGTAGCACCAAGAGGGCTGAGGATCAGGAGACTGACAGCCCTGCACAGCGTGTGGTGGTGGACATT TCATGGCAGCCATCAATTTTACAAGATATCAAGAGGCTCATCCAGCTGCGCAAATTGGAAGTGACCGGTGTCAACAAGAAAATAGCAAAAAGCTTTTCTCTGCCCTTGCCGCTCTCAGCC TGAGCTGCCAAAATGGATCGGGAAGCTCAACAATCTTGTTAAGCTGAAGCTATCAAAATCCAGGCTCAAGGATCATGATGCTGCTATACAAGTCCTTGGTATGCTACCAAACCTGACCATC CTATGCCTGCCGCGCAAGTCATTTCACTCGCTTGAGGGTGGCGAACTCAATTTCTCGGAAGGATCTTTCAAAAGCCTGTTGGTTCCGAGCTTGACTTCAGTGGGAGGAAAGGTGTTACGT TTCAACAAGGAGCATTCCGCAAACTAGAGCTGTTATTGCTTTCAGTTCATAGTGAAGAAGTTCAAAGTAAATTATCTGGACTAGAATTTCTCCCAAAGCATCAAGGAAGTTCAGATCGATGG TTATTGCCCAAACGAGGAAGGATTGAAGAAAGACTTGCTGGTCCAACTTTCTCAAAATCCAAAGAAACCCTTTCTGAAGATCGACGGTTATTTTTAA

Supplementary Fig. S1 a Continued.

b

ATGGAGGCCACGGCGGTGAGCATTGGCAGGTCCGTGCTGAAGGGAGCTCTTGGCTCCGCCAAATCCACCTTGGTGGAGGAGGTTTCCCTGCAGCTCGGCGTCCAGCGCGACCAGGCGTTCA TCAGGGACGAGGTGGAGATGATGAACTCCTTCCTGATGGCCGCCAATGATGAGAAAGATGACAACGACGTGGTAAGGACCTGGGTGAAGCAGGTCCGCGACGTGGCCTACGACGTCGAGGA CTGCCTCCAGGACTTGGCCGTCCGCTTGGGGAGGAAGAGTTCATCCTGGTGGCTCAGCCCTCACACGCTGTGGGAGCGGCCGCCGCATCGCCAAGCAGATGAAGGAGCTGAGGGGCAAGGTT GAGGATGTGAGCCAGAGGAACATGCGTTACCAACTCATCAAGGGCTCCAAGCCTACCGTAGCTACCAATGTCGCACCCAGCAGCACTGCCGTGCGACCATGTCTGGCGTGCATGAAGAAC GGTGGCAGCATGACAAGGCAGTAGCTGGTCTGGTCCGGCTGGTCATCAAAACCCAAAGTCGATGAACTTAGAGTGATTGCGGTGTGGGGGAACGAGTGGTGATATCAGGGAAATGTCCATCGT TGGAGGGGCCTATGATCATCTCAAGAGAAGCAACAAGTTTGAGTGCTGTGCCTGGGTTAATTTGATGCATCCTCTGAACCCAACAAAGCTCCTGCAAACCATTGTTAGGCAATTCTATGTA AGATCTCTTCAGGAGGCTGGCAAAGCAACTCCGTCGTGTCAAATTCTGAGTAGCATGCTGATAAAGGAAGATCATTTGAACGATGAGTTCAATGAATATTTGAGTGACAAGTGCTACCTCG TTATGCTTAATGACCTATCAACCGCTGAAGAATGGAAGCAAATAAAAATGCTCTTCCCAGACAACAAGAAAGGGAGCCGAATCATAGTGTTCACACAACATGTTGAAGTTGCAAGCTTTTG TGCTAGGACCGAGGAGGTGGCACCCGAGCAAATGCAGCTGTTTGCTGATCAGACTCTTTATGCTTTTCGCTGTAAGGTACTCCATCCGTTCCAAAATGATCATCATAGTTTTTTTAGG TGCTAATTAAATCAATGTTTTATCTATGTCATTATGTACAAAAGAAACTAACACTGATTAATAGTACGACATAGCTCTGTCTCTTCATCTCTAAGAACATCTCCCAGCAAACATATATCAT ATTCGCTATAGTTATAATTCAACAATTCTCTTTTAAAAAATAACAGCTCCAATAAATCGCCCTACTCAATTTTAGGTACTCCCCATAGTGAGTATAATCGACCCCAAATTTTGGGTGCCCC GGGCCGCCTACCACCACCACCACCACTCACAATTGGCCCATAAAAAAGCAGCCACGTGTCCAATTCAGATTTTCTGGGAAATCAAGAGTTAAACTCATGCCCGCGATGCCCCGGTACCTAGC ATCGGCAGCACGCAGCACCGCAGCGCCGCAACAGCCCGTAGCCCAGTAGCCTGCGGCGGCTTTAGCATCGGCCATCGGGCATCCTTGAGAATGCTCACCCCCATCACCTATAGTTAGGT AGCATATTTTATTTTGCATGTTGGAACGGCAACTCCATCTTAAAACTTACTGCCAACAATTTGTAAGCCAACAATGCCGGCTTATAGGCATACTATACTAAGACTG TGATTAATTTGCTTGTATTTAGTATTATGCAATACGGTAATACTTTGAGCTCAACTTTAACTTATACTACATAACACATTTTTAGAGGATTTTGAAGTTCAAAAATGTGTAGATAGGTGCA CTTATGGGTCGGGAGGCATTTAAAAAATTAAGTAGTTCAATTGAGATTGTCTTTTCACTAACGAATGGTAACCTATTTATACATCTACAAGAGATTTGTCTTGGGAAACAACTAAGTATTAT CATAGGAAAGTAGACAATTAGACATCATCATCATCATAATAATTCTAAAATAACTGTTCTCAAGAGGTTGGCTACATTTTTTTGCTGTTGTTTCATTGAAAAGTTCTTGCAACCTTTTTTC GAATCTGAGATCGTTGGGCGAGTTGATGAAATAAAGGAGATTATTGAACTGATTTCAAAAGGTAGCCAACAGCTTGAGAAGATCTCAGTGTGGGGAATGGGTGGTATTGGGAAAACCACTC GCAATGGAAACAGGAAGCCGGATCATAATCACCACAAGGCATGAAAGTATTGCTAAGCATTGTTCAGGGGATCAACAAGGAAAAATATATCAACTCAATCGTCTAGGAGACAGCGATGCAA TTAAAAACTATTGGTGGTTAATATTAAAAAGTAGTTTACAATTGCAAGTATTTGCATTATCTTATTTTATACTCCCCTCCGTATTTTAATGTACGACGTCGTTGACTTTTCGACCAACGTTT GACCATTCGTTTTATTCAAAATTTTTGTGCAAAATATGAAAATACTTATACCATGCTTAAAGAACATTTGATGACGAATCAAGTCACAGTAAAATGATAAATGATAAATTATTTTTGAA TAAGACAAACGGTCAAAAACGTTGGACAAAAAGTCAAACGTTGGTCAAACGTTTGAATAGGAACCTAGGTTCATTTGCACCTCCGATCTGTACCGTTTGAATGCTCTGAGATGTGTGCCAGC TTCCATTCTATTGCATTTTTCTAATGCATATAAATTAAGGATGCCAAATTTTGTGCCCCTATATAACTATATGTACGTTTAGACCTTTCCCTAGTACAATGATTTTTGTTAATAGAACTGTTGTAA TACGTTGATATATCTGCAAATGAGCTTCAAAACAACGACATTCCAAAACAATTAAGCCACCTATCAAGTTAGATAACACTGTAGAAAAGAGCGAAATATGAAATAGCCAATTATCTTCCCA CTATATCTCCATTTTGACATTTGACTTAATGGAACTATCTCCCATTCACAAAGGGCATGTTGACGAAAACAATATAACTTGCAAAAATGACACTACACATATACAGACAACATATATTTAAATA AGCAATTTACAATGGAAAGAAATAGGGAATTAAAAACCCAGATTCCAATCATAGCAACTGTATCATATTAACTACTTATATTAGAATTAACAATTATTGGTCATAAATGGTTAGCTAAT CTTATTGTAGCATAATATTTTGAATCTAGCCCAGGATAGGCTATGCCGGAACTATATTTTGAAACTATGTATAATACACATAATCCAAATTAAACAACAGAAAAAAGAGGATACACTTCAT ATTCTACCTTGCCACACGTTTCTTCACTAGATGTACAACCGTTGCTTCACAGGTTCTGGGATTTTTGTTGTTGTTCTTGTTGTTGTTGTTGTTGCACGAAGCATGAGAAGTGGAT TAAAATATTTAATTTTATTTTTATTCTTGAAATTGAAATTAAAATTATAAATTTAAAATTTAACCAAAATTTGAAAACTTTATGCAAAATTGAGAACTTGCTATAGAAAAATTAAAAAAACTCTAAA AAAAAATCAAAACATCAAACTCAAAATCAAAAATAACAAAACTTGCTCAGATTTTAAGGCTTTCTACCCAAACTTTCAACTTCCAAACTTCCGAAAATTTTCCAAGTCAAAGTCAAAGTCTTGCAAGTCAAAGTCTTGCAAGTCAAAGTCAAAGTCAAAATTTCCAACTTCGAAAATTTTCCAAGTCAAAGTCAAAATTTTCCAAGTCAAAGTCAAAATTTTCGAAGTCAAAGTCAAAATTTTCGAAGTCAAAGTCAAAATTTTCGAAAGTCAAAATTTTGTAACTTTGAAG TGAGAAAGTTCAGACAATCTAATTGGATGAAGAAAAACTAGACGAAACTTGTTGCCCGGGCAGCTAAGCGCATGGTTGCAGATGTGCCTACCCCCTATACAGTACCGCGTATTAGCAAACA CCTACCCACGGTAATCATAGTTATGCATGGTGTGCATGCCTAGTGATGTGCACGTCTGTCAGGGTTACGGATAAGGCATACCTCCTAACCTACGACTTATGGAATATACCGATAAGGT ATACCTTCACGTATATGGATCGTTCCTGCAAAAAATCGTACAAAAAACGCCCCCAAATTATGGAAAATATCTCCACGAGTCAAGTGATTTCTAAAGTCCTACACGGAGGGGATAGAATTTCGG TTATGCCGTATCAGATCACATATCCTCAGACTTTTCTTGGGGGGTCAACATGATCCACGGTATAAAAGGGACCCCTGGGAGGGGTATCAGGCATCTAATTTCATCGCCAACACACCCCACCAC TCAATCCCATATAAACTGGACTAGGGCTATTACCTGATAAGAGGCCTGAACTAGTATAATCCTTGTCTTTTGTCTGCTTGATGTCGTATACGTAGACCCTCGTTCCAACGTACCCCAATA ATGTTCAGAAAAATTCAGTCGTAGCCAAACCCTCTGCTGTTCGATTTATCACCCCTAAATTACAATACCTGACATTTTTAACCTTGAACATTACAAACCAGATGAATTACCCCCCAAAGTTG GATCCACAACCCTCAACACCGCTTGCATCCACTGTCACCGTGCGTCACTTCTTCTGACCTCAGTTTTGCTCTCCTCTGTTAGTTCCACTGCCTCGTGTCACCCCCTAAATCTCAGCG CTGCTTGTCTTGGCTTTGCCTTCGGTGCACGTCTGGTGGAGATGGTCATCGGCGACAGTAGCTGAGATCGAGCGAAAGAGAGGAGGAGAGAAGAAGACGGACTGGGCGAGAAATGGGTC CCATCATTCTTTTGTTTTGGCTAAATAGAGCTGCCACATGTGTGGCAGATAGGATCAAAACTACCTTGGGTAAGTCGTCCATTTTTTAAAGTTCAGGGTTAAAAAAATGTTTGGTAT TGTAATTTAGGTGGGGGTGGGGGTAAATCGAACGGACGCATAGGGGTAATTCAGACTTTTTCCTTTATTTTGGCTACACCCGACAAGGAACACATAAGTGATATGCTGTGAGTGCGTGAGG GAGGCATGTATCAGTAGTATGTGCAATATAGTTCTACTATGAAGCAAATATGTTCCTACTATGAGCTGACCTGCTGATACATCTGTCATGTCTTACAACATACTATGAGTCTATGAG TCACCCACTTCCTTGATAGCTTTTTGTGCGAGCAGTGACTCCTCGAGGCAGTCAAGCATTGCTTAGAGTGGTAAGATCTGGCCCTATCCCACCTCCCATCTAATGCTCATGCCCACAACCC CCCTAGTGCCCTACTATGCATAATAGGCCAGCCAGATATAGCCCTCCTGTGCTGGCCCTCATTGTGCTCAGGTATGGAGGAGAGCAGTGGCGGCATACTCGAGATAAAGGGAG CCAAGAGTGAGAAGTTGATGAGAAACTTAGCATGCTAGTTCATTGGATGTCTCATAGCCCATTCAGCTTGGCCTTCGCTGCTGCTGCTGCTGCGGAAACGGTAGTGAAGGGTGAAGATAA AGTTGGCAATATAGTGTCACTTCCGGGTTTATAAGAAAAACTGAAAAAAACGGTATAGTGATACTTCTGCTACCTGTTTTTCTCATGAATTGATCAATGCTATTATTTGAGCATCGGTT TTGTCACCATAGGTGGTTTCTTGGCAAGCCGGCCCAAAACTGCTTTGGAGTGGAGAAAATTGAATGAGCATATTAGTGCAGAGATGGAGACAAACCTAGAGCTTGAGGCCATAAGAGCTGT CCTTAATATAAGCTACGATGGATTACCCTATCACCTCAAGTCTTGCTTCTTGTACCTGTCCATCTTTCCTCAAGATGACAAGATTAGCCGGAAACGTTTGGTGCGCCGATGGTGTGCAGA GGTTACTCAAGGGAGCTATTGGACAAATCTGCATAGGAAATAGCAAACAACTACTTCTTTGAACTCATAGACAGAATCATGATCCTACCAACTCAAAAATCAACTTATAGCAGTAGAGGAG CTGATTCTTGCTAGGTTCACGATATC<mark>ATGCGCGAGATAGCCATCTCGAAGTCAAAGGAGGAAAATCTTGTTCTTAGACTCGAAGGGGGTCGTAGGCTACACAATCATGACACAGTTCGGCA</mark> TCTGACAAGATGAGGTTGTTGCGTGTGCCCGACTTGGAAGACACAAAAGATGTACCGTAATCACCATATTAAGCAAATAGGGGAGCTTCTTCACCTTAGATACCTTTCTCTAAGAGGGATGTA TGCGCATTGCTTACCTGCCTGATTCTTTGGGTAACCTAAGGCAACTGGAGACACTAGATGTCAGAGATACGTTCATACTCAGGTTGCCAAAGACCATCACTAATCTTCGCAAGGCTAAAGTA TCTCCGTGCAATTGTAGACAAAATCACCTATGAAGGAATAGCAGAGGAACTACCAGAGGGTCATGAGGAACATGCTATGCATTTTACCGCTGCGTTGCTGTTGCTTTGCTCGGCATGCACA ACAAGTTCAATTGGTATGCTGGATGATGAGATTAATACCCGTGAGATCTGCTCCATGTTTTGCTGCAGTATTCTCCCTAGCATTGCTATGCGCCTCCAAGGGAATGGTGTAGTAGCACCAA BAGGGCTGAGGAGACTGACAGCCCTGCACACGCTAGGTGTGGGGCATCTCATGGGAATCATCAGTTTTACAGGATCTCAAGAAGCTCACCTAGCTGCGCAAATTGGAAGTGACCGGTGT CAACAAGAAAAACAGCAAAAAGTTTTTTTTCTGTCCTTGCCGCGCTCAGCCCCTAGAATCATTGTCGCTGCTCTCGAAGGGAAAGCCAGGTCTCTGCGGCTGTCTAGATGCTCAAGAAAAG TTTTCACCACCTAAGGATGTCAAGAGCCTGAAGGCTGCAAGGCAACCTGGTTGAGTTGCCAAAATGGATCAAGCAGCTCAACAATCTCGTGAAGCCTGAAGCCATCAGAAACAATGCTAAAGG ATCATGATGCTGCTATACAAGTCCTTGGTATGCTACCAAACCTGACCATCCTATGCCTGTCGCGTGAGTCGTTTCACTCGCTTGAGGGTGAAGAACTCAATTTCTCGGAGGGATCTTTCAA AAGCCTGGTGGTTCTCGAGCTCAACTTCAGTGGGAGCAAATGTGTCAAGTTTGAACAAGGAGCGTTCCTCAATCTTGAGCTACTGCTGCTTTCAGTTTACTATGAAGAAGTTGAAACTAAG TTCTGAAGACTGGCCGTAATTTTTAA

Supplementary Fig. S1 b Continued.

Supplementary Fig. S2 Functional complementation test of transgenic plants (T_1) that harbored the genomic region (1A5 fragment) of the candidate gene.

(a) Evaluation of resistance. The five 1A5 lines are the transgenic lines (T_1) carrying the candidate gene on the DNA fragment 1A5 in the background of Taichung 65. The vector line is the transgenic plant (T_1) with only the vector fragment in the background of Taichung 65. T_1 plants that harbored fragment 1A5 were selected by PCR and used in the assays. The two brown planthopper (BPH) individuals at the last instar larval stage that had been fasted for 24 h were released in a test tube containing a T_1 plant aged 13 days after germination, and the number of live BPH were recorded 5 days after their release. The tests were repeated 10 times (the total number of BPH was 20), and the total number of live BPH was summed accordingly.

(**b**) Expression levels of transformed *Bph26* mRNA. Relative mRNA levels were determined by real-time quantitative RT-PCR. The average values and standard deviation (s.d.) were calculated from three PCR measurements derived from one T_1 plant. The number in parentheses at the top of each bar graph show the copy number of transformed *Bph26* determined by real-time quantitative RT-PCR.

Supplementary Fig. S3 cDNA sequence of *Bph26*. Bases painted yellow show initiation codon and stop codon in order.

ADR52	MEATAVSIGRSVLKGALGFAKSTLVEEVSLQLGVQRDQAFIRDELEMMNSFLMAANDEKD
ASD7	MEATAVSIGRSVLKGALGFAKSTLVEEVSLQLGVQRDQAFIRDELEMMNSFLMAANDEKD
Norin-PL4	MEATAVSIGRSVLKGALGFAKSTLVEEVSLQLGVQRDQAFIRDELEMMNSFLMAANDEKD
IR1154-243	MEATAVSIGRSVLKGALGFAKSTLVEEVSLQLGVQRDQAFIRDELEMMNSFLMAANDEKD
Rathu Heenati	MEATAVSIGRSVLKGALGFAKSTLVEEVSLQLGVQRDQAFIRDELEMMNSFLMAANDEKD
Babawee	MEATAVSIGRSVLKGALGFAKSTLVEEVSLQLGVQRDQAFIRDELEMMNSFLMAANDEKD
T65	MEATAVSIGRSVLKGALGFAKSTLVEEVSLQLGVQRDQAFIRDELEMMNSFLMAANDEKD
Nipponbare	MEATAVSIGRSVLKGALGFAKSTLVEEVSLQLGVQRDQAFIRDELEMMNSFLMAANDEKD
Norin-DI 1	
IR1154-243	
Rathu Heenati	
Rahawee	
T65	
Ninnonhare	DNKVVRTWVKQVRDVAVDVEDCLQDLAVRLGRKSSSWULSPHTLWERRRLAKOMKELRGK
ADR52	VEDVSQRNMRYQLIKGSKPTVATNVTPSSTARATMSGAHEERWQHEKAIDHLVRLV-KTK
ASD7	VEDVSQRNMRYQLIKGSKPTVATNVTPSSTARATMSGAHEERWQHEKAIDHLVRLV-KTK
Norin-PL4	VEDVSQRNMRYQLIKGSKPTVATNVTPSSTARATMSGAHEERWQHEKAIDHLVRLV-KTK
IR1154-243	VEDVSQRNMRYQLIKGSKPTVATNVTPSSTARATMSGAHEERWQHEKAIDHLVRLV-KTK
Rathu Heenati	VEDVSQRNMRYQLIKGSKPTVATNVAPSSTARATMSGAHEERWQHEKAIDHLVRLV-KTK
Babawee	VEDVSQRNMRYQLIKGSKPTVATNV <mark>A</mark> PSSTARATMSG <mark>A</mark> HEERWQHEKAIDHLVRLV-KTK
T65	VEDVSQRNMRYQLIKGSKPTVATNVAPSSTARATMSGVHEERWQHDKAVAGLVRLVIKTK
Nipponbare	VEDVSQRNMRYQLIKGSKPTVATNV <mark>A</mark> PSSTARATMSGVHEERWQH <mark>D</mark> KA <mark>VAG</mark> LVRLV <mark>I</mark> KTK
Norin-DI 1	
101151_24	
Rathu Heenati	
Rahawee	
T65	
Nipponbare	VDELRVIAVWGTSGDIREMSIVGGAYDHLKRSNKFECCAWVNLMHPLNPTKLLQTIVRGF
ADR52	YVRSLQEAGKATPSCQILSSMLIKEDQGLGFRVLRSMLMKEDHLNDEFNKYLSDKCYLIV
ASD7	YVRSLQEAGKATPSCQILSSMLIKEDQGLGFRVLRSMLMKEDHLNDEFNKYLSDKCYLIV
Norin-PL4	YVRSLQEAGKATPSCQILSSMLIKEDQGLGFRVLRSMLMKEDHLNDEFNKYLSDKCYLIV
IR1154-243	YVRSLQEAGKATPSCQILSSMLIKEDQGLGFRVLRSMLMKEDHLNDEFNKYLSDKCYLIV
Rathu Heenati	YVRSLQEAGKATPSCQILSSMLIKEDQGLGFRVLRSMLMKEDHLNDEFNKYLSDKCYLIV
Babawee	YVRSLQEAGKATPSCQILSSMLIKEDQGLGFRVLRSMLMKEDHLNDEFNKYLSDKCYLIV
T65	YVRSLQEAGKATPSCQILSSMLIKEDHLNDEFNEYLSDKCYLVM
Nıpponbare	YVRSLQEAGKATPSCQTLSSML <mark>T</mark> KEDHLNDEFNEYLSDKCYL <mark>VM</mark>
ADR52	FHCKGAKDGVDSMEDSSNI NEDTTYNAVEGKSI TRTYSMVTAFKESETVGRVDETKETTE
ASD7	FHCKGAKDGVDSMEDSSNLNEDTTYNAVEGKSLTRTYSMVTAFKESFIVGRVDFIKFIIF
Norin-PL4	FHCKGAKDGVDSMEDSSNLNEDTTYNAVEGKSLTRTYSMVTAFKESEIVGRVDFIKFIIF
IR1154-243	FHCKGAKDGVDSMEDSSNLNEDTTYNAVEGKSLTRTYSMVTAFKESEIVGRVDFIKFIIF
Rathu Heenati	FHCKGAKDGVDSMEDSSNLNEDTTYNAVEGKSLTRTYSMVTAFKESEIVGRVDEIKEIIF
Babawee	FHCKGAKDGVDSMEDSSNLNEDTTYNAVEGKSLTRTYSMVTAFKESEIVGRVDEIKEIIE
T65	FRCKGAKDGVDSMEDSSNLNEDTTYNAVEGKSLPRTYSMVTAFKESEIVGRVDEIKEIIE
Nipponbare	F <mark>R</mark> CKGAKDGVDSMEDSSNLNEDTTYNAVEGKSL <mark>P</mark> RTYSMVTAFKESEIVGRVDEIKEIIE

Supplementary Fig. S4 Alignment of amino acid sequences of BPH26 in some rice varieties. The amino acid sequences of ADR52, ASD7, and Norin-PL4 were deduced from the cDNA sequences, and those of IR1154-243, Rathu Heenati, Babawee, Taichung65 (T65), and Nipponbare were deduced from its genomic sequences. The ORF sequences based on the genomic sequences of ADR52 and ASD7 have been confirmed to be the same as those of the cDNA sequences. A yellow border indicates that the amino acid sequence is the same as that of ADR52, and green and blue borders indicate that the sequence is different from that of ADR52. The repetitive amino acids in the deduced leucine-rich repeat (LRR) are shown in red-color font.

ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	LISKGSQQLEKISVWGMGGIGKTTLIQNVYRSEKVKKMFDKHACVTIMRPFNLNDLLMSL LISKGSQQLEKISVWGMGGIGKTTLIQNVYRSEKVKKMFDKHACVTIMRPFNLNDLLMSL LISKGSQQLEKISVWGMGGIGKTTLIQNVYRSEKVKKMFDKHACVTIMRPFNLNDLLMSL LISKGSQQLEKISVWGMGGIGKTTLIQNVYRSEKVKKMFDKHACVTIMRPFNLDDLLKSL LISKGSQQLEKISVWGMGGIGKTTLIQNVYRSEKVKKMFDKHACVTIMRPFNLDDLLKSL LISKGSQQLEKISVWGMGGIGKTTLIQNVYRSEKVKKMFDKHACVTIMRPFNLDDLLKSL LISKGSQQLEKISVWGMGGIGKTTLIQNVYRSEKVKKMFDKHACVTIMRPFNLDDLLKSL LISKGSQQLEKISVWGMGGIGKTTLIQNVYRSEKVKKMFDKHACVTIMRPFNLDDLLKSL
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	VRQLEDSKTSGGKELVSILEGKKYLIVLDDVLFTTEWDAIESYFPATETGSRIIITTRHE VRQLEDSKTSGGKELVSILEGKKYLIVLDDVLFTTEWDAIESYFPATETGSRIIITTRHE VRQLEDSKTSGGKELVSILEGKKYLIVLDDVLFTTEWDAIESYFPATETGSRIIITTRHE VRQLEDSKTSGGKELVSILEGKKYLIVLDDVLSTTEWDAIESYFPAMETGSRIIITTRHE VRQLEDSKTSGEKELTSILEEKKYLIVLDDVLSTTEWNAIESYFPAMETGSRIIITTRHE VRQLEDSKTSGEKELTSILEEKKYLIVLDDVLSTTEWNAIESYFPAMETGSRIIITTRHE VRQLEDSKTSGEKELASILEGKKYLIVLDDVLSTTEWNAIESYFPAMETGSRIIITTRHE VRQLEDSKTSGEKELASILEGKKYLIVLDDVLSTTEWNAIESYFPAMETGSRIIITTRHE VRQLEDSKTSGEKELASILEGKKYLIVLDDVLSTTEWNAIESYFPAMETGSRIIITTRHE
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	SIAKHCSGDQQGKMYQLNRLGDNDAKNLFAKKVFKESVNLDQQDLELIKEAKPILKKCNG SIAKHCSGDQQGKMYQLNRLGDNDAKNLFAKKVFKESVNLDQQDLELIKEAKPILKKCNG SIAKHCSGDQQGKMYQLNRLGDNDAKNLFAKKVFKESVNLDQQDLELIKEAKPILKKCNG SIAKHCSGDQQGKMYQLNRLGDNDAKNLFAKKVFKESVNLDQQDLELIKEAKPILKKCNG SIAKHCSGDQQGKIYQLNRLGDNDAKNLFAKKVFKEPVNLDQEDLELIEAKLILKKCKG SIAKHCSGDQQGKIYQLNRLGDNDAKNLFAKKVFKESVNLDQEDLELIEAKLILKKCKG SIAKHCSGDQQGKIYQLNRLGDNDAKNLFAKKVFKESVNLDQEDLELIEAKLILKKCKG SIAKHCSGDQQGKIYQLNRLGDNDAKNLFAKKVFKESVNLDQEDLELIEAKLILKKCKG SIAKHCSGDQQGKIYQLNRLGDNDAKNLFAKKVFKESVNLDQEDLELIEAKLILKKCKG
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	LPLAIVTIGGFLASRPKTTLEWRKLNEHISAELETNPGLEAIRAVLNISYDGLPYHLKSC LPLAIVTIGGFLASRPKTTLEWRKLNEHISAELETNPGLEAIRAVLNISYDGLPYHLKSC LPLAIVTIGGFLASRPKTTLEWRKLNEHISAELETNPGLEAIRAVLNISYDGLPYHLKSC LPLAIVTIGGFLASRPKTTLEWRKLNEHISAELETNPGLEAIRAVLNISYDGLPYHLKSC LPLAIVTIGGFLASRPKTALEWRKLNEHISAELETNPELEAIRAVLNISYDGLPYHLKSC LPLAIVTIGGFLASRPKTALEWRKLNEHISAELETNPELEAIRAVLNISYDGLPYHLKSC LPLAIVTIGGFLASRPKTALEWRKLNEHISAELETNPELEAIRAVLNISYDGLPYHLKSC LPLAIVTIGGFLASRPKTALEWRKLNEHISAELETNPELEAIRAVLNISYDGLPYHLKSC LPLAIVTIGGFLASRPKTALEWRKLNEHISAELETNPELEAIRAVLNISYDGLPYHLKSC LPLAIVTIGGFLASRPKTALEWRKLNEHISAELETNLELEAIRAVLNISYDGLPYHLKSC
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	FLYLSIFPEDDKISRKRLVLRWCAEGYSRELWDKSAEEIANNYFFELIDRSMI-LPTQKS FLYLSIFPEDDKISRKRLVLRWCAEGYSRELWDKSAEEIANNYFFELIDRSMI-LPTQKS FLYLSIFPEDDKISRKRLVLRWCAEGYSRELWDKSAEEIANNYFFELIDRSMI-LPTQKS FLYLSIFPEDDKISRKRLVLRWCAEGYSRELWDKSAEEIANNYFFELIDRSMI-LPTQKS FLYLSIFPEDDKISRKRLVRWCAEGYSRELLDKSAEEIANNYFFELIDRSMIILPTQKS FLYLSIFPEDDKISRKRLVRRWCAEGYSRELLDKSAEEIANNYFFELIDRSMIILPTQKS FLYLSIFPEDDKISRKRLVRRWCAEGYSRELLDKSAEEIANNYFFELIDRSMIILPTQKS FLYLSIFPEDDKISRKRLVRRWCAEGYSRELLDKSAEEIANNYFFELIDRSMIILPTQKS FLYLSIFPEDDKISRKRLVRRWCAEGYSRELLDKSAEEIANNYFFELIDRSMIILPTQKS FLYLSIFPEDDKISRKRLVRRWCAEGYSRELLDKSA
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	TYSNRGADSCQVHDIMREIAISKSKEENLVLRLEGGRRLHNHDIVRHLSITNSSEDWETD TYSNRGADSCQVHDIMREIAISKSKEENLVLRLEGGRRLHNHDIVRHLSITNSSEDWETD TYSNRGADSCQVHDIMREIAISKSKEENLVLRLEGGRRLHNHDIVRHLSITNSSEDWETD TYSNRGADSCQVHDIMREIAISKSKEENLVLRLEGGRRLHNHDIVRHLSITNSSEDWETD TYSNRGADSCQVHDIMREIAISKSKEENLVLRLEGGRRLHNHGTVRHLSITNSNEDWETD TYSNRGADSCQVHDIMREIAISKSKEENLVLRLEGGRRLHNHGTVRHLSITNSNEDWETD
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	VGELKTTVDMSRIRSLTVFGEWRPIFISDKMRLLRVLDLEDTEGVRNHHIKQIGELLHLR VGELKTTVDMSRIRSLTVFGEWRPIFISDKMRLLRVLDLEDTEGVRNHHIKQIGELLHLR VGELKTTVDMSRIRSLTVFGEWRPIFISDKMRLLRVLDLEDTEGVRNHHIKQIGELLHLR VGELKTTVDMSRIRSLTVFGEWRPIFISDKMRLLRVLDLEDTEGVRNHHIKQIGELLHLR VGELKRTVDMSRIRSLTVFGEWRPFFISDKMRLLRVLDLEDTEGVCNHHIKQIGELLHLR VGELKRTVDMSRIRSLTVFGEWRPFFISDKMRLLRVLDLEDTEGVCNHHIKQIGELLHLR

Supplementary Fig. S4 Continued.

ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	YLSLRGCTHIAYMPDSLGNLRQLETLDVRDTFILRLPKTITNLCKLKYLRASKDLNFYEG YLSLRGCTHIAYMPDSLGNLRQLETLDVRDTFILRLPKTITNLCKLKYLRASKDLNFYEG YLSLRGCTHIAYMPDSLGNLRQLETLDVRDTFILRLPKTITNLCKLKYLRASKDLNFYEG YLSLRGCTHIAYMPDSLGNLRQLETLDVRDTFILRLPKTITNLCKLKYLRASKDLNFYEG YLSLRGCIDIAYLPDSLGNLRQLETLDRDTFILRLPKTITNLRKLKYLRASIDLMIVEV YLSLRGCIDIAYLPDSLGNLRQLETLDRDTFILRLPKTITNLRKLKYLRASIDLMIVEV
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65	IREKLPELMRNRLCIFTAALLGLCLACSASAIGKFDEEINTRDVCTMCCCSILPSIAMRL IREKLPELMRNRLCIFTAALLGLCLACSASAIGKFDEEINTRDVCTMCCCSILPSIAMRL IREKLPELMRNRLCIFTAALLGLCLACSASAIGKFDEEINTRDVCTMCCCSILPSIAMRL IREKLPELMRNRLCIFTAALLGLCLACSASAIGKFDEEINTRDVCTMCCCSILPSIAMRL ITEKLPELMRNRLCIFTAALLLFCLACTTSSIGMLNGGINTRDVCTLGCCSFLPSIAMLL ITEKLPELMRNRLCIFTAALLLFCLACTTSSIGMLNGGINTRDVCTLGCCSFLPSIAMLL
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	QGNGVVAPRGLRIRRLTALHTLGVVDISWOPSILQDIKRLIQLRKLEVTGVNKKNSKKLF QGNGVVAPRGLRIRRLTALHTLGVVDISWOPSILQDIKRLIQLRKLEVTGVNKKNSKKLF QGNGVVAPRGLRIRRLTALHTLGVVDISWOPSILQDIKRLIQLRKLEVTGVNKKNSKKLF QGNGVVAPRGLRIRRLTALHTLGVVDISWOPSILQDIKRLIQLRKLEVTGVNKKNSKKLF DGSGVVAPRGLRRLTALHTLGVVDISWESSVLQDLKKLTQLRKLEVTGVNKKNSKKFF DGSGVVAPRGLRRLTALHTLGVVDISWESSVLQDLKKLTQLRKLEVTGVNKKNSKKFF
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	SALAALSQLESLSLFSKWKPGLWGCLDAEEKFSPPKNLKTLKLQGNLVELPKWIGKLNNL SALAALSQLESLSLFSKWKPGLWGCLDAEEKFSPPKNLKTLKLQGNLVELPKWIGKLNNL SALAALSQLESLSLFSKWKPGLWGCLDAEEKFSPPKNLKTLKLQGNLVELPKWIGKLNNL SALAALSQLESLSLFSKWKPGLWGCLDAEEKFSPPKNLKTLKLQGNLVELPKWIGKLNNL SALAALSRLESLSLLSKRKPGLCGCLDAEEKFSPPKDLKSLKLQGNLVELPKWIRQLNNL SALAALSRLESLSLLSKGKPGLCGCLDAEEKFSPPKDLKSLKLQGNLVELPKWIRQLNNL
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	VKLKLSKSRLKDHDAAIQVLGMLPNLTILCLPRKSFHSLEGGELNFSEGSFKSLLVLELD VKLKLSKSRLKDHDAAIQVLGMLPNLTILCLPRKSFHSLEGGELNFSEGSFKSLLVLELD VKLKLSKSRLKDHDAAIQVLGMLPNLTILCLPRKSFHSLEGGELNFSEGSFKSLLVLELD VKLKLSKSRLKDHDAAIQVLGMLPNLTILCLPRKSFHSLEGGELNFSEGSFKSLVVLKLH VKLKLSETMLKDHDAAIQVLGMLPNLTILCLSRESFHSLEGGELNFSEGSFKSLVVLKLH VKLKLSETMLKDHDAAIQVLGMLPNLTILCLSRESFHSLEGGELNFSEGSFKSLVVLKLH
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	FSGSKGVTFQQGAFRKLELLLLSVHSEEVQSKLSGLEFLQSIKEVQIDGYCPNEEGLKKD FSGSKGVTFQQGAFRKLELLLSVHSEEVQSKLSGLEFLQSIKEVQIDGYCPNEEGLKKD FSGSKGVTFQQGAFRKLELLLSVHSEEVQSKLSGLEFLQSIKEVQIDGYCPNEEGLKKD FSGSKGVTFQQGAFRKLELLLSVHSEEVQSKLSGLEFLQSIKEVQIDGYCPNEEGLKKD FGGSKCVKFQQGAFHDLELLLSVYSEEVETKFSGLEFLQSIKEVQIDGYYPNWKGLKKD FGGSKCVKFQQGAFHDLELLLSVYSEEVETKFSGLEFLQSIKEVQIDGYYPNWKGLKKD
ADR52 ASD7 Norin-PL4 IR1154-243 Rathu Heenati Babawee T65 Nipponbare	LLVQLSQNPKKPFLKIDGYF LLVQLSQNPKKPFLKIDGYF LLVQLSQNPKKPFLKIDGYF LLVQLSQNPKKPFLK <mark>IGGN</mark> F LLVQLSQNPKKPFLK <mark>IGGN</mark> F

Supplementary Fig. S4 Continued.

D 1	
BPH14	
PIB	V <u>I S V W G M G G</u> L <mark>G K I I L</mark> V S G <mark>V Y</mark> Q
RIND3-1	
BPH14	
PIB	FDKYVF <mark>VTIMRPF</mark> ILVELLR
Kinase-2	
BPH26	KKYLIVLDDV
BPH14	<mark>Q</mark> R <mark>Y L L V L D D V</mark>
PIB	K S C L I V L D D F
RNBS-II	
BPH26	<u>GSRIIITTRHESIAK</u>
BPH14	<mark>G S</mark> S V L T <mark>T T R</mark> D Q E V <mark>A</mark> Q
PIB	T <mark>SRII</mark> VTTRKENIAN
RNBS-II	L
BPH26	YQLNRLGDNDAKNLF
BPH14	Y D L K R L K E S F I E E I I
PIB	HNLKVLKHNDALCLL
GLPL	
BPH26	I L K K C N G L P L A I V T I
BPH14	ΙΑΚΚΟSGSPLΑΑΤΑΙ
PIB	I L K K C D G L P L A I V V I
RNBS-IV	/
BPH26	<mark>PGLEAI RAVLNI SYDGLPYHL</mark>
BPH14	D E E N G
PIB	<mark>P</mark> E <mark>L</mark> G M <mark>I R</mark> T <mark>V L</mark> E K <mark>S Y D G L P Y H L</mark>
RNBS-V	
BPH26	KSCFLYLSI FPEDDKI SRKRLVLRWCAEGYSRE
BPH14	RQ <mark>CF</mark> SF <mark>C</mark> AIFPKDHEIDVEMLIQL <mark>W</mark> MAN <mark>G</mark> FIP <mark>E</mark>
PIB	<u>K S C F L Y L S I F P E D Q I I S R R R L V H R W A A E G Y S</u> T A
RNBS-V	I
BPH26	ANNYFFELI DRSMIL
BPH14	G K R I <mark>F</mark> S <mark>E L</mark> V S <mark>R S</mark> F F Q
PIB	ANGYFMELKNRSMIL
MHDV	
BPH26	CQVHDI MREI AI SKS
BPH14	C K I H D L M H D V A Q S S M
PIB	CKVHDLMRDIAISKS
<u>NL17</u>	
BPH26	E E N L V L R L E G G
BPH14	<mark>E G S F L I P K Y H H</mark>
PIB	EENLVFRVEEG

Supplementary Fig. S5 Alignment of main motifs in CC-NBS domains of BPH26 in *O. sativa* cv. ADR52, BPH14 in *O. officinalis* and PIB in *O. sativa* cv. Engkatek.

<BPH26 LRR>

-----IKQIGELLHLRYLSLRGCTHIAY

- ----MPDSLGNLRQLETLDVRDTFILR
- ----LPKTITNLCKLKYLRASKDLNFYEGIREKLPELMRN
- -----RLCIFTAALLGLCLACSASAIGKFDEEINTRDVCTMCCCSILPSIAMRLQGNGVVAPRGLR
- -----IRRLTALHTLGVVDISWQPS
- -----ILQDIKRLIQLRKLEVTGVNKKNSKK
- ----LFSALAALSQLESLSLFSKWKPGLWGCLDAE

----EKFSPPKNLKTLKLQ

- GNLVELPKWI GKLNNLVKLKLSKSRLKDHDAA
- -----IQVLGMLPNLTILCLPRKSFHSLEGGELN
- -----FSEGSFKSLLVLELDFSGSKG
- ----VTFQQGAFRKLELLLSVHSEEVQS
- -----KLSGLEFLQSIKEVQIDGYCPNEEGLKKDLLVQLSQNPKKPFLKIDGYF

<BPH14 LRR>

LIPKYHHHLRYLDLSESEIKA
LPEDISILYHLQTLNLSRCLSLRRLPKGMKYMTALRHLYTHGCWSLGSMP
PDLGHLTCLQTLTCFVAGTCSGC
SDLGELRQLDLGGRLELRKLENVTKADAKA
ANLGKKEKLTKLTLIWTDQEYKEAQSNNHKEVL
EGLTPHEGLKVLSIYHCGSSTCPTWMNKLRDMVGLELNGC
-KNLEKLPPLWQLPALQVLCL
EGLGSLNCLFNCDTHTPFTF
CRLKELTLSDMTNFETWWDTNEVQGEELMF
PEVEKLSIESCHRLTALPKASNAISESSGEVSTVCRSAFPALKE
MKLYDLRIFQKWEAVDGT
PREEATFPQLDKLEIRQCPELTTLPEAPKLSDLEISKGNQQISLQAAS
RHITSLSSLVLHLSTDDTETASVAKQQDSSDLVIEDEKWSHKSPLELMVLSRCNLLFSHPSALALWTCFA
LDLK I RYVDAL VSWPEE
VFQGLVSLRKLEISVCENLTGHTQARGQSTPAPS
ELLPRLESLEITCCDSIVEVPN
PASLKLLEIRGCPGLESIVFNQQQDRTMLVSAESFAEQDKSSLISGSTSETND
HVLPRLESLVINWCDRLE
VLHLPSIKKLGIYSCEKLRS
LSVKLDAVRELSIRHCGSLKS
LESCLGELASLQQLKLFDCKSLESLPKGPQAY
SSLTSLEIRGCSGIKVLPPSLQQRLDDIEDKELDACYEEAEAEPKSRHRQSAISRLMCLK

<PIB LRR>

-----GAIRHLAISSNWKGDKSEF ------GIVDLSRIRSLSLFGDWKPFFV -------KMRFIRVLDFEGTRGLEYHH -----LDQIWKLNHLKFLSLRGCYRIDL -----LPKTIIKLQKLQYIHAGRKTDYVWEEKHSLMQRCRKVGCICATCCLPLLCEMYGPLHKALARRDAWTFACCVKFPSIMTGVHEEEGA -MVPSGIRKLKDLHTLRNINVGRGN -----AILRDIGMLTGLHKLGVAGINKKNGRAFR ------LAISNLNKLESLSVSSAGMPGLCGCLDDISSPP -------ENLQSLKLY GSLKTLPEWIKELQHLVKLKLVSTRLLEHDVAM ------TAFVSLRVLKLAGLWGIKS -----VKFEEGTMPKLERLQVQGRIENEIGF

-----SGLEFLQNINEVQLSVWFPTDHDRIRAARAAGADYETAWEEEVQEARRKGGELKRKIREQLARNPNQPIIT

Supplementary Fig. S6 Amino acid sequences of the deduced leucine-rich repeat (LRR) of BPH26 in *O. sativa* cv. ADR52, BPH14 in *O. officinalis* and PIB in *O. sativa* cv. Engkatek. The repetitive amino acids in the LRR are shown in red-color font.

Supplementary Fig. S7 Full-length gel of Figure 4a and that of negative control.

(a) Gene expression analysis of *BPH26* in some rice varieties by using reverse transcriptase (RT)-PCR. Actin primers were used in the control amplification. ϕ X174 - *Hae* III digest was used as a molecular-weight size marker. Fragments sizes are marked on the left, in base pairs.

(b) Negative control of (a). One step RT-PCR was conducted without total RNA.

Supplementary Table S1

Predicted genes by rice annotation project database in the candidate region of the *japonica* cultivar Nipponbare.

1	Os12g0558366	Similar to F-box domain-containing protein	
2	Os12g0558400	Similar to F-box domain-containing protein	
3	Os12g0559000	Hypothetical conserved gene	
4	Os12g0559100	Conserved hypothetical protein	
5	Os12g0559250	Non-protein coding transcript	
6	Os12g0559200	Lipoxygenase (EC 1.13.11.12)	
7	Os12g0559300	Similar to leucine-rich repeat family protein	
8	Os12g0559400	Similar to leucine-rich repeat family protein	
9	Os12g0559600	Similar to resistance protein RGA2	

Supplementary Table S2

PCR primers used in this study

Primer name Forward primer (5'-3') Reve		Reverse primer (5'-3')	Purpose			
High-resolution mapping						
RM28449	CACCCATTGATGTGAAACTCTGG	GGATTCATGATACAGTGTGCAACG	SSR marker			
RM3813	ACCGTTAGATGACACAAGCAACG	GGTTAGCAAGACTGGAGGAGACG	SSR marker			
ID-28L4	GAAGGGAAATGGAAGCATGA	TACACCCGACAAGGAACACA	InDel marker			
ID-174	TGCTCGTACGATGGAGTCAT	CGGGCTTCATTCATCGTTA	InDel marker			
ID-161	CTGTCAAAATTGCGTTCGAT	CATTCCCCTGAATTTGAAACA	InDel marker			
ID-161-2	ATCCTTTCGGACAGGGTGAT	GGACGGGATGATACCTCAGA	InDel marker			
DS-L74	AGCGGATGCTAAAAGCAAAA	AATAGACGGGGCAAGGGTAG	SNP marker			
DS-72B4	AAAGTGCGCAGCAGTACAGA	GGATGCAGATCGAACACTGA	SNP marker			
DS-173B	TCACGACGTTATTCATGTTTCA	TCCCATGCCAATCAATATCA	SNP marker			
Comparison of alle	les from some varieties					
BPH26-Exson1	TAGCATCAGTCCCTTGCTTGTTTGC	ATTGATTTAATTAGCAGACAAGTTG	Sequencing			
BPH26-Exson2	AACTCTCGTCTCGTCTTAAAATATA	AGTAGTAATGTGCGTAGCAATGGAG	Sequencing			
BPH26-Exson3	CTAGTGCCAGTTACTCCGATAAATAT	TATGCACTAGCATCACTACA	Sequencing			
Gene expression a	nalysis					
BPH26-RT-PCR	GCTACCAAACCTGACCATCC	AGCAAGTCTTTCTTCAATCCTT	RT-PCR			
Actin-RT-PCR	TCCATCTTGGCATCTCT	GTACCCGCATCAGGCATCTG	RT-PCR			
In situ hybridizatior	n analysis					
RD26 insitu AD	ATTAACCCTCACTAAAGGGAA-		Ducks			
BP26-INSITU-AP	GGAAGTTCAGATCGATGGTT	IGGATAAAACGGCAAATTAA	Probe			
	ATTAACCCTCACTAAAGGGAA-	00440770404700470077	Dut			
BP26-INSITU-5P	TGGATAAAACGGCAAATTAA	GGAAGTICAGATCGATGGTT	Probe			
Confirmation of the	insertion site in T_1 transgenic lines					
pPZP2H-lac-D	ACTATCCTTCGCAAGACCCT	GATCAGCAATCGCGCATATG	Detection			
Real-time quantitate RT-PCR analysis						
BPH26-qPCR	CCAAACGAGGAAGGATTGAA	AGCCCCAACATCAGAGTCAG	Real-time PCR			
UBQ-qPCR	GAGCCTCTGTTCGTCAAGTA	ACTCGATGGTCCATTAAACC	Real-time PCR			

The *in situ* hybridization probe: T3 promoter sequence (underlined) was attached to the top sequence of the forward primer.

SSR, simple sequence repeat. InDel, insertion-deletion mutation. SNP, single nucleotide polymorphism. RT-PCR, reverse-transcription PCR.