Supporting information

Protective Effect of *Aframomum melegueta* phenolics Against CCl₄Induced Rat Hepatocytes Damage; Role of Apoptosis and Proinflammatory Cytokines inhibition.

Ali M. El-Halawany, ^{1,2,*} Riham Salah El Dine ², Nesrine S. El Sayed ^{3,4} and Masao Hattori⁵

¹Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia

²Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, 11562, Cairo,

Egypt

³Department of Pharmacology &Toxicology, Faculty of pharmacy, Cairo University, 11562, Cairo, Egypt

⁴Department of Pharmacology &Toxicology, Faculty of pharmacy & Biotechnology,

German University in Cairo, 11835, Cairo, Egypt

⁵Institute of Natural Medicine, University of Toyama; 2630 Sugitani, Toyama 930-

0194, Japan.

Topic	page
Effects of different extracts of <i>A. melegueta</i> and isolated compounds on alanine aminotransferase (ALT) activity induced by carbon tetrachloride using isolated suspended hepatocytes	3
Effects of different extracts of <i>A. melegueta</i> and isolated compounds on glutathione (GSH) depletion induced by carbon tetrachloride using isolated suspended hepatocytes	4
Effects of different extracts of <i>A. melegueta</i> and isolated compounds on the formation of thiobarbituric acid reactive substances (TBARS) induced by carbon tetrachloride using isolated suspended hepatocytes	5
Effects of different extracts of A . $melegueta$ and isolated compounds on the levels of tumor necrosis factor alpha (TNF- α) induced by carbon tetrachloride using isolated suspended hepatocytes	6
Effects of different extracts of A . $melegueta$ and isolated compounds on the levels of interleukin 1-beta (IL-1 β) induced by carbon tetrachloride using isolated suspended hepatocytes	7
Effects of different compounds on caspase-3 activity induced by carbon tetrachloride using isolated suspended hepatocytes	8
Effects of different compounds on caspase-9 activity induced by carbon tetrachloride using isolated suspended hepatocytes	9
NMR and Mass data of isolated compounds 1-3	10

Table 1

Effects of different extracts of *A. melegueta* and isolated compounds on alanine aminotransferase (ALT) activity induced by carbon tetrachloride using isolated suspended hepatocytes

ALT(U/L)

Time after addition of CCl₄ (min)

Treatment	0	60	90	120	180
Normal (DMSO)	39.29±2.02	41.26±2.41	40.67±1.62	38.08±2.11	41.29±1.72
Control (CCl ₄)	42.55±2.18	94.03±3.26*	95.22±6.62*	98.33±4.26*	119.24±6.88*
Curcumin (1 µM)	38.32 ± 2.33	42.82±2.81 [@]	44.31±3.09 [@]	48.63±2.81 [@]	50.54±2.72 [@]
Methanol extract	41.26±1.80	43.44±3.18 [@]	48.48±4.88 [@]	43.01±4.67 [@]	49.12±3.11 [@]
Chloroform extract	40.49±2.16	46.21±3.61 [@]	49.23±4.19 [@]	51.01±3.81 [@]	45.81±3.61 [@]
Hexane extract	48.17±2.84	51.39±2.83@	58.32±4.66@	58.67±4.22@	53.91±3.56@
Ethylacetate extract	39.18±2.96	78.47±2.05*	81.06±3.55*	79.78±3.82*	73.67±3.98*
Butanol extract	40.23±3.01	71.47±2.93*	79.12±3.15*	80.64±3.09*	75.67±4.01*
1	41.33±2.42	47.55±3.46 [@]	49.77±3.82 [@]	53.48±3.76 [@]	46.31±3.83 [@]
2	40.22±3.11	88.65±2.13*	87.29±3.19*	76.09±4.03*	75.32±3.88*
3	46.72±2.95	47.17±3.90 [@]	49.66±4.01 [@]	50.43±3.75 [@]	48.59±3.72 [@]
4	39.26±1.80	41.44±2.48 [@]	48.48±4.88 [@]	43.01±4.67 [@]	49.12±3.11 [@]
5	48.17±2.84	50.69±2.88@	53.52±4.29@	52.07±4.13@	52.01±3.70@
6	39.18±2.96	73.47±2.05*	82.06±3.55*	79.78±3.82*	77.12±4.02*
7	43.85±2.99	77.14±3.23*	80.66±3.56*	89.54±4.26*	88.22±4.42*
8	47.15±2.91	55.39±2.98@	54.32±5.01@	50.67±4.22@	51.19±3.01@
9	42.55±2.33	43.79±2.75 [@]	49.17±3.90 [@]	45.61±3.76 [®]	49.95±3.84 [@]

Hepatocyte suspensions $(5x10^6 \text{ cells/ml})$ in Krebs-Henseleit buffer were maintained at 37° C under an atmosphere of 95% O₂ and 5% CO₂. The cells were incubated with the test compounds (dissolved in DMSO) for 30 min. prior to the addition of the hepatotoxic CCL₄. Carbon tetrachloride was added to the incubation media in all groups at a concentration of 5 mM, except in the normal group where only the vehicle DMSO was added.

^{*} Significantly different from the normal group p<0.05.

[@]Significantly different from control group p<0.05.

Table 2
Effects of different extracts of *A. melegueta* and isolated compounds on glutathione (GSH) depletion induced by carbon tetrachloride using isolated suspended hepatocytes

GSH(nmol/10⁶ cells)

Time after addition of CCl₄ (min)

Treatment	0	60	90	120	180
Normal (DMSO)	61.45±5.05	59.07±4.15	55.67±4.45	54.55±4.23	53.49±4.59
Control (CCl ₄)	62.42±4.93	22.12±2.90	19.67±2.85*	17.96±1.05*	13.09±0.90*
Curcumin (1 µM)	60.25±4.78	54.13±2.24	49.67±3.02@	47.09±3.06@	43.91±3.89@
Methanol extract	61.08±4.64	53.55±3.38	50.32±3.68@	48.42±3.41@	46.02±3.88@
Chloroform extract	59.67±4.02	49.99±3.98	43.19±3.27@	41.46±3.24@i	37.29±3.22@
Hexane extract	60.23±4.35	48.67±3.06	40.67±3.45@	39.28±2.69*@	36.71±1.89*@
Ethyl acetate extract	60.37±2.22	27.67±2.11*	29.67±2.45*	25.40±1.70*	23.94±1.93*
Butanol extract	58.24±2.47	23.67±2.91*	24.67±1.74*	21.40±1.48*	19.94±1.88*
1	59.11±3.86	48.52±3.78	50.29±3.44@	51.33±3.16@	51.29±3.41@
2	58.19±3.45	27.53±2.54*	29.71±2.32*	28.37±1.82*	25.71±1.98*
3	58.67±2.29	23.51±2.79*	24.72±1.74*	21.16±1.44*	19.94±1.58*
4	61.11±4.34	44.13±2.64	48.52±2.15@	50.36±3.44@	49.91±3.89@
5	57.81±4.66	48.67±3.12	47.22±3.18@	49.75±2.42*@	46.71±2.02*@
6	58.43±2.61	28.42±2.61*	30.67±2.68*	32.40±1.66*	31.48±1.93*
7	57.44±2.57	26.32±3.01*	21.43±1.82*	20.62±1.73*	20.73±1.91*
8	60.67±4.02	50.99±3.32	41.19±3.54@	40.46±3.84@	45.29±3.66@
9	57.27±4.59	49.18±3.22	46.81±3.58@	42.28±2.55*@	41.17±2.47*@

Hepatocyte suspensions (5x10⁶ cells/ml) in Krebs-Henseleit buffer were maintained at 37°C under an atmosphere of 95% O₂ and 5% CO₂. The cells were incubated with the different extracts (dissolved in DMSO) for 30 min. prior to the addition of the hepatotoxic CCL₄. Carbon tetrachloride was added to the incubation media in all groups at a concentration of 5 mM, except in the normal group where only the vehicle DMSO was added.

^{*} Significantly different from the normal group p<0.05.

[@]Significantly different from control group p<0.05.

Table 3

Effects of different extracts of *A. melegueta* and isolated compounds on the formation of thiobarbituric acid reactive substances (TBARS) induced by carbon tetrachloride using isolated suspended hepatocytes

TBARS (nmol/10⁶ cells)

Time after addition of CCl₄ (min)

Treatment	0	60	90	120	180
Normal (DMSO)	0.036±0.006	0.043±0.005	0.039±0.005	0.040±0.004	0.042±0.006
Control (CCl ₄)	0.038±0.005	0.197±0.032*	0.287±0.040*	0.284±0.047*	0.301±0.058*
Curcumin (1µM)	0.036±0.003	0.124±0.024@	0.189±0.051*@	0.205±0.053*@	0.183±0.008 *@
Methanol extract	0.036±0.004	0.063±0.013@	0.107±0.026* @	0.099±0.032*@	0.086±0.009*@
Chloroform extract	0.042±0.008	0.085±0.015*	0.093±0.025*	0.090±0.031*@	0.096±0.016*@
Hexane extract	0.041±0.006	0.110±0.028*@	0.132±0.044*@	0.134±0.060*@	0.119±0.012* @
Ethyl acetate extract	0.036±0.003	0.124±0.024*	0.189±0.051*	0.225±0.053*	0.283±0.008*
Butanol extract	0.037 ± 0.002	0.214±0.039*	0.229±0.048*	0.246±0.061*	0.267±0.0063*
1	0.038±0.006	0.102±0.032*@	0.141±0.051*@	0.121±0.059*@	0.099±0.014*@
2	0.042±0.008	0.155±0.020*	0.223±0.068*	0.290±0.081*	0.288±0.069*
3	0.037 ± 0.002	0.204±0.043*	0.234±0.048*	0.233±0.061*	0.269±0.063*
4	0.036±0.004	0.165±0.013*	0.217±0.026*	0.263±0.071*	0.286±0.078*
5	0.041±0.007	0.110±0.028* @	0.132±0.044*@	0.134±0.060*@	0.119±0.012* @
6	0.036±0.003	0.224±0.024*	0.247±0.051*	0.259±0.053*	0.291±0.081*
7	0.041±0.006	0.156±0.052*	0.198±0.067*	0.224±0.089*	0.232±0.057*
8	0.038±0.004	0.075±0.016@	0.115±0.028*@	0.097±0.029*@	0.074±0.010*@
9	0.036±0.003	0.069±0.015@	0.121±0.022*@	0.082±0.032*@	0.066±0.011* @

Hepatocyte suspensions $(5x10^6 \text{ cells/ml})$ in Krebs-Henseleit buffer were maintained at 37°C under an atmosphere of 95% O_2 and 5% CO_2 . The cells were incubated with the different extracts (dissolved in DMSO) for 30 min. prior to the addition of the hepatotoxic CCL_4 . Carbon tetrachloride was added to the incubation media in all groups at a concentration of 5 mM, except in the normal group where only the vehicle DMSO was added.

 $[\]ensuremath{^*}$ Significantly different from the normal group p<0.05.

[@]Significantly different from control group p<0.05.

Table 4 Effects of different extracts of A. melegueta and isolated compounds on the levels of tumor necrosis factor alpha (TNF- α) induced by carbon tetrachloride using isolated suspended hepatocytes

 $TNF-\alpha (pg/ml)$

Time after addition of CCl₄ (min)

Treatment					
	0	60	90	120	180
Normal (DMSO)	102.25±9.32	101.45±6.16	98.12±6.77	96.18±7.56	92.25±3.56
Control(CCl ₄)	99.34±6.61	230.75±10.12*	245.75±11.01*	261.75±13.98*	251.75±11.54*
Curcumin (1 µM)	98.75±7.16	129.02±6.35@	137.02±9.44*@	148.02±1.28*@	158.02±7.95*@
Methanol extract	98.75±7.16	129.02±6.35*	117.02±9.44*@	128.02±5.28*@	141.02±7.95*@
Chloroform extract	96.11±7.55	132.34±9.32 [@]	128.24±9.08 [@]	146.34±1.28 [@]	155.34±9.84 [@]
Hexane extract	103.17±5.98	145.02±7.55*	139.02±8.37*@	146.02±1.28*@	154.02±9.28*@
Ethyl acetate extract	101.22±8.46	217.80±8.23*	212.40±10.82*	214.80±12.43*	$220.80\pm10.22^*$
Butanol extract	99.55±6.14	201.02±6.15*	189.02±7.24*	210.02±9.28*	233.06±8.05*
1	103.17±5.98	145.02±7.55*	139.02±8.37*@	146.02±1.28*@	154.02±9.28*@
2	103.56±6.82	237.11±9.81*	200.55±11.01*	216.80±12.27*	232.75±11.18*
3	101.22±8.46	217.80±8.23*	212.40±10.82*	214.80±12.43*	220.80±10.22*
4	99.34±6.61	230.35±10.12*	245.61±11.01*	261.95±13.98*	251.14±13.54*
5	98.75±7.16	129.87±6.35*	117.38±9.44*@	128.25±5.28*@	141.33±7.95*@
6	99.55±6.14	201.02±6.15*	189.02±7.24*	210.02±9.28*	233.06±8.05*
7	99.34±6.61	196.66±10.41*	206.37±12.07*	223.49±13.32*	225.66±13.11*
8	100.02±6.46	116.58±6.13*	124.72±8.19*@	130.66±5.15*@	138.21±8.03*@
9	96.11±7.55	132.34±9.32 [@]	128.24±9.08 [®]	146.34±1.28 [@]	155.34±9.84 [@]

Hepatocyte suspensions $(5x10^6 \, cells/ml)$ in Krebs-Henseleit buffer were maintained at $37^{\circ}C$ under an atmosphere of 95% O_2 and 5% CO_2 . The cells were incubated with the different extracts (dissolved in DMSO) for 30 min. prior to the addition of the hepatotoxic CCL_4 . Carbon tetrachloride was added to the incubation media in all groups at a concentration of 5 mM, except in the normal group where only the vehicle DMSO was added.

st Significantly different from the normal group p<0.05.

[@]Significantly different from control group p<0.05.

Table 5 Effects of different extracts of A. melegueta and isolated compounds on the levels of interleukin 1-beta (IL-1 β) induced by carbon tetrachloride using isolated suspended hepatocytes

IL-1β (pg/ml)

Time after addition of CCl₄(min)

Treatment	0	60	90	120	180
Normal(DMSO)	34.12±1.69	34.15±1.53	51.14±1.72	43.44±9.42	42.22±2.42
Control(CCl ₄)	35.22±2.56	205.34±8.56*	191.34±6.56*	159.34±7.88*	167.54±9.17*
Curcumin (1 µM)	32.66±2.87	96.88±5.09*@	95.28±4.01*@	74.33±7.51@	61.54±4.02@
Methanol extract	35.18±1.98	82.23±4.01*@	90.68±4.14*@	81.23±5.13@	48.91±2.42@
Chloroform extract	32.66±2.87	96.88±5.09*@	95.28±4.01*@	74.33±7.51@	61.54±9.06@
Hexane extract	35.23±2.56	86.28±4.77*@	97.19±4.58*@	80.37±6.16@	67.91±4.02@
Ethyl acetate extract	35.78±2.63	191.12±9.01*	150.68±5.54*	125.16±8.43*	119.21±7.51*
Butanol extract	34.94±2.42	188.59±5.87*	178.48±5.24*	132.46±5.51*	118.38±3.92*
1	35.17±3.01	91.54±5.27*@	90.28±4.58*@	77.65±7.53@	60.89±4.11@
2	37.67±2.65	181.48±9.68*	167.12±5.79*	148.19±8.64*	139.62±8.04*
3	35.78±2.63	178.65±9.32*	145.68±6.55*	139.16±8.03*	131.52±6.63*
4	38.33±2.68	171.75±5.88*	180.16±5.85*	170.18±6.77*	159.44±6.02*
5	35.55±2.85	87.39±4.86*@	97.17±4.47*@	82.30±6.43@	68.91±4.49@
6	35.16±1.98	186.73±4.26*	193.16±4.65*	161.23±5.13*	148.91±3.82*
7	34.55±2.87	168.12±5.63*	156.48±5.19*	142.88±6.11*	128.33±3.89*
8	32.18±2.77	86.33±5.54*@	97.45±4.60*@	84.65±7.57@	71.14±4.54@
9	33.98±3.06	81.22±4.34*@	90.57±4.58*@	80.37±6.88@	77.67±4.51@

Hepatocyte suspensions $(5x10^6 \, cells/ml)$ in Krebs-Henseleit buffer were maintained at $37^{\circ}C$ under an atmosphere of 95% O_2 and 5% CO_2 . The cells were incubated with the test compound (dissolved in DMSO) for 30 min. prior to the addition of the hepatotoxic CCL_4 . Carbon tetrachloride was added to the incubation media in all groups at a concentration of 5 mM, except in the normal group where only the vehicle DMSO was added.

^{*} Significantly different from the normal group p<0.05.

[@]Significantly different from control group p<0.05.

Table 6

Effects of different compounds on caspase-3 activity induced by carbon tetrachloride using isolated suspended hepatocytes

Caspase-3 activity(U/well)

Time after addition of CCl₄ (min)

Treatment	0	60	90	120	180
Normal (DMSO)	0.65±0.049	0.63±0.032	0.69±0.045	0.68±0.053	0.72±0.036
Control (CCl ₄)	1.37±0.065*	1.39±0.051*	1.51±0.049*	1.53±0.058*	1.68±0.061*
Curcumin (1 µM)	0. 63±0.039@	0.66±0.042@	0.69±0.048@	0.75±0.072@	0.81±0.069@
1	0.68±0.053@	0.72±0.042@	0.74±0.071@	0.81±0.059@	0.89±0.044@
2	1.32±0.059*	1.35±0.070*	1.43±0.068*	1.49±0.071*	1.58±0.079*
3	1.37±0.042	1.54±0.043*	1.64±0.068*	1.73±0.051*	1.79±0.049*
4	1.25±0.089*	1.26±0.063*	1.37±0.086*	1.43±0.091*	1.56±0.072*
5	0.60 ± 0.027 @	0.69±0.058@	0.72±0.084@	0.84±0.068@	0.91±0.012@
6	1.36±0.033	1.44±0.054*	1.47±0.051*	1.59±0.063*	1.91±0.081*
7	1.41±0.063*	1.46±0.052*	1.48±0.077*	1.54±0.069*	1.58±0.067*
8	0.59±0.049@	0.61±0.036@	0.65±0.028@	0.77±0.059@	0.84±0.070@
9	0.71±0.003@	0.75±0.015@	0.81±0.022@	0.82±0.032*@	0.86±0.011@

Hepatocyte suspensions $(5x10^6 \text{ cells/ml})$ in Krebs-Henseleit buffer were maintained at 37°C under an atmosphere of 95% O₂ and 5% CO₂. The cells were incubated with three concentrations of the test compound curcumin (dissolved in DMSO) for 30 min. prior to the addition of the hepatotoxic CCL₄. Carbon tetrachloride was added to the incubation media in all groups at a concentration of 5 mM, except in the normal group where only the vehicle DMSO was added.

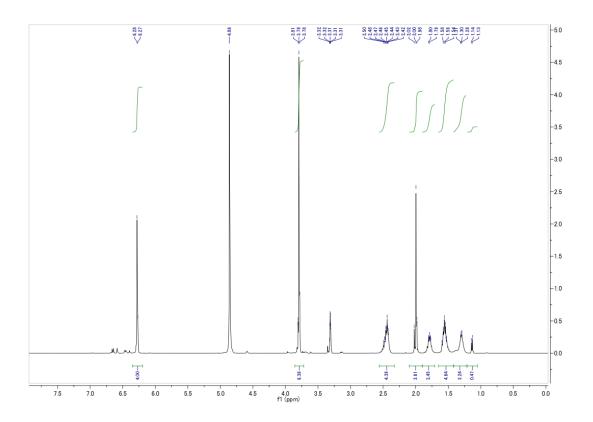
^{*} Significantly different from the normal group p<0.05.

[@]Significantly different from control group p<0.05.

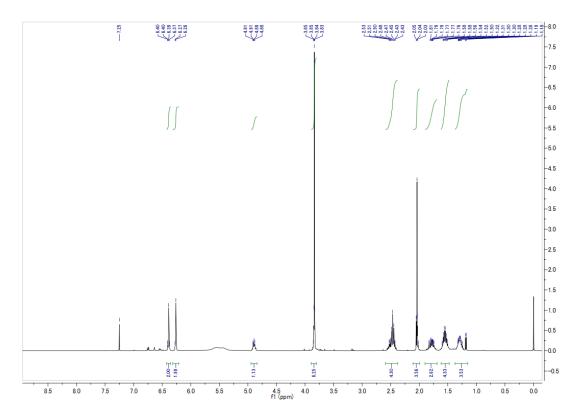
Table 7

Effects of different compounds on caspase-9 activity induced by carbon tetrachloride using isolated suspended hepatocytes

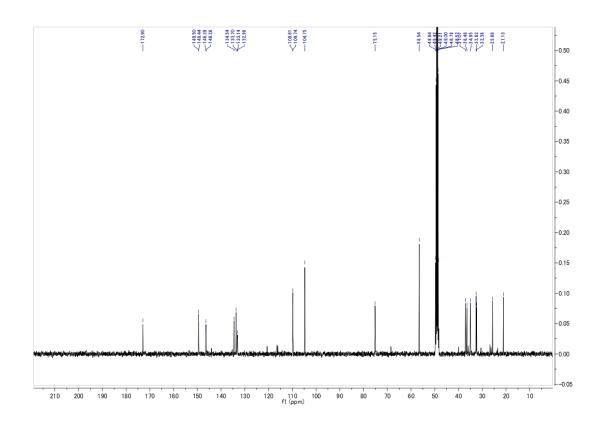
Caspase-9 activity(U/well)


Time after addition of CCl₄ (min)

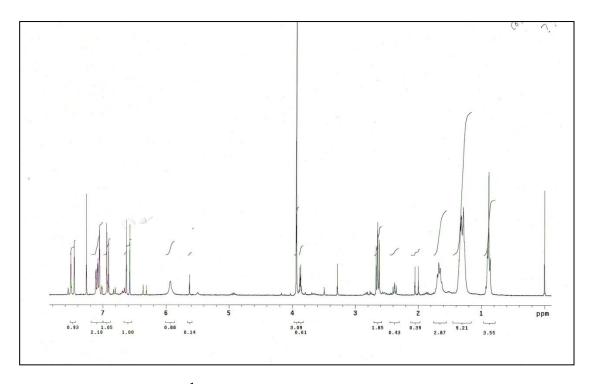
Treatment	0	60	90	120	180
Normal (DMSO)	0.49±0.059	0.51±0.054	0.55±0.062	0.60±0.53	0.59±0.061
Control (CCl ₄)	1.02±0.032*	1.22±0.031*	1.41±0.039*	1.49±0.048*	1.68±0.061*
Curcumin (1 µM)	0.56±0.072@	0.60±0.054@	0.63±0.055@	0.68±0.071@	0.70±0.081@
1	0.63±0.045@	0.62±0.042@	0.54±0.061@	0.61±0.069@	0.69±0.074@
2	1.15±0.030*	1.15±0.033*	1.48±0.058*	1.39±0.071*	1.28±0.056*
3	1.19±0.042	1.24±0.073*	1.34±0.038*	1.43±0.061*	1.69±0.068*
4	1.17±0.041*	1.19±0.023*	1.21±0.022*	1.23±0.031*	1.29±0.028*
5	0.41±0.055@	0.40±0.032@	0.52±0.053@	0.64±0.040@	0.69±0.072@
6	1.03±0.027	1.24±0.034*	1.27±0.051*	1.59±0.083*	1.58±0.092*
7	1.15±0.042*	1.16±0.082*	1.19±0.044*	1.24±0.091*	1.32±0.075*
8	0.38±0.014@	0.65±0.036@	0.62±0.048@	0.67±0.069@	0.74±0.060@
9	0.36±0.013@	0.49±0.025@	0.51±0.052@	0.62±0.082@	0.66±0.071@


Hepatocyte suspensions $(5x10^6 \text{ cells/ml})$ in Krebs-Henseleit buffer were maintained at 37°C under an atmosphere of 95% O₂ and 5% CO₂. The cells were incubated with three concentrations of the test compound curcumin (dissolved in DMSO) for 30 min. prior to the addition of the hepatotoxic CCL₄. Carbon tetrachloride was added to the incubation media in all groups at a concentration of 5 mM, except in the normal group where only the vehicle DMSO was added.

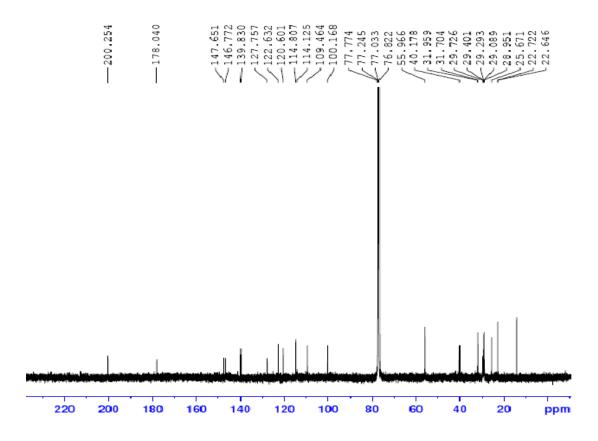
^{*} Significantly different from the normal group p<0.05.


[@]Significantly different from control group p<0.05.

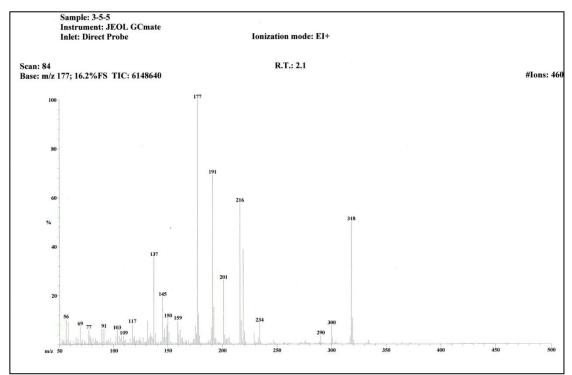
 ^{1}H -NMR chart of compound 1(CD3OD)

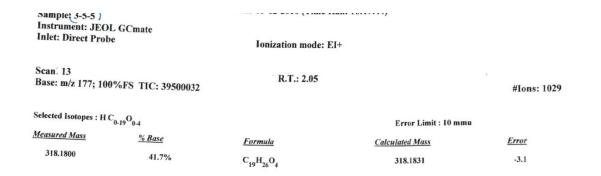


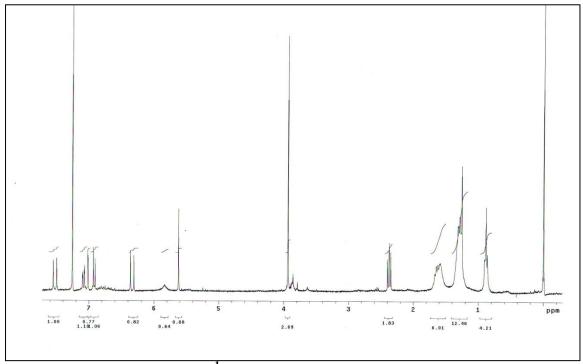
¹H-NMR of compound 1 (CDCl3)

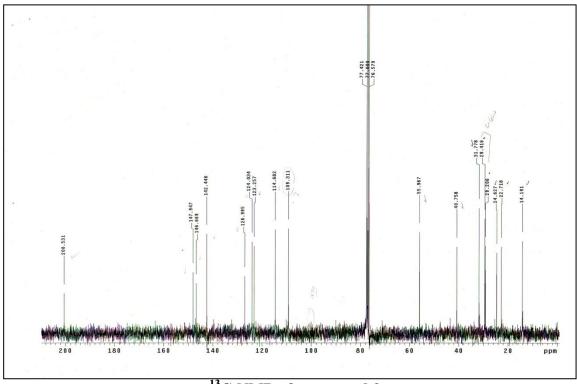


13C-NMR of compound 1 (CD3OD)


HREIMS of compound 1 Sample 9-5-8 Instrument: JEOL GCmate Inlet: Direct Probe Ionization mode: EI+ Scan: 20 R.T.: 3.23 Base: m/z 434; 100%FS TIC: 50630352 #Ions: 1743 Selected Isotopes : H $C_{0-23}O_{0-8}$ Error Limit: 10 mmu Measured Mass % Base <u>Formula</u> Calculated Mass Error 434.1874 100.0% $\mathbf{C_{23}H_{30}O_{8}}$ 434.1941 -6.7


¹H-NMR chart of compound 2


¹³C-NMR chart of compound 2


EI-MS of compound 2


HREIMS of compound 2

¹H-NMR of compound 3

¹³C-NMR of compound 3

EI-MS of compound 3