

Supplementary Figure 1. Validation of the subcellular localization of PTEN β in the nucleolus.

(a) Differing sets of PTEN, PTEN α and PTEN β constructs. A TAG triplet was inserted in the C-terminus of PTEN, PTEN α and PTEN β sequences in constructs as indicated in Figure 4a, in order to abolish expression of GFP tag.

(**b,c**) Subcellular localization of exogenous PTEN α , PTEN β or PTEN without tag. Constructs in (**a**) were introduced into Hela PTEN null cells. Twenty-four hours after transfection, cells were stained with DAPI and a PTEN antibody (ABM-2502) (**b**) or PTEN antibody (sc-7974) (**c**), followed by imaging with confocal microscopy. The scale bars represent 10µm.

Supplementary Figure 2. The N-terminal extended sequences are solely responsible for localization of PTEN α on mitochondria and accumulation of PTEN β in the nucleolus.

Plasmids expressing N-terminal extended sequences of PTEN α (AA 1-173) and PTEN β (AA 1-146) were constructed with a C-terminal GFP tag. The indicated plasmids were introduced into Hela PTEN null cells, followed by imaging with confocal microscopy. UBF was used as a nucleolar marker and MitoTracker was used to label mitochondria. GFP tagged mock plasmids were transfected as a negative control. The scale bars represent 5µm.

Supplementary Figure 3. PTENβ is evolutionarily conserved.

Clustal-W alignment of the N-terminal extended sequence of Human PTEN β with the genomic sequence from Mouse (Mouse Dec. 2011(GRCm38/mm10)), Elephant (Elephant Jul. 2009 (Broad/loxAfr3)) and Horse (Sept 2007(Broad/equCab2)) obtained from the UCSC genome browser (<u>http://genome.ucsc.edu/</u>). The conserved sequences are highlighted in yellow. The poly-arginine sequence in the N-terminal extended domain of PTEN β is highlighted in the red box.

Accession	Gene	Function	
O43660	PLRG1	mRNA splicing, via spliceosome	
P52597	HNRNPF	nucleotide binding	
Q9Y2X3	NOP58	biogenesis of box C/D snoRNAs such as U3, U8 and U14 snoRNA	
000567	NOP56	biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs	
P19338	NCL	pre-rRNA transcription and ribosome assembly	
015160	POLR1C	synthesize ribosomal RNA precursors	
Q9Y2S0	POLR1D	synthesize ribosomal RNA precursors	
F2Z3C0	RPS9	structural constituent of ribosome	
M0R3D6	RPL18A	structural constituent of ribosome	
G5E9W7	MRPS22	Ribonucleoprotein, Ribosomal protein	
Q5JR95	RPS8	structural constituent of ribosome	

Supplementary Figure 4. Various potential PTENβ interacting nucleolar proteins identified by mass spectrometry analysis.

(a) Identification of nucleolar proteins that may interact with PTEN β by mass spectrometry analysis. Nucleolar proteins pull-downed by PTEN β which are more than 3 times as abundant as PTEN and PTEN α control groups are listed.

(**b**) Functionally grouped KEGG and GO Biological Process and Cellular Component term annotation network of PTEN β pull-down genes. The nodes represent enriched terms, and node size indicates term enrichment significance after

а

Benjamini-Hochberg correction. The edges between two nodes represent initial genes shared between two enriched GO terms, and the thickness of the edges is based on their kappa scores. The calculated kappa score is also used for defining functional groups, which are displayed as nodes of the same color. The enriched terms of greatest interest are shown in bold face. The terms related to ribosomal biogenesis are highlighted in the red box. The terms related to additional ribosomal functions, such as the processing of mRNA, regulation of telomerase activity and regulation of the cell cycle are highlighted in blue boxes. The other terms are highlighted in the black box.

Supplementary Figure 5. The N-terminal domain of PTENβ is essential for its interaction with nucleolin.

(a) A set of full length or truncated PTEN β constructs with a C-terminal GFP tag. The AUG start codon of canonical PTEN was mutated to AUA in full length PTEN β constructs in order to abolish expression of canonical PTEN.

(**b**) The constructs indicated in (**a**) were introduced into HEK 293T cells, followed by immunoprecipitation with GFP antibody, followed by western blotting with an anti-nucleolin antibody.

Supplementary Figure 6. PTENβ, like canonical PTEN, acts as an antagonist of the PI3K pathway.

(a) C-terminal GFP tagged PTEN, PTEN α or PTEN β were separately introduced into 786-O cells (no endogenous PTEN expression) followed by immunoblotting with p-AKT, AKT, or GFP antibody.

(**b**) C-terminal GFP tagged wild type PTENβ, PTENβ with lipid phosphatase activity abolished (G275E, analogous to PTEN (G129E)), PTENβ with protein phosphatase activity abolished (Y284L, analogous to PTEN (Y138L)) and PTENβ with both lipid and protein phosphatase activity abolished (C270S, analogous to PTEN (C124S)) were introduced separately into 786-O cells, followed by immunoblotting with p-AKT, AKT, or GFP antibodies.

Supplementary Figure 7. The nucleolin phosphatase activity of PTENβ is linked to its localization in the nucleolus.

PTEN α and PTEN β double knockout Hela cells were transfected with C-terminal GFP tagged PTEN β or C-terminal GFP tagged PTEN $\beta \Delta R^6$, followed by immunoblotting with p-nucleolin (Thr 84), nucleolin, or GFP antibody.

Supplementary Figure 8. Determination of transfection efficiency.

(a) C-terminal GFP tagged PTEN α and PTEN β were introduced into PTEN α and PTEN β double knockout cells, followed by immunoblotting with GFP antibody. β -actin was used as a control.

(**b**) Exogenous PTEN α and PTEN β without a tag were introduced into PTEN α and PTEN β double knockout cells, followed by immunoblotting with a PTEN monoclonal antibody. β -actin was used as a control.

Supplementary Figure 9. The majority PTEN isoforms show mutually exclusive localization.

Plasmids expressing C-terminal DsRed2 tagged PTEN α , C-terminal GFP tagged PTEN β and C-terminal FLAG tagged PTEN were constructed and co-transfected in Hela PTEN null cells. A monoclonal FLAG antibody (Sigma-Aldrich, F3165) was used to label PTEN. Empty PEGFP-N1 and pDsRed2-N1 plasmids were transfected as controls. The scale bars represent 5µm.

Supplementary Figure 10. Polyclonal anti-nucleolin antibody raised in our laboratory.

(a) The RNA binding domain of nucleolin (RBD) was cloned into the pET28a plasmid (upper panel) for protein purification and antibody generation. Purified His-RBD is shown in a SDS-PAGE gel (lower panel). Mass spectrometry analysis confirmed the peptide sequence of nucleolin.

(**b**) Verification of antibody specificity. Western blot analysis in HCT116 cells with nucleolin antibody established in our laboratory as indicated in (a), or with a commercial antibody (sc-55486).

LERGGEAAAAAAAAAAAAAGGRGSESPVTMSRAGNAGELVSPLLLPPTRRRRRHIQGPGPV LNLPSAAAAPPVARAPEAAGGGSRSEDYSSSPHSAAAAARPLAAEEKQAQSLQPSSSRS SHYPAAVQSQAAAERGASATAKSRAISILQKKPRHQQLLPSLSSFFFSHRLPDMTAIIKE IVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKI YNLCAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAG KGRTGVMICAYLLHRGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHLD YRPVALLFHKMMFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQPL PVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEIDSICSIE RADNDKEYLVLTLTKNDLDKANKDKANRYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTP DVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQITKV

а

Human

b LERGGEAAAAAAAPGRGSESPVTMARAGNAGELLSPLLLPPTRRRRRHVQGPGPVLSLPSA AAAPPLARAPEAAGGGSRCEDYPSSPHSAASAARPLAAEEKQAQSLQPSSSRRSSHYPAAVQ GQAAAERGASATAKSRAISILQKKPRHQQLLPSLSSFFSHRLPDMTAIIKEIVSRNKRRYQ EDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNLCAERHYDTA KFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLLH RGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETI PMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFFHKQNKML KKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTKNDLDK ANKDKANRYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPEN EPFDEDQHSQITKV

Mouse

Supplementary Figure 11. Sequences supplemented in the UniProt database.

(**a**,**b**) N-terminal extended PTEN sequence supplemented in the UniProt Human database (**a**) or in the UniProt Mouse database (**b**) for raw file searching by Proteome Discoverer. The most proximal N-terminal amino acids of PTEN α or PTEN β are highlighted separately in green or red.

Supplementary Figure 12. Original immunoblots for indicated figures.

Figure 3

Supplementary Figure 13. Original immunoblots and polyacrylamide gels for indicated figures.

Figure 5

Supplementary Figure 14. Original immunoblots and agarose gels for indicated figures.

Supplementary Figure 15. Original immunoblots and polyacrylamide gels for indicated figures.

Supplementary	y Table	1. A	list of	antibodies	used in	this	study
---------------	---------	------	---------	------------	---------	------	-------

				Dilution ratio			
Species	Antigen	Clone#	Company (Cat#)	Immuno	Immuno	Immuno	Citation
				blotting	precipitation	fluorescence	
Mouse monoclonal	PTEN	A2B1	Santa Cruz (sc-7974)	1:1000		1:200	1
Rabbit monoclonal	PTEN	138G6	Cell Signaling (#9559)	1:1000			2
Mouse monoclonal	PTEN	6H2.1	ABM (#2502)			1:200	3
Rabbit polyclonal	GFP		MBL (#598)	1:5000	1:500		4
Rabbit polyclonal	AKT		Cell Signaling (#9272)	1:1000			5
Rabbit polyclonal	AKT Phospho (T473)		Cell Signaling (#9271)	1:1000			5
Rabbit monoclonal	nucleolin Phospho (T84)	EPR8080	Abcam (ab155977)	1:2000			N/A
Mouse monoclonal	UBF	F-9	Santa Cruz (sc-13125)			1:200	6
Rabbit polyclonal	β-actin		MBL (pm053)	1:5000			7
Mouse monoclonal	GAPDH	1C4	Sungene Biotech (KM9002)	1:5000			N/A
Mouse monoclonal	FLAG	M2	Sigma-Aldrich (F3165)	1:5000	1:500	1:300	8
Mouse monoclonal	β-tubulin	3G7	Sungene Biotech (KM9003)	1:5000			N/A
Mouse polyclonal	ΡΤΕΝα		Homemade		1:500		9
Rabbit polyclonal	nucleolin		Homemade	1:2000			

Vector	Forward primer (5'-3')	Backward primer (5'-3')		
PTEN-GFP	CCGGAATTCATGACAGCCATCAT	CGCGGATCCGCGACTTTTGTAATT		
	CAAAGAG	TGTGTATGC		
PTENα-GFP	CCGGAATTCCTGGAGCGGGGGG	CGCGGATCCGCGACTTTTGTAATT		
	GAGAAG	TGTGTATGC		
ΡΤΕΝβ-GFP	CCGGAATTCATTTCCAGGGCTGG	CGCGGATCCGCGACTTTTGTAATT		
	GAACG	TGTGTATGC		
DTEN C (CCGGAATTCATGACAGCCATCAT	CGCGGATCCGACTTTTGTAATTTG		
FIEN-5-lag	CAAAGAG	TGTATGC		
DTENG S tog	CCGGAATTCCTGGAGCGGGGGG	CGCGGATCCGACTTTTGTAATTTG		
PTEING-S-lag	GAGAAG	TGTATGC		
PTENβ-S-tag	CCGGAATTCATTTCCAGGGCTGG	CGCGGATCCGACTTTTGTAATTTG		
	GAACG	TGTATGC		
PTENα-His	CCGGAATTCCTGGAGCGGGGGG	CGCGGATCCGACTTTTGTAATTTG		
	GAGAAG	TGTATGC		
ELAC nucleolin	CGCGGATCCATGGTGAAGCTCG	CCGGAATTCCTATTCAAACTTCGT		
rLAG-nucleolin	CGAAGGC	CTTC		

Supplementary Table 2. Primers for constructing plasmids

Supplementary Table 3. Primers for mutagenesis

Vector	Forward primer (5'-3')	Backward primer (5'-3')		
DTEN: CTC^{513} CTC	CGGCACCTCCCGCTCCTC	CTTCTCCCCCCGCTCGAG		
PIENaCIG >CIC	GAGCGGGGGGGGAGAAG	GAGCGGGAGGTGCCG		
DTENA ATT ⁵⁹⁴ , CTC	GAGTCGCCTGTCACCCTC	GTTCCCAGCCCTGGAGAGG		
FIENUAII >CIC	TCCAGGGCTGGGAAC	GTGACAGGCGACTC		
DTEN: TTC^{621} CTC	GGGAACGCCGGAGAGCTC	TAGAAGGGGAGAGACGAG		
PIENUIIG >CIC	GTCTCTCCCCTTCTA	CTCTCCGGCGTTCCC		
DTENA ATC ¹⁰³² ATA	CACAGGCTCCCAGACATA	CTTTGATGATGGCTGTTAT		
FIENUAIO >AIA	ACAGCCATCATCAAAG	GTCTGGGAGCCTGTG		
DTENIO A CC ⁵⁹¹ deletion	TCTGAGTCGCCTGTCATTT	CTAAGCCCTGGAAATGACA		
PTENPACC deletion	CCAGGGCTTAG	GGCGACTCAGA		
PTENβ GTCACC ⁵⁸⁸	GGGTCTGAGTCGCCTATT	CCCAGCCCTGGAAATAGGC		
deletion	TCCAGGGCTGGG	GACTCAGACCC		
DTENR TCT ³⁷² , TCT	TTGCAGCAATTCACTCTA	GTCCCTTTCCAGCTTTAGA		
PIENPIGI >ICI	AAGCTGGAAAGGGAC	GTGAATTGCTGCAA		
DTENO COA 387 , CAA	GTAAAGCTGGAAAGGAAC	CATTACACCAGTTCGTTCCT		
PTENP GGA >GAA	GAACTGGTGTAATG	TTCCAGCTTTAC		
DTENO TAT ⁴¹⁴ , CTT	GTAATGATATGTGCACTT	GCCCCGATGTAATAAAAGT		
FIENDIAL ZII	TTATTACATCGGGGC	GCACATATCATTAC		
PTEN β ATT ⁵⁹⁴ downstream	GAACGCCGGAGAATTGGT	GGCAGTAGAAGGGCTGAG		
palindrome disruption	CTCAGCCCTTCTACTGCC	ACCAATTCTCCGGCGTTC		

Target	Forward primer (5'-3')	Backward primer (5'-3')		
45S pre-rRNA	CCTGCTGTTCTCTCGCGCG	AACGCCTGACACGCACGGC		
-	TCCGAG	ACGGAG		

Supplementary Table 4. Primers for RT-PCR

Supplementary References

- 1. Zhang H, Zhou X, Xu C, Yang J, Xiang J, Tao M, *et al.* Synergistic tumor suppression by adenovirus-mediated ING4/PTEN double gene therapy for gastric cancer. *Cancer gene therapy* 2016, **23**(1): 13-23.
- Wan X, Helman LJ. Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. *Oncogene* 2003, 22(50): 8205-8211.
- 3. Kwak MK, Johnson DT, Zhu C, Lee SH, Ye DW, Luong R, *et al.* Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors. *PloS one* 2013, **8**(1): e53476.
- 4. Tsuruta F, Green EM, Rousset M, Dolmetsch RE. PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. *The Journal of cell biology* 2009, **187**(2): 279-294.
- Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. *Cell* 1997, 88(4): 435-437.
- Wandrey F, Montellese C, Koos K, Badertscher L, Bammert L, Cook AG, et al. The NF45/NF90 Heterodimer Contributes to the Biogenesis of 60S Ribosomal Subunits and Influences Nucleolar Morphology. *Molecular and cellular biology* 2015, **35**(20): 3491-3503.
- 7. Wang G, Li Y, Wang P, Liang H, Cui M, Zhu M, *et al.* PTEN regulates RPA1 and protects DNA replication forks. *Cell research* 2015, **25**(11): 1189-1204.
- 8. Gu X, Mao X, Lussier MP, Hutchison MA, Zhou L, Hamra FK, *et al.* GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons. *Nature communications* 2016, **7**: 10873.
- Liang H, He S, Yang J, Jia X, Wang P, Chen X, et al. PTENalpha, a PTEN isoform translated through alternative initiation, regulates mitochondrial function and energy metabolism. *Cell* metabolism 2014, 19(5): 836-848.