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In this Supplementary Material, we provide numerical details for the paper.

1 Preliminary of State Space Reconstruction, Cross Map and
Smoothness

In this part, the preliminary knowledge of delayed embedding and cross map will be reviewed.

1.1 State Space Reconstruction
Consider an n-dimensional dynamical system and its attractor M with state variables x(t) =
[x1(t), x2(t), . . . , xn(t)]. Assume two scalar time series x1(t) and x2(t) are measured from two
components x1 and x2. With appropriately chosen embedding dimension L and proper positive
delay τ , one can obtain time delayed coordinate vectors x1(t) = [x1(t), x1(t − τ), . . . , x1(t −
(L − 1)τ)]T and x2(t) = [x2(t), x2(t − τ), . . . , x2(t − (L − 1)τ)]T respectively. Generally,
if L > 2d where d is the box counting dimension of the attractor M , according to delayed
embedding theory, the set of x1(t) forms the reconstructed attractor Mx1, and one can define
Mx2 in an analogous way. Figure S1 illustrates the case of the chaotic Lorenz system with its
attractor M and two reconstructed attractors Mx,My.

1.2 Nearest Neighbors, Mutual Neighbors and Cross Map
Consider two attractors Mx and My reconstructed from two scalar time series x(t) and y(t).
For one point y(t0) ∈ My, one can find its k nearest neighbors y(ty1),y(ty2), . . . ,y(tyk)
with indices ty1 , ty2 , . . . , tyk , and one can define the mutual neighbors for x(t0) ∈ Mx as
x(ty1),x(ty2), . . . ,x(tyk), as shown in Fig.1(a). In a similar way we can define the mutual
neighbors for y(t0) from the nearest neighbors of x(t0) as y(tx1),y(tx2), . . . ,y(txk

), as shown
in Fig.1(b). Such map from nearest neighbors to mutual neighbors is defined as a cross map.

1.3 Convergence of Cross Map and Smoothness
The fundamental idea of the mutual cross map method is that if x causally influences y or x
is a driving factor of y (i.e., x → y), then the information of x is encoded in the dynamics
of y, and thus two close states on My correspond to two close states on Mx. Explicitly, for
each point y(t0) on My and its k nearest neighbors y(ty1),y(ty2), . . . ,y(tyk) with time indices
ty1 , ty2 , . . . , tyk , the weighted average of the mutual nearest neighborsx(ty1),x(ty2), · · · ,x(tyk)
can be used as an estimation of x(t0), see Fig.1(a). Inversely, if y has no influence over x,
the dynamics of x is insensitive to the state of y, thus the mutual neighbors, i.e., the images
of x(t0)’s nearest neighbors under the cross map Φxy : Mx → My, are not necessarily the
neighbors of y(t0), as illustrated in Fig.1(b).
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As the measured length of time series x(t) and y(t) increases to infinity, the points become
dense over the reconstructed attractors Mx and My. Thus, the k nearest neighbors of y(t0) will
converge to y(t0), and if x causally influences y, the mutual neighbors for x(t0) under cross
map Φyx will also converge to x(t0), yielding more precise estimation. On the other hand, this
is not necessary for the cross map Φxy if y has no causality over x.

Such convergence actually reflects the smoothness of the cross map, i.e., the cross map
Φyx : My →Mx maps the neighborhood of y(t0) to the neighborhood of x(t0), which actually
implies that Φyx is locally smooth around y(t0), while for Φxy this is not necessarily true. When
the cross map Φyx is smooth over neighborhood of every point y ∈ My, it implies that Φyx is
globally smooth over My, as shown in Fig.1(c). While for the case where y has no causality
over x, the cross map Φxy is not necessarily smooth, as illustrated in Fig.1(d).

2 CMS Algorithm
Here we assume the delayed coordinate vectors xi ∈ RL, i = 1, 2, . . . , n and yi ∈ RL, i =
1, 2, . . . , n are obtained from the measured scalar time series x(t) and y(t) in the preprocessing.
The algorithm to detect the causality Rxy from x to y can be formulated as follows.

Algorithm1 Cross Map Smoothness with RBF network Algorithm

Given two data set x1,x2, . . . ,xn ∈ RL and y1,y2, . . . ,yn ∈ RL, let Si = {1, 2, . . . , n}\i be
the leave-one-out index set.
1. For i = 1, 2, . . . , n

–Train a Radial Basis Function (RBF) networkNi based on the conditionNi(yj) = xj, j ∈ Si

–Calculate x̂i = Ni(yi)
–Calculate the error as εi = ‖xi − x̂i‖
End For

2. Normalize the error as ∆ =
〈ε〉rms

〈‖x− x̄‖〉rms

and calculate the causality index as

Rxy =
1

exp(∆/σ)
,

where x̄ is the mean vector of x1,x2, . . . ,xn.

Here, ‖ · ‖ is the vector norm, and 〈·〉rms is the root mean square of the set. σ is a positive
constant to normalize the index so that the long tail can be cut into zero, and empirically we
choose σ = 5 throughout the paper. Based on the fact that CMS index (Rxy) provides only the
strength of the causative effectiveness from x to y with a positive value normalized in [0, 1], the
positive or negative regulation between the two variables should be further measured by using
other criteria, e.g., correlation analysis.
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3 2 Species Logistic Model
The 2 species Logistic model is formulated as

X(t+ 1) = X(t)[rx − rxX(t)− γxyY (t)],
Y (t+ 1) = Y (t)[ry − ryY (t)− γyxX(t)],

(1)

where rx = 3.7 and ry = 3.8 are self-regulation parameters; γyx and γxy are two coupling
constants. In the unidirectional case, we assume the coupling constants taking values γyx =
0.32, γxy = 0. We use γyx = 0.1 and γxy = 0.02 for the bidirectional case. In the causali-
ty switching setting, we assume the coupling-constant pair switches values between two sets
{γyx = 0.32, γxy = 0} and {γyx = 0, γxy = 0.32} at random intervals, indicating that the uni-
directional causal relation between the two variables changes the direction from time to time.
Here, the delay embedding dimension L is chosen as L = 2. Random numbers distributed uni-
formly in [0, 1] are used as system initial conditions and 20 time points after transient dynamics
are measured as time series.

4 Complex system with 3 nodes
A complex system consisting of 3 nodes can be described as

Yj(t+ 1) = Yj(t)

(
γjj −

∑
i=1,2,3

γjiYi(t)

)
, j = 1, 2, 3, (2)

where γji are coupling parameters. In the fan-out pattern, the parameters are set as γ11 =
4, γ22 = 3.1, γ33 = 2.12, γ21 = 0.21, and γ31 = −0.636 while other parameters are set to zero.
In the fan-in pattern, the parameters values are γ11 = 4, γ22 = 3.6, γ33 = 2.12, γ31 = 0.636,
and γ32 = −0.636, and all the other parameters are set to zero. Random numbers distributed
uniformly in [0, 1] are used as system initial conditions and 20 time points are measured after
transient dynamics. The delay embedding dimension L is chosen as L = 2.
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5 Coupled Rössler-Lorenz system
We follow the setting in [1] so that the driving Rössler system and the response Lorenz system
are given by the following equations:

Rössler system X:
ẋ1 = −α(x2 + x3),
ẋ2 = α(x1 + 0.2x2),
ẋ3 = α(0.2 + x3(x1 − 5.7)),
Lorenz system Y:
ẏ1 = 10(−y1 + y2),
ẏ2 = 28y1 − y2 − y1y3 + Cx22,
ẏ3 = y1y2 − 8/3y3,

(3)

where α = 6 is a timescale constance and C = 2 is the strength of the unidirectional coupling.
The initial values of the system is randomly chosen and we assume that the sampling interval
is ∆t = 0.2. After the transient dynamics, both the driving and response systems come to
chaotic attractors. We use a time series with 50 time points to detect the causality between
the two systems. Here it is noted that for continuous systems, the sampling interval should be
moderately large and too small sampling intervals will bring short term data too close to each
other on the attractor and no geometric information can be extracted.

6 Gene regulatory network
The synthetic gene expression data sets are generated by the synthetic network generator, Syn-
TReN [2], which produces simulated gene expression data of the associated mRNA concentra-
tions for each gene, based on Michaelis-Menten and Hill kinetics. The topology of the regula-
tory network and the interactions (activating, repressing, or dual) are from the real network of
E.coli or S. cerevisiae, and various kinds of noise can be considered to approximate experimen-
tal expression measurements.

We generate GRN data with a subnetwork of 50 genes for E.coli and subnetworks of 100 and
150 genes for S. cerevisiae, using the cluster addition strategy to randomly select a connected
subgraph of the whole network. The cluster addition strategy randomly chooses and adds a
node into the graph together with all its neighbors, which efficiently extracts a subnetwork that
approximates well the topology of the source network. We generate GRN data with 10 time
points for each gene, uniformly sampled in time. For the noisy data, we consider three levels
of noise intensities, namely, 0.1, 0.2, and 0.3. For each level of noise intensity, we consider
three kinds of noise simultaneously, namely, the biological noise, the experimental noise and
noise on correlated inputs. Moreover, for the noisy data, synthetic gene expression data with
6 independent noisy technical replicates have been generated from the subnetwork, and we
use the average values of the technical replicates to approximate the measurements from real
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experiments. The embedding dimension L in the CMS algorithm is chosen as L = 2 according
to the FNN test.

7 SCN data
The gene expression profiles was measured with Affimetrix microarray (Genechip Rat Genome
230 2.0), and the 16 time points were measured after the drug perturbation in the 19th hour. The
circadian oscillation of Per1 expression was immediately phase-shifted by forskolin, resembling
the abrupt light-induced phase shift that takes place in SCN. The measuring time points are from
22.5 hour to 90 hour with an even time interval of 4.5 hours. The embedding dimension L in
the CMS algorithm is chosen as L = 2.

8 Lotka-Volterra system
The chaotic Lotka-Volterra system [3] is formulated as

x1(t+ 1) = x1(t)(2− x1(t) + 0.675x2(t)− 0.5x3(t)),
x2(t+ 1) = x2(t)(2− 0.5x1(t)− x2(t) + 0.675x3(t)),
x3(t+ 1) = x3(t)(2 + 0.675x1(t)− 0.5x2(t)− x3(t)).

(4)

9 Training Radial Basis Function (RBF) network
A Radial Basis Function (RBF) network can be trained using training data and the error can be
calculated using validation data set [4]. Generally, a Radial Basis Function (RBF) network N
can be expresses as

N (x) =
∑
i

aiρi(x, ci),

where each ρi is a radial basis function with its center located at ci, and each ai is a weight.
Here, we set each radial basis function in the following Gaussian form:

ρi(x, ci) = exp(
−‖x− ci‖2

2σ2
i

),

where ‖x− ci‖ is the L2-norm in Rn, ci denotes the center for ρi, and σi denotes its width.
In Algorithm 1, the RBF network is trained using conditions Ni(xj) = yij, j ∈ S, where

yij is the ith component of the vector yj . Here we note that for short time series data, the size
of training set S is usually smaller than the size of the network, i.e., there are more coefficients
to be determined than the number of independent equations. Therefore, the problem will be
generally catalogued into an underdetermined problem.
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Even though the underdetermined problem raised above would be a difficult problem, in
many situations, especially with the proper choice of radial basis functions, the number of zero
or nearly zero coefficients in the network can be of majority so that the coefficient vector is
effectively sparse. Therefore, the recently developed idea of compressive sensing [5] provides
a practical technique to solve the problem of determining the RBF network N .

Generally, the problem of compressive sensing can be described as to reconstruct a sparse
vector x0 ∈ Rn with m linear measurements of the form y = Ax0, where A ∈ Rm×n are m
known test signals and y ∈ Rm are the measurements. According to the compressive sensing
theory, when m � n, one can still actually recover x0 exactly by solving the convex program
minx ‖x‖l1 subject to Ax = y, where ‖x‖l1 =

∑n
i=1 |xi| with the L1 norm of vector x,

provided that the matrix A ∈ Rm×n obeys a uniform uncertainty principle [5].
Thus the solution of the Algorithm 1 can be casted into the compressive sensing problem.

First, let x̂j = [ρ1(xj), ρ2(xj), . . . , ρk(xj)]
T where ρl is the lth radial basis function in the

network. Therefore, the solution in every iteration can be expressed as to solve

Xαi = y,

where X = [x̂1, x̂2, . . . , x̂m]T , y = [yi1, yi2, . . . , yim]T , and αi = [a1, a2, . . . , ak]T is a sparse
vector to be determined. Moreover, to ensure the uniform uncertainty principle, we normalize
X by dividing elements in each column by the L2 norms of the column: Xij = Xij/L2(j)
with L2(j) =

√∑m
i=1(Xij)2. Thus, from the above setting, we can cast the solution of every

iteration into a standard compressive sensing problem, and therefore, αi can be determined via
some standard compressive sensing algorithm [6] with re-normalization αi = αi/L2.

10 Significance Test
We carry out the random permutation tests [7] as significance tests in our work. The basic
assumption is that a randomly rearrangement of time series x can rarely have causal relation
with time series y. Thus, with a large number of shuffling of time series x according to random
permutations, one can get the empirical distribution of the causality index R over these shuffled
x and original y. Then we can finally get the quantile value for the given p-value. In this paper,
for the system in Fig. 4, we run 1000 independent permutations uniformly at random, shuffle
the time points according to the permutations, and run CMS on the shuffled data. With the
empirical distribution shown in Fig.S2, we estimate the threshold as ξ = 0.001 at a significance
level p < 0.05, i.e., we treat a causality index below 0.001 as zero. Therefore, we can determine
the threshold with this significance test.

Moreover, to validate the significance test result, we also carry out an additional bootstrap
test. The premise of bootstrap resampling is that a single observation can stand in for a distribu-
tion if it is resampled with replacement [8]. Using 1000 independent resampling, we also come
to the conclusion that ξ = 0.001 has the p-value p < 0.05.
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11 Embedding Dimension
How to determine the embedding dimension L and positive delay τ is an important topic in the
state space reconstruction process, and several criteria have been proposed to the time series
[9]. In this paper, we use false nearest neighbor (FNN) criterion to determine the embedding
dimension [9, 10], and due to the short length of the time series, we simply choose delay τ as
one lag in the time series.

Here we stress that when applied to very short-term data, FNN may not yield the optimal
embedding dimension. This is mainly due to the fact that FNN also depends on finding nearest
neighbors. However, we find that even if the embedding dimension L determined by FNN is
not optimal, the result of causality detection will not be significantly influenced. Actually, the
condition L > 2d for delayed embedding reconstruction is required so that the map is one to
one. Here L is the dimension of the reconstructed attractor M and d is the box-counting dimen-
sion of the original attractor. This condition is used to make sure there is no self-intersection
on the reconstructed attractor [11], which is sufficient but not necessary. Moreover, even when
this rule is not satisfied, the map can still be guaranteed to be an embedding outside a subset
A of dimension at most 2d − L (see Theorem 2.10 in [11]). Therefore, in our work, even if
the condition L > 2d is not satisfied, only points located on the exceptional subset will yield
false results, while all the points outside that specific subset still give correct results. Then note
the fact that the measured points are effectively sparse over the reconstructed attractor (due to
the short-term property), the probability that one measured point locates in the subset A is very
small (e.g., located on an n1-dimensional subset in a n2-dimensional space where n1 << n2).
Furthermore, we use leave-one-out strategy to train neural networks and finally use the averaged
error to calculate the index. Thus a small portion of deviation will not essentially change the
averaged result. Therefore, we can come to the conclusion that even when the condition L > 2d
is not strictly satisfied, our index will not essentially be affected. To this end, we consider the
benchmark system (1) with embedding dimension L = 2, 3, 4, 5, and the result is shown in
Fig.S3. Here the attractor of system (1) definitely has a box counting dimension larger than
1 and theoretically the optimal embedding dimension should be at least 3, but we see that for
different embedding dimensions from 2 to 5, the result does not change significantly.

On the other hand, practical time series always have length limitation, and therefore the tests
like FNN will not always work. Thus, in many works, particularly when applied to real data,
low embedding dimensions (say, larger than 1 but no more than 4) are always adopted [1, 12].
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M

m(t)=[x(t),y(t),z(t)]

Mx My

m(t)=[x(t),x(t-τ),x(t-2τ)] m(t)=[y(t),y(t-τ),y(t-2τ)]

Figure S 1: Illustration of State Space Reconstruction using delayed embedding technique. This
example is based on the chaotic Lorenz system. The attractorM is constructed using x, y, z and
the reconstructed attractorsMx andMy are reconstructed using the delayed coordinates of x and
y respectively.
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Figure S 2: Empirical distribution of the random shuffle test. Here the area on the right side of
threshold is 0.013.
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Figure S 3: Detecting causality for system (1) with unidirectional coupling using different em-
bedding dimensions.
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