SUPPLEMENTARY INFORMATION

Burkholderia cenocepacia and *Salmonella enterica* ArnT proteins that transfer 4-amino-4-*deoxy*-Larabinose to lipopolysaccharide share membrane topology and functional amino acids

Faviola Tavares-Carreon¹, Kinnari B. Patel² and Miguel A. Valvano^{1,2*}

¹Centre for Human Immunology, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada, N6A 5C1; ²Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom, BT9 5AE

* Correspondence and requests for materials should be addressed to M.A.V (m.valvano@qub.ac.uk)

Supplementary figures

FIGURE S1 | Polymyxin B resistant phenotype is restored by $ArnT_{FLAG+10xHis}$ in $\Delta arnT-arnBC^+$ carrying the lptG_{D31H} suppressor mutation. (a) The strain $\Delta arnT-arnBC^{+1}$ was transformed with pFT3 encoding $ArnT_{FLAG+10xHis}$ under the control of the rhamnose inducible promoter or pSCrhaB2 (vector control). K556-2 is the parental strains carrying the wild-type *arnT* (positive control). 10-fold serial dilutions of the transformants were spotted on LB supplemented with 0.4% of rhamnose and 10-µg ml⁻¹ PmB. (b) Total membrane preparation from $\Delta arnT-arnBC^+$ expressing $ArnT_{FLAG-10xHis}$ and pSCrhaB2 as a vector control. Ten µg of protein was analyzed by SDS-PAGE, and the immunoblot was probed with the antibody anti-FLAG. L, BLUeye prestained protein ladder

FIGURE S2 | Protein expression of ArnT cysteine replacement. $ArnT_{FLAG-10xHis}$ cysteine derivatives were expressed from the arabinose-inducible vector pBAD24. Twenty µl of total protein preparations from DH5 α cells were separated by 12% SDS-PAGE and the ArnT mutant proteins detected by immunoblot with an anti-FLAG monoclonal antibody.

FIGURE S3 | Highly conserved residues of ArnT are required for activity. (a) alignment of partial sequences of ArnT from different bacteria showing RYA and YFEKP motifs and highly conserved Y43, K69, R254, and E493. (b-d) Immunoblot of ArnT proteins containing replacements in functional residues detected anti-FLAG. (c) *E. coli* DH5 α carrying plasmids encoding ArnT cysteine replacements were grown to mid-exponential phase and protein expression induced with 0.2% L-arabinose. Cells were harvest and resuspend in 0.3 ml of HEPES/MgCl₂ buffer. 0.1 ml of cell suspension was incubated with buffer alone or 1 mM PEG-mal with or without 2% SDS for 1h at room temperature. Reactions were quenched with 45 mM DTT, and proteins were separated by SDS-PAGE and transferred to nitrocellulose membrane. ArnT derivatives were detected with anti-FLAG. L, molecular masses of protein standards.

FIGURE S4 | MALDI-TOF spectra of purified lipid A produced by *arnT* mutants that did not present L-Ara4N molecule. The profiles represented were obtained using the negative ion mode. I-II Tetra-acylated lipid A with one or two phosphates molecules. V, Penta-acylated lipid A.

FIGURE S5 | *arnT* mutants cannot rescue growth of *B. cenocepacia* without L-Ara4N synthesis. Plasmids encoding the various ArnT derivatives were introduced into the conditional mutant strain P_{rha} ::*arnT*¹. Dilutions were spotted in LB plate with or without 0.4% rhamnose.

Supplementary Tables

Table S1 | Strains used in this study.

Strain or Plasmid	Relevant Properties	Source or Reference
Strains		
E. coli		
DH5a	F ⁻ φ80lacZM15 endA recA hsdR(r ⁻ _κ m ⁻ _κ) supE thi gyrA relA Δ(lacZYA-argF)U169	Laboratory stock
$\Lambda arnT$	BL21(DE3) $\Lambda arnT$	2
CC118	$\Delta(ara\ leu)\ \Delta(ac\ phoA\ galE\ galK\ thi\ rpsL\ rpsB\ argE\ recA$	Laboratory stock
B. cenocepacia		
K56-2	Parental strain, clinical isolate of the ET12 clone	BCRRC ^{a 3}
MH45	K56-2, P_{rha} ::arnT	1
MH55	$\Delta arnT$ -arnBC ⁺ lptG _{D31H} , lptG suppressor strain	1
Plasmids		
pAH01	pBAD vector expressing Flag-Wzx-K367-PhoA	4
pAH18	pBAD vector inducible with arabinose, encoding an N-terminal FLAG and C-terminal for PhoA	4
m A 111900	rusion.	4
pAH1609	Expression vector inducible with archinese. for C	5
pDAD24	terminal ELAC 10xHis fusions An ^R	
pHASoxYZ	<i>E. coli tatA</i> promoter controlling expression of <i>P.</i>	6
pMH494	pSCrhaB2- $arnT_{Se}$	Hamad and Valvano, in preparation
pRK2013	Helper plasmid used for bacterial conjugation; Km ^R	7
pSCrhaB2	Expression vector inducible with rhamnose. Broad host range replicative vector; Tp ^R	8
pFT1	pBAD expressing ArnT-FLAG-10xHis	This study
pFT3	pSCrhaB2, ArnT _{FLAG-10xHis}	This study
pFT4	pAH18, FLAG-ArnT _{Bc-PhoA}	This study
pFT5	pFT1, ArnT _{C154A}	This study
pFT6	pFT1, ArnT _{C176A}	This study
pFT7	pFT1, ArnT _{Cysless}	This study
pFT12	pFT3, ArnT _{C154A}	This study
pFT13	pFT3, ArnT _{C176A}	This study
pFT14	pFT3, ArnT _{Cysless}	This study
pFT15	pAH18, FLAG-ArnT _{Se-PhoA}	This study
pFT20	pFT7, ArnT _{K324C}	This study
pFT21	pFT7, ArnT _{D350C}	This study
pFT28	pFT7, ArnT _{L385C}	This study
pFT38	pFT7. ArnT _{N62C}	This study

pFT39	pFT7, ArnT _{G87C}	This study
pFT40	pFT7, ArnT _{N239C}	This study
pFT41	pFT7, Arn T_{S321C}	This study
pFT46	$pFT7$, Arn T_{B380C}	This study
pFT47	$pFT7. ArnT_{D439C}$	This study
pFT48	$pFT7$. Arn T_{F493C}	This study
pFT52	$pFT7. ArnT_{G264C}$	This study
pFT54	pBAD, ArnTse (FLAG-10yHis)	This study
pFT55	pFT7. ArnT _{P254C}	This study
pFT56	$pFT7. ArnT_{0530C}$	This study
pFT61	pFT7 ArnT _{H127C}	This study
pFT62	pFT7 ArnT _{1289C}	This study
pFT63	$pFT7$ Arn T_{W200C}	This study
pFT64	$pFT7$ Arn T_{P544C}	This study
pFT70	nFT54 ArnTes Class (Class	This study
pF 170 pFT72	nFT7 ArnT _{N4110}	This study
pFT73	nFT7 ArnTweine	This study
pFT76	$pFT7$ Arn T_{racco}	This study
pF 170 nFT77	$pFT7 \Delta rnT_{Ward}$	This study
pFT79	$pFT7$ Arn T_{E007}	This study
pFT80	$pFT7$ ΔrnT_{page}	This study
pF 100 nFT86	pTT7 ArnTung	This study
pFT87	$pTT7$, $ArnT_{Y43C}$	This study
pFT07	$pT17$, $Ann V_{106C}$ $pTT3$ $ArpT_{rescuence}$	This study
pF 1 92	$pT13$, $AIII1_{R254A}$ pTT2 $ArpT$	This study
pr 193 pFT04	pr 15, Am $_{E493A}$	This study
рг 194 рЕТО 7	$pF17$, AmT_{V332C}	This study
pr 197 pFT08	pF17, AIII1 _{1309C} pFT7 ArmT	This study
рг 198 рЕТ100	$pF17$, AmT_{422C}	This study
pF1109 pFT110	$pT17$, AmT_{R550C}	This study
рг I I I 0 тГТ I I 2	pF15, AmT	This study
рг 1 1 1 5 рГ 1 1 1 6	$pF17$, $AIII1_{L278C}$	This study
рг I I I 0 тГТ I 17	pF154, AIII1 _{Se-R506C}	This study
рг I I I / тГТ I I 0	pr 134, Am $1_{\text{Se-Q544C}}$	This study
рг 1 1 19 "БТ 1 2 0	$pF17$, $Am1_{H483C}$	This study
pF1120 #ET121	pF17, $AIII1Y468C$	This study
pF1121 #ET120	pF13, Am $_{Y43A}$	This study
рг 1 1 50 "ЕТ121	$pF13$, $AIII1_{R254K}$	This study
рг 1 151 "БТ122	$pF13$, $AIII1_{R254E}$	This study
pF1152 #ET122	pF13, AIII1 $_{E493D}$	This study
pF1133	pF13, Am $_{E493K}$	This study
pF1154 #ET125	pF154, Am1 $_{\text{Se-E438C}}$	This study
pF1133	pF154, Am1 _{Se-D469C} TT	This study
pF1138	pF13, Am $_{K69R}$	This study
pF1139	pF13, Am1 _{K69E}	This study
pF 1 143	pf 154, Arn I $_{\text{Se-P546A}}$	I nis study
pF 1 144	pF1143, Arn $1_{\text{Se-Y36A}}$	I his study
pF1145	pF1143, Arn1 _{Se-K62A}	I nis study
pF1146	pr 1143, Arn $I_{\text{Se-E478A}}$	I his study
pFT195	pF17, Arn $\Gamma_{R42C-Y43A}$	This study
pFT196	pF17, ArnT _{E682C-K69A}	This study
pFT197	pFT ^{$''$} , ArnT _{R253C-R254A}	This study

pFT198	pFT7, ArnT _{D492C-E493A}	This study
pFT210	pFT7, ArnT _{F138C}	This study
pFT211	pFT7, ArnT _{N139C}	This study
pFT213	pFT7, ArnT _{R161C}	This study
pFT214	pFT7, ArnT _{S186C}	This study
pFT215	pFT7, ArnT _{K187C}	This study
pFT216	pFT7, ArnT _{H322C}	This study
pFT217	pFT7, ArnT _{S323C}	This study

^a*B. cenocepacia* complex Research and Referral Repository for Canadian CF Clinics.

Table 2 | Primers used in this study.

Primer	DNA Sequence	Restriction site
252	5'-GATTAGCGGATCCTACCTGA	None
258	5'-GACCGCTTCTGCGTTCTGAT	None
6238	5'-GCGCTGTCGCTCgcgTCGCTGCTGCTCGCGCAG	None
6239	5'-CTGCGCGAGCAGCAGCGAcgcGAGCGACAGCGC	None
6240	5'-GGCTGGATGTGGGCGgcgTGGGCCGCGATGGCG	None
6241	5'-CGCCATCGCGGCCCAcgcCGCCCACATCCAGCC	None
6269	5'-aaagaattcATGAACGATACGCCGTCGAGGC	EcoRI
6270	5'-aaagtcgactcCGATTGCGGTTTCTCGACGATC	SalI
6385	5'-CAGCGGAACCCCGAGTTCTTCAAC	None
6421	5'-aaagtcgacCGATTGCGGTTTCTCGACGATC	SalI
6475	5'-aaagaattcATGAAATCGATACGCTATTATC	EcoRI
6476	5'-aaagtcgactcTTTAGGCCGATACTGAATTAAC	SalI
6716	5'-aaatctagagAACGATACGCCGTCGAGGCTAC	XbaI
7178	5'-aaatctagagAAATCGATACGCTATTATCTGGC	XbaI
7182	5'- aaagtcgacTTTAGGCCGATACTGAATTAAC	SalI

Supplementary References

- 1. Hamad, M. A., Di Lorenzo, F., Molinaro, A., Valvano, M. A. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in *Burkholderia cenocepacia*. *Mol Microbiol* **85**, 962-974 (2012).
- 2. Impellitteri, N. A., Merten, J. A., Bretscher, L. E., Klug, C. S. Identification of a functionally important loop in *Salmonella typhimurium* ArnT. *Biochemistry* **49**, 29-35 (2010).
- 3. Mahenthiralingam, E., *et al.* Diagnostically and experimentally useful panel of strains from the *Burkholderia cepacia* complex. *J Clin Microbiol* **38**, 910-913 (2000).
- 4. Marolda, C. L., *et al.* Membrane topology and identification of critical amino acid residues in the Wzx O-antigen translocase from *Escherichia coli* O157:H4. *J Bacteriol* **192**, 6160-6171 (2010).
- 5. Guzman, L. M., Belin, D., Carson, M. J., Beckwith, J. Tight regulation, modulation, and highlevel expression by vectors containing the arabinose PBAD promoter. *J Bacteriol* **177**, 4121-4130 (1995).
- 6. Bauer, J., Fritsch, M. J., Palmer, T., Unden, G. Topology and accessibility of the transmembrane helices and the sensory site in the bifunctional transporter DcuB of *Escherichia coli*. *Biochemistry* **50**, 5925-5938 (2011).
- 7. Figurski, D. H., Helinski, D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided *in trans. Proc Natl Acad Sci U S A* **76**, 1648-1652 (1979).
- 8. Cardona, S. T., Valvano, M. A. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in *Burkholderia cenocepacia*. *Plasmid* **54**, 219-228 (2005).