SUPPLEMENTARY INFORMATION for

A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

Liang Lu^{1,7}, Jijie Wang^{2,7}, Ying Xu³, Kailing Wang⁴, Yingwei Hu⁵, Renmao Tian¹, Bo

Yang³, Qiliang Lai⁶, Yongxin Li³, Weipeng Zhang¹, Zongze Shao⁶, Henry Lam^{2,5,*}, Pei-

Yuan Qian^{1,3,*}

¹ Environmental Science Program, School of Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China.

² Division of Biomedical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China.

³ Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China.

⁴ School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

⁵ Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China.

⁶ Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.

⁷ These authors contributed equally to this work.

* Correspondence should be addressed to P.Y.Qian (boqianpy@ust.hk) or H. Lam (kehlam@ust.hk)

Table of Contents

Supplementary Figures

Supplementary Fig. 1: Phylogenetic relationships of known species in marine bacterial metabolite database by their 16s rRNA sequences.

Supplementary Fig. 2: Flowchart for establishing a chemical fingerprint database.

Supplementary Fig. 3: Representative UPLC chromatograms of 5 biological replicates (*Thalassospira xiamenensis* strain) measured by UV detector at the wavelength of 210nm.

Supplementary Fig. 4: Similarity of secondary metabolite profiles of 3 test *Bacillus subtilis* strains and all other strains in the chemical fingerprint library.

Supplementary Fig. 5: Chemical structure and retention time of thalassospiramide A, A1, A2, B, C and F.

Supplementary Fig. 6: Example of feature detection from LC-MS profile data.

Supplementary Fig. 7: Example of consensus LC-MS map merged from 2 technical replicates.

Supplementary Fig. 8: Example of a feature matching table of two LC-MS maps, illustrating the calculation of the rank-transform dot product.

Supplementary Fig. 9: Effect of the number of retained features on the score separation between correct and incorrect hits.

Supplementary Tables

Supplementary Table 1: Species name of identified marine bacteria in the database.

Supplementary Table 2: Common signals extraction for 3 bacterial species.

Supplementary Table 3: Search result of *Thalassospira sp.TrichSKD10* against the database.

Supplementary Method

Definition of the normalized rank-transform dot product as the similarity score between 2 LC-MS feature maps

Supplementary Figures

Supplementary Figure 1 | Phylogenetic relationships of known species in marine bacterial metabolite database by their 16s rRNA sequences.

Supplementary Figure 2 | Flowchart of establishing a chemical fingerprint database.

Supplementary Figure 3 | Representative UPLC chromatograms of 5 biological replicates (*Thalassospira xiamenensis* strain) measured by UV detector at the wavelength of 210nm. The UPLC chromatograms overlapped very well, indicating good reproducibility. Most metabolite signals were found within the retention time range of $5 \sim 10$ minutes (indicated by light yellow).

Supplementary Figure 4 | **Similarity of secondary metabolite profiles of 3 test** *Bacillus subtilis* **strains and all other strains in the chemical fingerprint library.** Three *Bacillus subtilis* strains isolated from marine environment were randomly selected to evaluate the similarity scoring function of our software against the entire database. The 3 test queries showed that the similarity scores against strains from the same species (blue diamonds) are generally higher than those against strains from the same genus but not the same species (green triangles), which in turn are higher than those from bacteria in different genera (black rectangles). However, some exceptions can be found (indicated in the red box). This result further supported our hypothesis that although similarity of secondary metabolite profiles are roughly correlated with taxonomical similarity (based on 16s rRNA), species identification based on 16s rRNA does not always adequately predict the secondary metabolite repertoire of a given bacterial strain.

Supplementary Figure 5 | Chemical structure and retention time of *thalassospiramide A*, *A1*, *A2*, *B*, *C and F*. The common 12-membered ring structure indicated in blue.

Supplementary Figure 6 | **Example of feature detection from LC-MS profile data.** Three features (bottom panel) located at (437.1, 924s), (443.3, 922s) and (453.2, 923s) were detected from the LC-MS profile data (top panel) by the FeatureFinder function in *OpenMS*.

Supplementary Figure 7 | Example of a consensus LC-MS map merged from 2 technical replicates. The feature maps of each pair of technical replicates were first aligned using LWBMatch. All of the shared features were included in a consensus map (unshared peaks are labeled in red).

		• •		. 1	1 1	
Λ/Ι	oto	hı	na	to	h	\mathbf{O}
IVI	au		112	ιa	UI	
			-0		-	

RT	M/Z	Int.	RT	M/Z	Int.
524.89	245.15	25994600	524.45	245.15	22273500
389.61	261.14	18552100	388.9	261.14	17880300
1361.02	328.29	17327000	1359.33	328.29	17650600
1176.16	126.978	19112200	1177.41	126.978	17406400
468.07	211.16	16639400	467.76	211.161	15073700
488.33	211.161	12446000	487.98	211.161	11174200
420.54	227.157	8832620	419.93	227.158	10464600
1177.41	128.974	7745850	1179.31	128.974	7002930
892.3	477.327	7090020	891.85	477.328	6935530

Feature map B

Feature map A

k	RT	M/Z	Int.	Score		Rank	RT	M/Z
524	1.89	245.15	25994600	600	\longleftrightarrow	1	524.45	245.15
1176.16		126.98	19112200	599		2	388.9	261.14
389.61		261.14	18552100	598	\sim	3	1359.33	328.29
1361	.02	328.29	17327000	597	E J	4	1177.41	126.9
468	.07	211.16	16639400	596	\longleftrightarrow	5	467.76	211.16
394	4.77	197.14	13420200	595	\rightarrow	6	487.98	211.1
488	3.33	211.16	12446000	594	\leftarrow	7	419.93	227.1
420	0.54	227.16	8832620	593	\leftarrow	8	1179.31	128.9
117	7.41	128.97	7745850	592	\leftarrow	9	891.85	477.3
89	2.3	477.33	7090020	591	{	10	524.44	120.0
L								
	1328.02	366.23	97646	3		598	797.49	111.0
12	263.96	377.26	97428	2		599	610.78	611.0
	742.64	803.43	97284	1		600	851.19	751.4
	879.23	222.12	96900	0		601	1484 1	722.5

Supplementary Figure 8 | Example of a feature matching table of two LC-MS maps, illustrating the calculation of the rank-transform dot product. The features in each feature map will first be sorted based on their signal intensities. We selected the top 600 features by intensity and assigned scores to them (from 600 to 1). Feature-to-feature mappings were built on the matching table. In this example, the rank-transform dot product between Feature map A and B will be calculated as: Rank-transform dot product = 600*600 + 599*597 + 598*599 + 597*598 + 596*596 + 594*595 + 593*594 + 592*593 + 591*592 = 2836425

Supplementary Figure 9 | Effect of the number of retained features on the score separation between correct and incorrect hits. To optimize the number of retained features for similarity scoring, 5 replicates each of 4 *Thalassospira xiamenensis* and 4 *Thalassospira profundimaris* strains were selected, and the pairwise similarity scores are calculated for all replicates. At different numbers of retained features (n = 100, 200, ..., 900), the distribution of similarity scores are plotted as box-and-whisker diagrams separately for correct hits (pairs that belong to the same strains) and incorrect hits (pairs that belong to different strains). The bottom and top of the box represent the first and third quartiles, respectively, and the band inside the box is the second quartile. The ends of the whiskers below and above each box indicate the lowest and highest datum within 1.5 x interquartile range (IQR) of each quartile, respectively. Any data not included between whiskers are plotted as an outlier (small circle). We calculated the overlap between boundaries A and B for each diagram: Overlap (100) = 2.08, Overlap(200) = 1.68, Overlap(300) = 1.35, Overlap(400) = 1.16, Overlap(500) = 1.06, Overlap(600) = 0.82, Overlap(700) = 0.85, Overlap(800) = 0.95, Overlap(900) = 1.10. When *n* = 600, the best separation between correct and incorrect hits is achieved (marked by two red lines in the middle rows). Therefore, the default number of retained features is set to 600 in *MBMSearcher*.

Supplementary Tables

Strain name	Strain name	Strain name	Strain name
Acremonium murorum	Brevibacterium linens	Marinobacter salsuginis	Sagittula sp.
Aerococcus viridans	Cellulosimicrobium cellulans	Mesorhizobium sp.	Sagittula stellata
Alcanivorax dieselolei	Cellulosimicrobium funkei	Microbacterium aurum	Salegentibacter holothuriorum
Algoriphagus hitonicola	Chromohalobacter salexigens	Microbacterium hydrocarbonoxydans	Salinisphaera hydrothermalis
Algoriphagus ornithinivorans	Citreicella thiooxidans	Microbacterium lacus	Salinisphaera shabanensis
Alteromonas addita	Elizabethkingia miricola	Microbulbifer agarilyticus	Salinisphaera sp.
Alteromonas genovensis	Erythrobacter citreus	Microbulbifer variabilis	Staphylococcus epidermidis
Alteromonas litorea	Erythrobacter flavus	Micrococcus luteus	Stappia alba
Alteromonas macleodii	Erythrobacter vulgaris	Micrococcus yunnanensis	Stappia kahanamokuae
Alteromonas marina	Flexibacter tractuosus	Muricauda aquimarina	Sulfitobacter delicatus
Aspergillus nidulans	Gordonia lacunae	Muricauda lutimaris	Sulfitobacter dubius
Bacillus aerius	Gordonia terrae	Muricauda ruestringensis	Sulfitobacter litoralis
Bacillus algicola	Halomonas aquamarina	Nautella italica	Sulfitobacter pontiacus
Bacillus alkalitelluris	Halomonas denitrificans	Nocardioides basaltis	Tenacibaculum lutimaris
Bacillus amyloliquefaciens	Halomonas kenyensis	Nodulisporium sp.	Tenacibaculum mesophilum
Bacillus aquimaris	Halomonas meridian	Oceanibulbus indolifex	Thalassobius mediterraneus
Bacillus badius	Halomonas nitritophilus	Oceanicaulis alexandrii	Thalassococcus halodurans
Bacillus barbaricus	Halomonas sulfidaeris	Oceanicola marinus	Thalassospira lucentensis
Bacillus boroniphilus	Halomonas ventosae	Oceanicola nanhaiensis	Thalassospira permensis
Bacillus circulans	Henriciella litoralis	Oceanicola pacificus	Thalassospira profundimaris
Bacillus firmus	Henriciella marina	Oceanobacillus iheyensis	Thalassospira tepidiphila

Supplementary Table 1 | Species name of identified marine bacteria in the database

Bacillus foraminis	Hypocrea jecorina	Paenibacillus barengoltzii	Thalassospira TrichSKD10
Bacillus herbersteinensis	Idiomarina baltica	Paracoccus chinensis	Thalassospira xiamenensis
Bacillus horikoshii	Idiomarina loihiensis	Paracoccus marcusii	Thanatephorus cucumeris
Bacillus infantis	Idiomarina seosinensis	Paracoccus niistensis	Tistrella bauzanensis
Bacillus isabeliae	Janibacter melonis	Paracoccus zeaxanthinifaciens	Tistrella mobilis
Bacillus krulwichiae	Kangiella aquimarina	Phaeobacter caeruleus	Tsukamurella tyrosinosolvens
Bacillus licheniformis	Kangiella japonica	Phaeobacter daeponensis	Vibrio atypicus
Bacillus massiliensis	Kocuria turfanensis	Pigmentiphaga daeguensis	Vibrio azureus
Bacillus megaterium	Kytococcus schroeteri	Pseudoalteromonas flavipulchra	Vibrio brasiliensis
Bacillus muralis	Labrenzia aggregata	Pseudoalteromonas nigrifaciens	Vibrio communis
Bacillus mycoides	Labrenzia alba	Pseudoalteromonas rubra	Vibrio fortis
Bacillus niabensis	Loktanella hongkongensis	Pseudomonas pseudoalcaligenes	Vibrio harveyi
Bacillus pumilus	Lysobacter sp.	Pseudomonas xanthomarina	Vibrio hepatarius
Bacillus selenatarsenatis	Maribacter goseongensis	Pseudovibrio denitrificans	Vibrio maritimus
Bacillus simplex	Maribaculum marinum	Rhizobium galegae	Vibrio mediterranei
Bacillus soli	Marinibacillus marinus	Rhodobacteraceae bacterium	Vibrio penaeicida
Bacillus sonorensis	Marinobacter algicola	Roseomonas mucosa	Vibrio rotiferianus
Bacillus subtilis	Marinobacter flavimaris	Ruegeria atlantica	Vibrio shilonii
Bacillus tequilensis	Marinobacter hydrocarbonoclasticus	Ruegeria lacuscaerulensis	VWinogradskyella poriferorum
Bacillus thuringiensis	Marinobacter koreensis	Ruegeria mobilis	Williamsia marianensis
Bacillus vietnamensis	Marinobacter lutaoensis	Ruegeria pelagia	Winogradskyella poriferorum

Bacillus su	Bacillus subtilis				
Signal ID	Rt (min)	m/z			
1	8.74	505.34			
2	12.58	382.27			
3	13.74	328.22			
4	15.52	356.39			
5	16.57	317.36			
6	16.57	658.43			
7	16.57	663.46			
8	16.59	299.32			
9	16.59	440.34			
10	18.26	299.31			
11	18.42	493.35			
12	21.98	614.53			
13	24.92	803.59			

_

Supplementary Table 2 | Common signals extraction for 3 bacterial species.

Thalassospira xiamenesis					
Signal ID	Rt (min)	m/z	Signal ID	Rt (min)	m/z
1	3.33	251.15	33	8.68	213.16
2	4.06	169.10	34	9.19	231.11
3	6.03	231.12	35	9.20	286.16
4	6.29	361.05	36	9.30	243.09
5	6.30	393.06	37	9.73	227.18
6	6.30	233.13	38	10.50	385.15
7	6.31	521.24	39	16.13	808.49
8	6.31	283.11	40	17.58	247.17
9	6.32	648.11	41	17.94	399.36
10	6.36	375.07	42	17.99	796.55
11	6.36	342.05	43	18.08	752.52
12	6.57	227.14	44	18.08	757.48
13	6.70	316.21	45	18.16	708.50
14	6.79	359.08	46	18.26	669.42
15	6.83	263.11	47	18.35	625.40
16	7.25	277.16	48	18.58	287.27
17	7.36	211.15	49	19.49	219.99
18	7.56	211.15	50	19.50	279.16
19	7.56	389.09	51	19.51	235.03

20	7.57	511.18	52	19.55	396.37
21	7.57	356.07	53	19.67	384.37
22	7.88	566.21	54	19.95	554.45
23	7.88	511.18	55	21.56	876.67
24	7.88	513.18	56	22.15	512.51
25	7.88	311.08	57	22.49	673.54
26	7.89	356.07	58	22.64	953.69
27	7.89	548.15	59	23.38	793.57
28	8.09	245.13	60	23.63	810.57
29	8.10	255.17	61	23.74	267.16
30	8.51	335.03	62	24.71	605.43
31	8.51	579.15	63	24.73	649.46
32	8.51	581.15			

Tistrella m	Tistrella mobilis				
Signal ID	Rt (min)	m/z	Signal ID	Rt (min)	m/z
1	6.30	327.20	19	11.23	217.05
2	6.30	349.19	20	11.62	219.17
3	6.61	371.23	21	16.64	159.13
4	6.88	437.24	22	17.86	173.15
5	6.88	432.28	23	17.93	211.15
6	6.88	415.26	24	18.18	533.33
7	7.11	459.28	25	18.19	267.17
8	7.11	476.31	26	18.33	506.40
9	7.11	481.26	27	18.56	713.44
10	7.31	520.34	28	18.59	496.34
11	7.31	503.31	29	18.80	576.41
12	7.49	564.36	30	18.88	532.38
13	7.50	569.32	31	19.32	522.35
14	7.65	608.39	32	19.64	279.16
15	7.79	652.42	33	22.48	646.42
16	7.93	696.44	34	23.00	256.26
17	8.05	740.47	35	23.75	776.23
18	8.59	430.25	36	24.06	270.28

Supplementary Table 3 | **Search result of** *Thalassospira sp.TrichSKD10* **against the database.** The top 5 strains (most similar by secondary metabolites profiles) are highlighted in gray.

Rank	Strain ID	Strain name
1	MarineB0718	Thalassospira xiamenensis
2	MarineB0711	Thalassospira lucentensis
3	MarineB0701	Thalassospira xiamenensis
4	MarineB0717	Thalassospira xiamenensis
5	MarineB0685	Thalassospira profundimaris
6	MarineB0691	Thalassospira lucentensis
7	MarineB0694	Thalassospira profundimaris
8	MarineB0676	Thalassospira profundimaris
9	MarineB0703	Thalassospira xiamenensis
10	MarineB0678	Thalassospira profundimaris
11	MarineB0728	Thalassospira xiamenensis
12	MarineB0801	Pseudovibrio denitrificans
13	MarineB0462	Thalassospira xiamenensis
14	MarineB0463	Thalassospira xiamenensis
15	MarineB0729	Tistrella bauzanensis
16	MarineB0468	Thalassospira xiamenensis
17	MarineB0473	Thalassospira sp.
18	MarineB0468	Thalassospira xiamenensis
19	MarineB0802	Tistrella Mobilis
20	MarineB0492	Thalassospira sp.

Supplementary Method

Definition of the normalized rank-transform dot product as the similarity score between 2 LC-MS feature maps

MBMSearcher uses a rank-transform dot product to evaluate the similarity of two LC-MS feature maps after alignment. The features of each feature map were first sorted from highest to lowest based on their signal intensities to form a vector. We selected the top 600 dominant features and assigned scores. **Supplementary Fig. 9** shows that selection of the top 600 features provided a better separation between correct and incorrect hits.

The rank-transform dot product between 2 feature maps (ref and sam) was calculated as follows:

RankDot(ref, sam) =
$$\sum_{i=1}^{600} Score(ref_i) \times Score(Match(ref_i))$$

where ref_i refers to the i_{th} feature in ref_i and $Match(ref_i)$ is the corresponding feature in *sam*, which is aligned with ref_i in the matching table. An example is shown in **Supplementary Fig. 8**. To normalize the rank-transform dot product, we calculated the sample mean (Mean (*ref*)) and standard deviation (SD(*ref*)) as follows :

$$Mean(ref) = \frac{\sum_{i=1}^{n} RankDot(ref, b_i)}{n}$$
$$SD(ref) = \sqrt{\frac{\sum_{i=1}^{n} (RankDot(ref, db_i) - Mean(ref))^2}{n}}$$

where *n* is the number of all feature maps stored in the bacterial database db, and db_i refers to the *i*th feature map in the database. The normalized dot product is defined as follows:

NRankDot(*ref*, *sam*) =
$$\frac{\text{RankDot}(ref, sam) - \text{Mean}(ref)}{\text{SD}(ref)}$$
.

We used NRankDot(ref, sam) as a measure of the similarity between 2 feature maps.