Supplementary Materials

Supplementary Tables

Table S1. Primers used in this study									
Name	Sequences (5'-3')								
Characterizatio	on of the transposon insertional sites								
MY-002	GAGTCAGTGAGCGAGGAA								
For <i>rifZ</i> knock-	out and complementation:								
0655U-F	TCCCTCGGCCACGGGCTCCC								
0655U-R	CAAATCGTCCCCGAATCCGG								
0655D-F	GCCGGTGACGCGGCGGGG								
0655D-R	ACATGTAGCCGACCGCGACC								
0655C-F	ACCGTGAACATCGGCAGACC								
0655C-R	CTACGAGAACACCTTCCACG								
0655CH-UF	GGTTGGTCGCCACCGCGAG								
0655CH-UR	TGCCCTGGCACAGTGCAACC								
0655CH-DF	GTGGGCCGGCAGCTGTTCAT								
0655CH-DR	GTCCTGCGTGGTCATGCGCT								
RT-PCR analys	is:								
rt-rifS-F	GATCGGTGCGGGGCTCATCG								
rt-rifS-R	CGTCCTTCGCGCCGATCCTC								
rt-rifT-F	ATCCTGTCGTCCACGCCCCA								
rt-rifT-R	CGCCGATTCGTAGGCCGCTT								
rt-orf35-F	TGGAGGCCGCGATGAGTGTT								
rt-orf35-R	TTATTCGGCGATCTTCGTGC								
rt-orf0-F	AGCTACGAGCTGGTCCGCGA								
rt-orf0-R	CCAGGCACTGGTGGATGCCG								
rt-rifA-F	CTCGCAGCAGCGGGTCATCC								
rt-rifA-R	CGGACAGCGACTCCGTGCTC								
rt-rifB-F	CAGGGATGCCGGGCAAGACG								
rt-rifB-R	CAGCACCGGATGCGCACTGA								
rt-rifC-F	GATGGCGTCGGTCGCGTTGA								
rt-rifC-R	GACGTTCACTCCGCCCTGCC								
rt-rifD-F	CGCGGTATCGCGGTGAACCA								
rt-rifD-R	TCCTCCTCGGGCGCTTCCTC								
rt-rifE-F	TTCGCAGCGGCTCGGGATG								
rt-rifE-R	CTTGGTCTTGTGCCCGCGCT								
rt-rifF-F	GGCGTGGACCTCGAAACGCT								
rt-rifF-R	GGTGATCGTGCGCACCTGCT								
rt-rif1-F	ATGACGGAAAAAGCGGGCCT								
rt-rif1-R	TCACGGCGCCTTCTTCCGCG								
rt-rifG-F	GCGTCGAGACCCTGCTGCTC								

rt-rifG-R	CGAGCCCGGTGATCGCCTTC
rt-rifH-F	GGCCGAGGTGATCGAGCTGC
rt-rifH-R	TCCACGATCGGCGGGAGGAG
rt-rifI-F	CCAACCTCGACGGCATCTTC
rt-rifI-R	CATGTGGCTGCCGTAATGGA
rt-rifK-F	ATGGGCGGGGACGAGGTGAA
rt-rifK-R	GGCGTCGGTGCGGTAGATCG
rt-rifL-F	GTTCACGAAGGCGACCGGCA
rt-rifL-R	CGCTCACCTGGCGCGTGTAT
rt-rifM-F	GTCCGGCACGCGGTCATCTT
rt-rifM-R	CAGCTCGCCGATGTCGTCCG
rt-rifN-F	GTCGCCTTCCGCGTCGAGTC
rt-rifN-R	ATCCGCCAGGAACCCCGACA
rt-rifO-F	GACGACACCACCTGCGG
rt-rifO-R	GGTGCGGAACGTGTCCTCCG
rt-rif2-F	GCGTCCGCGAGCTCAGAGAG
rt-rif2-R	ACACCCGGTCCGAGGTAGGC
rt-rifP-F	CTGTGGAGCGCGGTCAGCTC
rt-rifP-R	TCGTCATGGCGATGCCCAGC
rt-rifQ-F	GGCGACGCGAAGTTCTCGAT
rt-rifQ-R	CATGCCGGTGAACAGCCAGT
rt-orf3-F	ACGTTCGACGTCTTGCCGTA
rt-orf3-R	GGACCTGAGCATGACCGAGA
rt-orf4-F	TTGCGGATGGTGGTGTCCGC
rt-orf4-R	CTCTACGACGGCCGCAAGGC
rt-orf5-F	GGCCATGATCAGCGGCACCA
rt-orf5-R	CCGCTACGAAGACGTCCGCC
rt-orf6-F	GAAGCCGGCGTCGGGTTTCA
rt-orf6-R	GGCGGTGCTGACGAACTCCG
rt-orf7-F	ATCGCCGAAAGCGGCCTGAC
rt-orf7-R	GCTTCCTCGGGCGAGAGCAC
rt-orf8-F	ACGAGCGCGGCGACTTCTTC
rt-orf8-R	AGCGCGAGGCACTCCTCGTA
rt-orf9-F	GACGTCCGTCACCACCTGCC
rt-orf9-R	GCCCGACCTGATGGAGCAGC
rt-orf10-F	GTTCGCCACCTGGTCGGG
rt-orf10-R	TCGCCCCGCACGGAAATCAC
rt-orf11-F	ACGACGTCATCGGGGTGGGT
rt-orf11-R	CGCTCCCGGTGGGTTTCGAG
rt-orf17-F	GGCCGAGCACCACTTCCACG
rt-orf17-R	CCGGATCTGCCCGATGACGC
rt-orf18-F	CTTCTCGGTCGAGGGCCTGC
rt-orf18-R	GCGGTGAGCTCGGCGATGTT
rt-orf19-F	CCGGGCTTTCGTGGCGCAG

rt-orf19-R	AACACCATGCACCAGCCCGC	
rt-orf20-F	TGCAGGTTGGTCAGCCGCAG	
rt-orf20-R	CAGCTTTCGGCCTGCGTGGA	
rt-rifR-F	GCCCGGTGGTGTGCTCTTCC	
rt-rifR-R	CGTTTCGAACGGGCACCGGA	
rt-orf13-F	TGCATCTCGTTGGCGACGCT	
rt-orf13-R	GCTTCCTCACCAACCCGCCC	
rt-orf14-F	GTCCGCGACGCTCGAAGAGG	
rt-orf14-R	GTCCTTCGAACCGCTCCGCC	
rt-orf15A-F	GGCCTGTTCGGCCGGATGAC	
rt-orf15A-R	GGTCAGCGCCTTCTCCAGCG	
rt-orf15B-F	CCGCCGACATCTCGTCGTGG	
rt-orf15B-R	GCCTCGGTCACCTCGAACGC	
rt-orf16-F	CTGCTGGCCGAGGCACTGG	
rt-orf16-R	ACCCGCGCTTTTCCTCCGAC	
rt-rifJ-F	CCAACCTGGGTGTGCTGGGC	
rt-rifJ-R	CAGGTGCAGCAACGCCTGTG	
rt-rifZ-F	ATGCAGCGGTCCTGTGACAC	
rt-rifZ-R	AGCGCCAGCACGACGTAACT	
rt-rpoB-F	TTCAGCGTCCGCGTCATCCC	
rt-rpoB-R	TGGATCAGCTCGCCGACGGT	
Co-transcriptio	on analysis:	Amplicon size (bp)
rifT-orf35-F	GATGCTCAAGGACTTCCTGG	• • • • • • • • • • • • • • • • • • • •
rifT-orf35-R	CACCTGCGTAACACTCATCG	333
orf35-0-F	GGAGAACACGCTCAAGATCC	
orf35-0-R	GACCTCGTCGAAGAACTTCC	756
orf0-rifA-F	GAGGACGTGAAGCTGGAGGG	
orf0-rifA-R	ATGTGCGAAAGGCTGTGGAA	1011
rifA-B-F	TACCTGCGCGTCGAACTCCT	
rifA-B-R	GCGCTGTTCTCCTGCTGAAG	383
rifB-C-F	TGGGCACAGCGAAGACGACC	
rifB-C-R	GCCCGCGAAACTCTGCATCT	670
rifC-D-F	TCACCGTGGCCGAACAGGAA	
rifC-D-R	CCTCGTCAGCCACTGAACTC	561
rifD-E-F	TGCAACGGCGTGAACGACCA	
rifD-E-R	CACGAGCTGCCACAGGTCTT	326
rifF-G-F	CTACCTGACGGTCGAGAACG	
rifF-G-R	TCACCGCACAGTTCCTCCAC	543
rifH-I-F	GACGACGTGACGGAATGCCT	
rifH-I-R	TGCGGCACGGTGACGAAGAT	375
rifI-K-F	GTGGTCGCCGACATCATCAT	
rifI-K-R	TCGCGCTCGAAGGAGTTCAC	417
rifK-L-F	ATCTACCGCACCGACGCCTT	
rifK-L-R	CTCGGTATGCAGGTAGTTGG	653

rifL-M-F	GAGCGCATCGGCGTCGAATA	
rifL-M-R	CTCATCACCGCGAAGCTGTC	307
rifM-N-F	CGTTCTTCGAGCACGTCATC	
rifM-N-R	TGTACAGCAGGTTCTCGCAG	682
rifN-O-F	ACGTCACCTACTACCGGCTG	
rifN-O-R	TGTAGCCGAGGAACTCGAGC	630
rifO-orf2-F	ATGTTCGGCACCGAGTGGTT	
rifO-orf2-R	CTGATGCCGTACGTGACGAT	609
orf2-rifP-F	GAACGTCGAGCTGCATCTGT	
orf2-rifP-R	CGAGATCTTCGGTGAGCTTG	562
rifP-Q-F	CGTTGACCTCCGGTGAGAAG	
rifP-Q-R	TCAGGTACTCGCCGTAGCAG	416
orf3-4-F	CGGTGTGTTCTTCCTGTTCTC	
orf3-4-R	GTCCCTTCGCGGTCGGTG	816
orf4-5-F	TGCTGGACGTCGGTGAACTC	
orf4-5-R	GGAGAAGCTGCAGATCGACC	528
orf5-6-F	ACCTGGCGGACGTCTTCGTA	
orf5-6-R	AGTTCGTCGCCACGCACTGA	269
orf7-8-F	AACCTCTTCCGCGCCAACG	
orf7-8-R	AGGCCGATTTCCGGGTCCA	725
orf9-10-F	TGGCCGATGTTCACGTTGAC	
orf9-10-R	ACCGCTCCGGATACGAACTT	472
orf11-17-F	GTTCAGCTACTTCACCGTGC	
orf11-17-R	CTCGAACTCGATGCTCTGGT	462
orf17-18-F	GCAGATCCGGTCCATTCAGG	
orf17-18-R	ATCTCCGGCTGCACGATGAT	515
orf19-20-F	TCTGCCACTGGTAGCCGTTG	
orf19-20-R	CTCGCCGTGGTCAGCATCAT	493
rifR-orf13-F	GGAAGAAGAAGCTGGCCGAG	
rifR-orf13-R	CTGAGCGTCGCCAACGAGAT	344
orf14-15-F	AGGACGTCAGCCAGTACACC	
orf14-15-R	CATCGTCTCGTGGTTGCTGC	652
rifJ-Z-F	GGTCCACCTGAGCAACGTGT	
rifJ-Z-R	GACGTACCAGAACCGAGCCA	948
RifZ heterologou	s expression:	
RifZ-1EX-F	AAATCCATATGCAGCGGTCCTGTGACAC	
RifZ-2EX-F	AAATCCATATGTACGTCGGGTTGCTGATCAAG	
RifZ-3EX-F	AAATCCATATGGCGATGGCGGAAATCAGCAC	
RifZ-4EX-F	AAATCCATATGCACGACCTGGCGAAGGCTTC	
RifZ-5EX-F	AAATCCATATGGTGAACAAGCTCCGCGAGTAC	
RifZ-EX-R	AATTCCAAGCTTGCCTACGAGAACACCTTCCAC	
Cloning of promo	oters for preparation of FAM-probes:	Probe size (bp)
rifSP-F	ACTCGAACGGCACCTCATCGTC	
rifSP-R	CGCCGGTGGGAGCCATTACCAA	400

orf35P-F	AGACCTGGAGGCGTTGATGCT	
orf35P-R	CTCATCGCGGCCTCCACCTGT	335
rifKP-F	CGTGGTCGCCGACATCATCA	
rifKP-R	AGGGAATTCCGGTGCCTTTCG	311
orf6P-F	CGACGCCGTGGTCATCACCT	
orf6P -R	ACCATGTCGTATCGATCCCTGC	315
orf11P -F	CCAGCAGCGCCGAATAGCCCTC	
orf11P -R	CTCCCAGTGGCCATAACGGCAAA	345
orf18P -F	GGAGATGAAGAAGCTGCTG	
orf18P -R	CCGCCATGGACATGACCGC	223
orf14P -F	CGGCGACCACTTCCGGTGAGAAC	
orf14P -R	CGGCTTCGTCACCAGTACCCCT	341
orf16P -F	CGCCGACCAGCTCGCCCTC	
orf16P -R	GCGTTTTCGGTCACTTTGGTCGT	391

Table S2. All the possible RifZ binding sites in A. mediterranei U32

Motif Sequence*	Motif start-o	end site	Strand	Genes	Genes sharing the promoter	Verified?
CTATC <u>TAATTGTA</u> GGATG	346101	346118	+	AMED_0332		No
CTACC <u>CACGTTGG</u> TAATG	626166	626183	+	AMED_0613 (rifS)		Yes
CTACC <u>AGAGTGAG</u> GGATG	628058	628075	+	AMED_0615		Yes
CTACC <u>AAGCCGAG</u> GGATG	684103	684120	+	AMED_0627 (rifK)		Yes
CTACC <u>ACGTTGAG</u> GGATG	697352	697369	+	AMED_0639	AMED_0638	Yes
CTATC <u>AGGACGAG</u> GGATG	701716	701733	+	AMED_0643	AMED_0642	Yes
CTATC <u>AGGTCGGG</u> GGATG	703784	703801	+	AMED_0645		No
CTATC <u>AGAACGAG</u> GGATG	710319	710336	+	AMED_0650		Yes
CTATC <u>AGACCGAG</u> GGATG	714461	714478	+	AMED_0654	AMED_0653	Yes
CTATC <u>TAATTGTA</u> GGATG	3466909	3466926	+	AMED_3213		No
CTATC <u>TAATTGTA</u> GGATG	5217291	5217308	+	AMED_4744		No
CTACC <u>TTCGGGGC</u> GGATG	6088879	6088896	+	AMED_5484	AMED_5483	No

*, The internal DNA sequences were underlined.

Supplementary Figures

			Rit2	-1EX-F																											
1	ATG	CAG	CGG	TCC	TGT	GAC	ACC	GCT	GGT	TTC	CTC	CGC	CGC	TCG	GCC	TCG	TCG	TGG	TTC	AAC	GGG	CGG	CTC	GAC	ACG	GGG	TTG	CAC	TGT	GCC	90
1	Met	Gln	Arg	Ser	Cys	Asp	Thr	Ala	Gly	Phe	Leu	Arg	Arg	Ser	Ala	Ser	Ser	Trp	Phe	Asn	Gly	Arg	Leu	Asp	Thr	Gly	Leu	His	Cys	Ala	30
																								0.0							
								000	000	~		~~~	~		100	~~~		0.00			-		080	Rit2	-2EX-1		180	\rightarrow	~~~	000	100
31	AGG	BCA 31a	31.	8000 81.e	The	GGC C1w	AAC	DGC Arc	DGG Arce	GAA	Ser	GAC Acc	GAA	Leu	AGC	CAG Cln	Leu	GCT bla	DGG bro	Dhe	TGG	TAC	Up1	GGG C1 w	TTG	Len	ATC	Taxe	BCC Bla	DGG bra	180
51	ALG	AIG	AId	AId	1111	GTÅ	ASII	MLA	MLG	GIU	Ser	кэр	GIU	Deu	Ser	GIII	Deu	AIA	ALG	rne	пр	TAT	vai	OLY	Deu	Deu	me	түр	AId	ALG	00
181	GAC	CTC	GAC	GCG	GGC	CGC	CGG	GTG	CTC	GAG	TCG	GCG	GAG	GCG	GAT	CGG	GGC	GGG	GCA	GCC	TCC	GAC	CGC	ATG	ACC	GCC	GTC	GAG	CAC	AAC	270
61	Asp	Leu	Asp	Ala	Gly	Arg	Arg	Val	Leu	Glu	Ser	Ala	Glu	Ala	Asp	Arg	Gly	Gly	Ala	Ala	Ser	Asp	Arg	Met	Thr	Ala	Val	Glu	His	Asn	90
81/7 JFV F																															
																	Rifz	-3EX-F			\geq										
271	GTG Val	CGG Arg	GGC	AGC	Leu	CTG	TTC	GCC 31.	Mat	GGC	AGC	GTC Val	GAC	GAC	GCG 31.	ATG	GCG Ale	GAA	ATC	AGC	ACC	GGG	CTG	CGG Arg	ATC	GCC Ale	GAG	CGC Arg	TGT	GGT	360
91	vai	ALG	GTĀ	ser	Den	Leu	File	ALA	Mec	GTĀ	Ser	vai	лэр	Asp	ALA	Nec	ALA	GIU	116	Set	Int	GTĀ	Deu	Mrg	116	ALA	GIU	Mrg	сув	GLY	120
361	GAC	CGG	TCG	CTG	CGG	CCG	CCC	AGT	TAC	GTC	GTG	CTG	GCG	CTG	GGT	GCC	CTT	CGC	CGC	GCG	GAC	ATG	CGG	GCG	TGC	CGC	CAC	TTC	GTC	GAC	450
121	Asp	Arg	Ser	Leu	Arg	Pro	Pro	Ser	Tyr	Val	Val	Leu	Ala	Leu	Gly	Ala	Leu	Arg	Arg	Ala	Asp	Met	Arg	Ala	Cys	Arg	His	Phe	Val	Asp	150
451	AAG	CTG	TCG	GAC	GAA	GCG	CTG	CTC	GGT	TAC	TTC	GGG	CAG	GCG	CCG	GGA	GCG	TGG	GTG	GCC	GCG	CAG	GCC	GTG	GAA	GCC	CGC	AGC	GGC	GTG	540
151	Lys	Leu	Ser	Asp	Glu	Ala	Leu	Leu	Gly	Tyr	Phe	Gly	Gln	Ala	Pro	Gly	Ala	Trp	Val	Ala	Ala	Gln	Ala	Val	Glu	Ala	Arg	Ser	Gly	Val	180
541	GAG	AGC	GCG	GCG	AGC	CTG	ATC	600	666	ATC	GTG	ACG	AAC	006	CTC	GTG	CTC	ccc	CAG	CTG	CTG	GTG	TCG	GAA	006	606	606	GCG	TCC	TGG	630
181	Glu	Ser	Ala	Ala	Ser	Leu	Ile	Ala	Gly	Ile	Val	Thr	Asn	Pro	Val	Val	Leu	Arg	Gln	Leu	Leu	Val	Ser	Glu	Pro	Ala	Ala	Ala	Ser	Trp	210
									-									-												-	
													Rifz	Z-4EX-P	F		\geq														
631	CTG	GTC	CGC	GCG	TGC	GTC	AAG	CTC	GGC	GCG	CAC	GAC	CTG	GCG	AAG	GCT	TCG	GCG	GCG	GAG	TCC	GCC	GCG	CTG	GCC	GCC	GAG	CAG	CCG	GAG	720
211	Leu	Val	Arg	Ala	Cys	Val	Lys	Leu	Gly	Ala	His	Asp	Leu	Ala	Lys	Ala	Ser	Ala	Ala	Glu	Ser	Ala	Ala	Leu	Ala	Ala	Glu	Gln	Pro	Glu	240
721	TTC	AGC	GTG	ATC	CGC	GGC	TCC	600	CTG	CAC	606	GCG	GGC	CTG	CTG	GAG	CAG	GAC	606	GCC	AAG	CTC	CAC	GAG	GCG	GCC	GAC	ATC	CAC	CCC	810
241	Phe	Ser	Val	Ile	Arg	Glv	Ser	Ala	Leu	His	Ala	Ala	Glv	Leu	Leu	Glu	Gln	Asp	Ala	Ala	Lvs	Leu	His	Glu	Ala	Ala	Asp	Ile	His	Pro	270
					-	-							-								-						-				
811	GAC	CGC	TGG	TGC	GCG	GCC	TCG	GCG	CGC	GAG	GAC	CTG	GCG	AGC	CTG	CTG	ACC	GTC	CGG	TGT	TCC	GAA	CGC	GAC	CGG	ACG	ATC	AGG	ATC	CTC	900
271	Asp	Arg	Trp	Cys	Ala	Ala	Ser	Ala	Arg	Glu	Asp	Leu	Ala	Ser	Leu	Leu	Thr	Val	Arg	Cys	Ser	Glu	Arg	Asp	Arg	Thr	Ile	Arg	Ile	Leu	300
																						Dif.	SEX.			<					
901	GAG	TCG	GTC	CTG	GAC	ACG	TAC	ACG	TCG	CTC	ACC	600	ACC	ccc	GAC	TCC	000	ccc	CTC	CTC	MAC	ANG	CTC	CGC	CAC	TAC	ccc	GTC	ccc	CGC	990
301	Glu	Ser	Val	Leu	Asp	Thr	Tyr	Thr	Ser	Val	Ser	Ala	Thr	Arg	Asp	Ser	Ala	Arg	Val	Val	Asn	Lvs	Leu	Arg	Glu	Tvr	Glv	Val	Arg	Arg	330
							-							-				-								-				-	
991	GGC	ACG	ACC	CGG	ACG	GTC	GAG	TGC	GAA	GGC	ACC	GTC	CCG	CAC	GGG	CTG	ACG	AAC	ACG	GAG	TTC	GCG	GTG	GCG	GAG	CTG	GTG	AGC	CAG	GGC	1080
331	Gly	Thr	Thr	Arg	Thr	Val	Glu	Cys	Glu	Gly	Thr	Val	Pro	His	Gly	Leu	Thr	Asn	Thr	Glu	Phe	Ala	Val	Ala	Glu	Leu	Val	Ser	Gln	Gly	360
1001	030	3.00	110	110	C2.C	080	000	000	C2.C	080	mmo	3.00	800	000	C3.C	100	080	~~~	mmo	C2.C	080	110	110	080	-	010	110	100	110	OBO	1170
361	Uie	Thr	Anc	Anc	Glu	Val	GGC	Arg.	Gln	Len	Phe	TIO	Ser	Arg	Uie	Thr	Val	Ala Ala	Phe	Uie	Leu	Lare	Tare	Val	Phe	Gln	Live	Mat	Anc	Leu	390
		1111		Aut	344	Tul	314	my	Jail	Loud	2100	114	341	arg		1112	Tul	and	2110		Led	212	212	Jul	2114	Jail	212		2011	200	555
									2	/		RifZ-E	X-R																		
1171	ACC	TCC	AGG	GTC	GAG	CTG	GCG	GCG	GCG	TGG	AAG	GTG	TTC	TCG	TAG	121	5														
391	Thr	Ser	Arg	Val	Glu	Leu	Ala	Ala	Ala	Trp	Lys	Val	Phe	Ser	End																

Figure S1. The schematic depiction of heterologous expression of truncated RifZ. The primers used for the expression of different truncated RifZ were labeled upon the nucleic acids sequence. And the predicted DNA binding domain of RifZ indicated by shaded boxes.

Figure S2. Conserved domains in RifZ and representatives of LuxR-family proteins. NCBI GI numbers for proteins used: RifZ (GI: 300782586), LuxR (GI: 59714108), SdiA (GI: 2992525), GdmRI (GI: 115299630), PikD (GI: 3800841), AveR (GI: 5921165), OlmRI (GI: 29606552) and NysRI (GI: 8050852). Analysis was performed using the Pfam v28.0 database. GerE(pfam00196): bacterial regulatory proteins, LuxR family; Autoind_bind(pfam03472): autoinducer binding domain; AAA_16(pfam13191): AAA ATPase domain.

Figure S3. Heterologous expression of recombinant His-tagged RifZ-1, RifZ-2, RifZ-3 and RifZ-4. Protein samples were analyzed by 12.5% SDS-PAGE followed by coomassie blue staining. Symbols used: M, PageRuler[™] Prestained Protein Ladder (Thermo Fisher Scientific); NI, total lysates of cells without IPTG induction; T, total lysates of cells after IPTG induction; S, supernatant of T; P, precipitate of T.

Figure S4. The expression and purification of recombinant His-tagged RifZ-5. (A) Protein samples were analyzed by 12.5% SDS-PAGE. M, PageRuler[™] Prestained Protein Ladder (Thermo Fisher Scientific); T, total lysates of cells after IPTG induction; S, supernatant of T; P, precipitate of T. (B)Analysis of the purified recombinant His-tagged RifZ-5 by 15% SDS-PAGE followed by coomassie blue staining. Lane 1: PageRuler[™] Prestained Protein Ladder (Thermo Fisher Scientific); Lane 2: 2 µg of the purified RifZ-5.

Figure S5. Co-transcription analysis of the *rif* **genes with RT-PCR.** For all reactions, 30 cycles of PCR amplification were applied, and details of the RT-PCR assay were described in the "Materials and Methods". Lane 1: 20 ng total RNA of U32 as the template for PCR amplification (negative control); lane 2: 20 ng cDNA mixture as the template; lane 3: 20 ng gDNA of U32 as the template (positive control). Some genes that overlapped with their previous one were not analyzed here.

Figure S6. EMSA experiment employing purified His-tagged RifZ-5 with different probes. In each panel: lane P, 40ng FAM labeled probe without protein; lane 1, 40ng FAM labeled probe with 2 μ g protein; lane 2, 40ng FAM labeled probe and excess (100 fold) unlabelled probe with 2 μ g protein. And an excess of sheared salmon sperm DNA is included in every lane as internal control to avoid an unspecific binding. The assays were repeated three times. (A) Five promoter regions were specifically bound by RifZ; (B) EMSA result confirmed the specific binding of RifZ to the promoter regions of *rifK* and *orf18*.

(A)

Figure S7. Characterization of the RifZ-protected DNA sequences in different promoter regions. The electrophoregram of the control reaction (without RifZ-5, red line) and experimental reaction (with RifZ-5, blue line) were shown in the upper panel, and the lower panel showed the DNA sequencing results. Precise DNA sequences protected by RifZ-5 were indicated at the bottom, and hypersensitive sites were also indicated with asterisks.

Figure S8. The transcriptional profiles of genes in *rif* cluster in *A. mediterranei* U32. The transcriptomic data were from Shao *et al.* (1). The transcriptional level was represented with the value of RPKM (Reads Per Kilo bases per Million reads). Through employing the RifZ binding motif as the query sequence in search of the whole U32 genome, six new RifZ targets were identified (Table S2), among which *rifK* and *orf18* (*AMED_0645*) within the *rif* cluster were boxed by dashed red line.

References

1. Shao ZH, Ren SX, Liu XQ, Xu J, Yan H, Zhao GP, Wang J. 2015. A preliminary study of the mechanism of nitrate-stimulated remarkable increase of rifamycin production in Amycolatopsis mediterranei U32 by RNA-seq. Microb Cell Fact **14**:75.