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3Istituto Superiore di Sanità, Dept. of Hematology, Oncology and Molecular Medicine, Roma

4Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Roma

PACS numbers:

In the main text, paths performed by splenocytes are modeled by means of random walks characterized by (syn-
chronized) discrete time steps and moving on a continuous two-dimensional space (xy). This kind of random walks
can be described in terms of a probability distribution p(r, t) giving the probability that the walker has covered a
distance r in a time t. In fact, we can write

p(r, t+ τ) =

∫ ∞
−∞

p(r′, t)ψ(r− r′, t)dr′, (1)

where ψ(r− r′, t) is the probability that at time t a step from r′ to r is performed. For time-homogeneous processes,
the width and the direction of a step do not depend on time and the dependence on t can be dropped, i.e. ψ(r− r′, t) =
ψ(r− r′). Moreover, by exploiting the discreteness of time steps, the time t at which any step occurs is a multiple of
τ in such a way that we can write

p(r, n+ 1) =

∫ ∞
−∞

p(r′, n)ψ(r− r′)dr′, (2)

n being the number of steps performed up to the time considered and t = τn.
As anticipated (see Results in the main paper), the distribution ψ(r− r′) qualitatively controls the resulting random

walk, possibly giving rise to deterministic walks (e.g. ψ(r− r′) = δr−r′,k, k 6= 0, corresponding to a ballistic motion),
to correlated walks (e.g. ψ(r− r′) = f(r · r′), where f is a peaked function, corresponding to a motion with a preferred
direction), to completely stochastic walks (e.g. ψ(r− r′) = δ|r−r′|,r̃, corresponding to an isotropic motion where steps
have fixed length r̃), etc [1].

In Euclidean structures, like the two-dimensional substrate considered here, we can decompose r into its normal
coordinates, i.e. r = (x, y), and, analogously r− r′ = (x− x′, y − y′) ≡ (∆x,∆y). Therefore, Eq. 2 can be rewritten
as

p((x, y), n+ 1) =

∫ ∞
−∞

∫ ∞
−∞

p((x′, y′), n)ψ(∆x,∆y)dx′dy′, (3)

and, assuming that ∆x and ∆y are independent, ψ(∆x,∆y) can be factorized as ψ(∆x,∆y) = ψx(∆x)ψy(∆y).
As suggested by Eq. 3, the knowledge of the specific distribution ψ(∆x,∆y) possibly allows to get an explicit

expression for p((x, y), n).
For instance, one can show that, when diffusion is isotropic, i.e. it is equal in the x and y directions, any distribution

ψ(∆x,∆y) fulfilling the central limit theorem asymptotically (resuming the continuous time description) leads to the
well-known diffusive limit characterized by the normal distribution [1]

p((x, y), t) =
1

4πDt
e−

[(x−vxt)2+(y−vyt)2]

4Dt (4)

where v = (vx, vy) accounts for the presence of a drift, while D is the diffusion-coefficient.
The moments of the distribution are:

〈(x, y)〉 = (vxt, vyt); (5)

〈x2 + y2〉 = v2xt
2 + v2yt

2 + 4Dt, (6)

hence, asymptotically, whenever noise is prevailing, we expect to observe a Brownian motion, i.e. r ∝
√
t, while,

whenever there is a real presence of a drift (signal), we expect a ballistic motion, i.e. r ∝ t.
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