Cancer-driven dynamics of immune cells: Mathematical Appendix
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PACS numbers:

In the main text, paths performed by splenocytes are modeled by means of random walks characterized by (syn-
chronized) discrete time steps and moving on a continuous two-dimensional space (zy). This kind of random walks
can be described in terms of a probability distribution p(r,t) giving the probability that the walker has covered a
distance r in a time ¢. In fact, we can write
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where ¢(r — 1/, t) is the probability that at time ¢ a step from r’ to r is performed. For time-homogeneous processes,
the width and the direction of a step do not depend on time and the dependence on ¢ can be dropped, i.e. ¥(r —r';t) =
¥(r — r'). Moreover, by exploiting the discreteness of time steps, the time ¢ at which any step occurs is a multiple of
7 in such a way that we can write
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n being the number of steps performed up to the time considered and t = 7n.

As anticipated (see Results in the main paper), the distribution 1 (r — r’) qualitatively controls the resulting random
walk, possibly giving rise to deterministic walks (e.g. ¥(r —r’) = dy_p x, k # 0, corresponding to a ballistic motion),
to correlated walks (e.g. ¥(r —r’) = f(r-r’), where f is a peaked function, corresponding to a motion with a preferred
direction), to completely stochastic walks (e.g. 1(r —r') = d,_/| 7, corresponding to an isotropic motion where steps
have fixed length 7), etc [1].

In Euclidean structures, like the two-dimensional substrate considered here, we can decompose r into its normal
coordinates, i.e. r = (z,y), and, analogously r — v’ = (x — 2/, y — ') = (Az, Ay). Therefore, Eq. 2 can be rewritten
as
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and, assuming that Az and Ay are independent, ¥(Axz, Ay) can be factorized as 1(Ax, Ay) = ¥y (Az)y (Ay).

As suggested by Eq. 3, the knowledge of the specific distribution ¥ (Az, Ay) possibly allows to get an explicit
expression for p((z,y),n).

For instance, one can show that, when diffusion is isotropic, i.e. it is equal in the x and y directions, any distribution
P(Azx, Ay) fulfilling the central limit theorem asymptotically (resuming the continuous time description) leads to the
well-known diffusive limit characterized by the normal distribution [1]
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where v = (vg, vy) accounts for the presence of a drift, while D is the diffusion-coefficient.
The moments of the distribution are:
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hence, asymptotically, whenever noise is prevailing, we expect to observe a Brownian motion, i.e. r o v/, while,
whenever there is a real presence of a drift (signal), we expect a ballistic motion, i.e. r o t.
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