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ETSI Agronomos, Av. Comptlense S/N, 28040, Madrid, Spain.

∗ E-mail: alfredo@necsi.edu.

Supplementary Text

A) Urban Activity

In Figure S1 we show an average week of Twitter activity for 52 cities from around the world: The
number of tweets per hour, averaged by weekday, after subtracting the mean and normalizing by the
standard deviation.

We performed K-means clustering (2) to the time series vectors, starting from the minimum of ac-
tivity. The quality of the partition optimizes at three clusters (3), colored accordingly in Figure S1. The
blue cluster includes series that show a single peak. The green cluster includes series that show two
similarly sized peaks. The yellow cluster includes series that show large afternoon peaks preceded by
smaller morning peaks. Clusters share cultural and regional affinity. Most East-Asian cities are in the
single-peaked group, European cities are in the two-peaked group and North and South American cities
are in the third group.

We determined that peaks and valleys of activity emerge from social coordination and not solely due
to daily light and dark cycles. For this purpose, we calculated the time difference between the series’
morning valleys and sunrise times, as well as the time difference between the series’ afternoon peaks and
sunset times. We grouped these time differences in 10-day intervals and calculated their distributions.
We found that the average largest and shortest time differences are significantly different (p < 0.01 for
equatorial cities and p < 0.001 otherwise), indicating that variations in the sunset or sunrise times do not
determine the times of peaks or valleys of activity.

B) Heartbeat

We correlated heartbeat ECG signatures with Twitter activity series, as plotted in Figure 2. The heartbeat
signatures were obtained from individual heartbeat time series (4, 5). We determined the duration of
an average heartbeat T , and divided the entire signal into time units 1/24th of the average heartbeat
in duration. We averaged the ECG within each of these time units. For non-overlapping windows
of 24 units for the entire time series, we identified the minimum value of the ECG in that window
xmin,i. We defined a correlation windows wi of length T , centered at the minimum value xmin,i, as
wi : [xmin,i − T/2, xmin,i + T/2 − 1]. For a single heartbeat time series, we obtained a set of 14
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correlation windows during regular heartbeat rhythm. We correlated each of the set across the entire
heartbeat time series and the average week of Twitter activity. Correlations with random time series were
made on vectors of length 2T , analogously defining correlation windows by determining the minimum
within the middle 24 data values.

C) Spatial Patterns

In Figure S2, we show the spatial variation of an average day of Twitter activity of 40 urban areas. We
quantified the activity in lattices of 20x20 patches in each area. We show patches’ local activity after
subtracting the average, normalizing by the standard deviation and coloring the activity above average.
All cities have periods of high (colored) and low (black) activity. Activity in central areas during work
hours is followed by activity in peripheral areas during rest and recreation hours. The average distance
between tweets and the city center (calculated as the center of gravity of the spatial activity) significantly
differs (p < 0.001 after bootstrapping) during the most contracted and expanded times between 9 am
and midnight. In Table S1, we present the maximun and minimun radius of gyration of tweets expressed
in kilometers for 50 major metropolitan areas during the same time period.

The spatial patterns of activity vary due to human mobility. We characterized individual users by
their most frequently visited locations, identified by sets of tweets located very close to each other in
space (within a radius of 100 m). In Figure S3 A, we show the probability density function (PDF) of the
number of frequently visited locations per user for each city. In all cities, the distributions peak at two or
three frequently visited locations. We considered the users with two or three locations and analyzed the
times of the day when they are there. We counted the hourly tweets posted from each location throughout
the entire observation period. We separated locations according to two dominant clusters (2, 3). In one,
people usually tweet during work hours (Fig. S3 B), while in the other, people usually tweet during rest
hours (Fig. S3 C). This suggests that locations are dominated by either home or work places (6). The
average distance between residential locations with respect to the city center is significantly larger from
that of work locations (p < 0.001 for half of the analyzed cities), indicating that residential locations are
more widespread.

D) Global Synchrony

In Figure S4 we show 24 one-hour snapshots of a global network of the correlation of urban activity.
Nodes represent cities and edges are present when the cities’ time series are correlated above a threshold
(r > 0.9). Highly synchronized cities will share more connections with each other than with the rest
of the network. Correlations are calculated by using overlapping time windows of 12 hours across the
cities’ average day. The time windows provide snapshots of the network, which we later aggregate into
a single graph by weighting edges as the number of times that each pair of cities have been correlated
with each other. We colored nodes according to the community structure of the network (7), where each
community is a group of nodes that are more connected to each other. Cities are often correlated by
time zones. However, during some time windows (top row), cities from Europe, Africa and Asia show
synchronized behavior.

Twitter interaction mechanisms also peak during the synchronization period. We study the evolution
of both message exchange and topic identification mechanisms during an average day. The former is
an active user-to-user interaction mechanism, called mentions, that people use to exchange pieces of
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Table S1: Maximun and minimum radius of gyration (rg) of tweets between 9 am and midnight expressed
in kilometers for 50 major metropolitan areas.

City Max. rg Min. rg City Max. rg Min. rg
Abuja 9.447 ± 0.307 8.801 ± 0.276 Amsterdam 4.832 ± 0.139 4.560 ± 0.146

Ankara 9.538 ± 0.226 8.158 ± 0.244 Athens 2.622 ± 0.054 2.513 ± 0.057
Bangalore 9.158 ± 0.323 8.735 ± 0.263 Bangkok 15.047 ± 0.382 13.251 ± 0.401

Berlin 6.700 ± 0.218 6.144 ± 0.232 Bogota 10.900 ± 0.589 10.403 ± 0.654
BuenosAires 7.048 ± 0.126 6.647 ± 0.122 Cairo 10.051 ± 0.209 9.818 ± 0.235
CapeTown 11.113 ± 0.256 9.799 ± 0.239 Caracas 9.007 ± 0.268 8.497 ± 0.245
Chicago 13.573 ± 0.272 12.965 ± 0.272 Delhi 13.295 ± 0.218 12.536 ± 0.226
Dubai 14.734 ± 0.318 14.837 ± 0.366 HongKong 12.032 ± 0.346 11.843 ± 0.352

Houston 25.036 ± 0.414 23.036 ± 0.447 Istanbul 15.578 ± 0.480 14.411 ± 0.486
Jakarta 13.671 ± 0.265 12.826 ± 0.270 Kingston 4.679 ± 0.093 4.256 ± 0.091

KualaLumpur 6.124 ± 0.103 5.340 ± 0.114 Lagos 13.609 ± 0.330 13.409 ± 0.349
London 13.545 ± 0.255 11.892 ± 0.320 LosAngeles 19.338 ± 0.402 18.336 ± 0.385
Madrid 9.617 ± 0.234 9.143 ± 0.229 Manila 3.391 ± 0.056 3.322 ± 0.055

Melbourne 19.508 ± 0.718 16.706 ± 0.732 Mexico 12.977 ± 0.368 11.135 ± 0.359
Moscow 11.157 ± 0.183 9.516 ± 0.219 Mumbai 10.410 ± 0.243 10.088 ± 0.240
Nagoya 8.736 ± 0.170 7.624 ± 0.193 Nairobi 9.214 ± 0.280 8.147 ± 0.299

NewYork 38.150 ± 1.119 35.572 ± 1.158 Osaka 7.924 ± 0.161 7.009 ± 0.170
Paris 4.066 ± 0.053 3.690 ± 0.061 Prague 4.328 ± 0.195 3.654 ± 0.181

Pretoria 10.809 ± 0.257 9.437 ± 0.272 PuertoRico 44.338 ± 1.418 44.240 ± 1.446
RioJaneiro 15.036 ± 0.472 15.030 ± 0.496 Riyadh 14.358 ± 0.420 13.472 ± 0.419

Rome 6.594 ± 0.177 5.834 ± 0.173 Santiago 19.045 ± 1.359 16.681 ± 1.184
SaoPaulo 21.490 ± 0.670 20.892 ± 0.681 Seoul 12.280 ± 0.263 10.755 ± 0.279
Shanghai 14.503 ± 0.785 14.296 ± 0.797 Stockholm 4.308 ± 0.102 3.447 ± 0.100
Surabaya 6.293 ± 0.148 5.857 ± 0.141 Sydney 18.134 ± 0.625 15.860 ± 0.599

Tokyo 23.855 ± 0.552 21.413 ± 0.612 Vienna 4.734 ± 0.124 4.054 ± 0.127
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information. The latter is a passive interaction mechanism, called hashtags, that people use to identify
their information with ongoing trends. With these mechanisms, people spread pieces of information
on the social network through a cascading effect (8). Cascades emerge and grow in social networks as
people synchronize their behavior by paying attention to each other and talking about similar topics.
We capture this synchrony by aggregating the hourly number of directed messages and shared hashtags
between the European and Asian longitude ranges ([-30,30] and [90,180] respectively). Both interaction
mechanisms significantly peak (p < 0.001) during the synchronized period (shadowed regions). At this
time a larger number of directed messages are sent between these regions and more hashtags are shared
in their messages. These results indicate that people tend to share more information about increasingly
similar topics as they synchronize their activities.

E) Spectral Analysis

The spectral behavior (Fourier transform) of the Twitter activity from the 52 cities is shown in Fig. S5.
All frequency spectra have three significant components at 24h, 12h and 8h (dashed lines). The first is
due to variations associated to the daily cycle, the second to variations during 12 hours periods, night
and day, the third corresponds to periodic variations within work, recreation and sleep ‘shifts.’

F) Modeling Dynamics

The Twitter activity time series are modeled by adding three sinusoid signals of 24, 12 and 8 hours period
respectively:

s(t) = a24sin(
2πt

24
+ θ24) + a12sin(

2πt

12
+ θ12) + a8sin(

2πt

8
+ θ8) (1)

where t is time in hourly resolution, θ represents the respective signal phase, and a is the signal am-
plitude in the range [0,1]. We respectively fit the parameters θ and a for each time series by minimizing
the quadratic error between the s(t) and the data points. The modeled curves remarkably fit the data
(p < 0.001) as shown in Fig. S6.

G) Data

The data analyzed in this paper is available at:
http://necsi.edu/research/networks/globalsync/materials.html
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Figure S1: Temporal variation of Twitter activity from 52 cities during an average week. Color indicates
the result of a clustering classifier (see text). Vertical black lines show the time of synchronization
discussed in the manuscript.
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Figure S2: Spatio-temporal dynamics of Twitter activity in urban areas. Each row shows hourly activity
during an average day according to UTC time. Colors indicate the normalized excess of activity from the
average value at that location (scale shown in figure). Rows are ordered by longitude: Asia (top), Middle
East, Europe and Africa (center), South and North America (bottom).
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Figure S3: Clusters of frequently visited locations according to the time of the day of individual ac-
tivity. Dominant location clusters have primary activity during either conventional work (9-5) or rest
hours according to local time. A. Probability density function (PDF) of the number of frequently visited
locations per user for each city. B. Total activity in all cities at clusters whose primary activity is during
conventional work hours. C. Like B but for clusters whose primary activity is not during work hours
(scale is shown in the figure).
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Figure S4: Urban correlation network over an average day. Nodes represent cities and edges are present
when 12-hour activity series (labels) are correlated above 0.9. Color indicates the community structure
of the aggregated network (see text).
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Figure S5: Spectral analysis of the Twitter activity (amplitude of the Fourier Transform) from urban
areas. The dashed lines indicate (from left to right) the frequencies (q) corresponding to the periods of
24 hours, 12 hours and 8 hours respectively.
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Figure S6: Modeling the Twitter activity time series from urban areas. Blue dots represent the average
hourly number of tweets during an average week at each city. The red curve represents the model results.
The modeled curves fit the data with p < 0.001.
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