
Supplemental Methods 

Nucleic acid extraction and sample assessment 

Constitutional DNA was extracted from peripheral blood mononuclear cells using Qiagen’s 

Gentra Puregene Blood Kit. For patients 18 through 36, constitutional DNA was extracted from 

adjacent normal tissue that was confirmed by a pathologist to not contain tumor cells. To extract 

tumor DNA and RNA, and constitutional DNA from normal tissue, fresh frozen tissue specimens 

were homogenized using the Bullet Blender
TM

 Tissue homogenizer in Buffer RLT and stainless 

steel beads. Samples were passed through Qiagen’s QIAshredder spin columns, and 

subsequently extracted for DNA and RNA using Qiagen’s AllPrep Mini Kit. All samples were 

assessed and quantitated using the Nanodrop, the Invitrogen Qubit, and the Agilent TapeStation. 

 

Library construction and next generation sequencing 

Exome libraries were constructed using KAPA Biosystems’ Hyper Prep Kit (cat#KK8504) and 

Agilent’s SureSelectXT Human All Exon V5+UTR baits (cat#5190-6221) following the 

manufacturer’s protocols.  RNA libraries were constructed using Illumina’s TruSeq RNA 

Library Preparation Kit V2 (cat#RS-122-2001) or Illumina’s TruSeq RNA Access Library Prep 

Kit (cat#RS-301-2001) following the manufacturer’s protocols. LIWG libraries were constructed 

as previously described(Liang et al. 2014) with modifications: 200ng inputs were used, the 

KAPA Biosystems’s Hyper Prep Kit was used for construction, one cycle of PCR was performed 

prior to size selection and six PCR cycles was performed following size selection for each 

sample, and size selection was performed using Sage Sciences’ Pippin Prep to select library 

molecules that are 925-1025bp in length. Libraries were clustered onto Illumina V3 flowcells 

(San Diego, CA) using Illumina’s TruSeq PE Cluster Kit V3 (cat#PE-401-3001) and sequenced 



for paired 83bp reads using Illumina’s TruSeq SBS Kit V3 (cat#FC-401-3002, n=3) on the 

Illumina HiSeq.  

 

Data analysis 

BCL files were converted to FASTQ files using Illumina’s BCLConverter tool. FASTQ files 

were aligned to build 37 of the human reference genome using BWA (Burrows-Wheeler 

Aligner)(Li and Durbin 2009). For exome data, resulting BAM files were recalibrated using 

GATK(McKenna et al. 2010) and duplicate pairs marked using Picard. Microalignment was 

completed to identify reads containing indels (insertion/deletions). Variant calling was 

performed using Seurat(Christoforides et al. 2013)(quality score>30), MuTect(Cibulskis et al. 

2013), and Strelka(Saunders et al. 2012) and calls were annotated using GENCODE version 3 by 

Ensembl and build 37.1. No quality scores are generated by MuTect and Strelka. Final somatic 

SNVs were called by at least 2/3 callers. For the oncoprint (Figure 1), mutation burdens for 

patients with multiple tumors are reflected as the median value across tumors. For patient 33, 

because constitutional DNA was not available for generation of an exome, a merged 

constitutional data set comprised of constitutional data from three randomly selected patients 

(patients 2, 3, and 5) was used for variant calling. Counts of somatic SNV, CNV, and SV load 

for this patient was not included for overall counts of all ALMs. LIWG data was utilized for 

copy number and breakpoint detection analyses(Liang et al. 2014). A minimum tumor allele ratio 

of 0.10 and a minimum quality score (depth) of 20 is required for an SV to be called. For nine 

patients, sufficient amounts of constitutional DNA was not available for LIWG sequencing—for 

somatic analyses of unpaired tumor LIWGs, a merged constitutional data set comprised of 

constitutional LIWGs from three randomly selected patients (patients 2, 3, and 5, similarly used 



for patient 33’s exome analysis) were thus used for comparisons. Patient 33 data is not included 

in mutation count metrics because a true matched normal was not available for this patient.  

 

For CNV detection, read depths at every 100 bases across sequenced regions are first 

determined. Next, normalized log2 fold-changes between tumor and normal are calculated and a 

smoothing window is applied.  In addition, we utilize allele frequencies in the tumor of known 

heterozygous germline SNPs identified within the normal to both evaluate potential false 

positives and correct biases.  Lastly, we applied a circular binary segmentation (CBS) algorithm 

to corrected log2 fold changes using the Bioconductor DNAcopy implementation 

(https://bioconductor.org/packages/ release/bioc/html/DNAcopy.html).  For mutation burden 

metrics, a focal CNV is included if the log2 change is >= |2| with maximum length of 25Mb. 

RNA reads were aligned to build 37 of the human genome using STAR(Dobin et al. 2013) and 

differential analysis against a universal RNA control was performed using Cuffdiff (q-

value<0.05) and DESeq2(Love et al. 2014) (padjusted<0.05). RNA fusions were detected using 

TopHat-Fusion(Kim and Salzberg 2011) (quality score>100). 

 

MutSigCV (Mutation Significance covariates)(Lawrence et al. 2013) and IntOgen (Integrative 

Onco-Genomics; OncodriveFM)(Gonzalez-Perez et al. 2013) were used to identify putative 

cancer drivers. To remove potential bias introduced from analyzing multiple tumors from the 

same patient, the union of data derived from tumors from the same patient was used for analysis 

for patients 25, 29, and 34. Consensus CNVs in both LIWG and exome data were identified 

using GISTIC2.0 (Genomic Identification of Significant Targets in Cancer; release 

2.0.16)(Mermel et al. 2011) (Figure 2B). The q-bound cut-off was set at 0.05 (95% confidence 



interval; Benjamini & Hochberg FDR). G-scores, which reflect the amplitude of copy changes 

compared against the frequency of the event across all samples, were also calculated. 

Sequenza(Favero et al. 2015) was used to estimate percent tumor cellularities from rank 1 values 

for each sample. Analysis of mutation signatures was performed using the Mutational Signature 

Analysis Tool (https://bitbucket.org/jtr4v/analysis-of-mutational-signatures) (Supplemental Fig 

S2). All somatic SNVs except mutations with multiple alternate alleles were used to capture the 

mutational signature. The SomaticSignatures R package(Gehring et al. 2015) was used to 

identify somatic signatures using somatic SNVs called by at least 2 of 3 callers off exome data 

after: (1) removing ExAC (Exome Aggregation Consortium)(Lek et al. 2016), dbSNP (the NCBI 

[National Center for Biotechnology Information] Short Genetic Variations database), and 

NHLBI (National Heart, Lung, and Blood Institute) GO (Grand Opportunity) ESP (Exome 

Sequencing Project) SNPs with minor allele frequencies > 3%, sans COSMIC (Catalogue of 

Somatic Mutations in Cancer)(Forbes et al. 2015) SNPs; and (2) identifying the optimal number 

of signatures that accounts for the greatest amount of variance across samples using an RSS 

(residual sum of squares) statistic and the expected variance. A final list of 12,802 SNVs was 

used for analysis and an optimal number of ten signatures was used to identify signatures using 

the SomaticSignatures tool. ANOVA was used to compare resulting signatures against the 

somatic cancer signatures described by Alexandrov et al. (Alexandrov et al. 2013). Correlations 

between ALM signatures and Alexandrov signatures were performed by calculating a cosine 

similarity value. Analysis of the distribution across samples was also performed using the 

SomaticSignatures tool. 

For gene set analysis of RNA-seq data (Supplemental Fig S4A), an FPKM matrix (where 

FPKMs of zero or “inf” were imputed across row medians and gene IDs collapsed using the 

https://bitbucket.org/jtr4v/analysis-of-mutational-signatures


median) was analyzed using the ssGSEA (single sample gene set enrichment analysis) projection 

module of GenePattern(Reich et al. 2006) using default parameters and a custom gene ontology 

gene set file. The raw ssGSEA projection returned values were z-score normalized and clustered 

using the AutoSOME clustering method with gene sets as rows and samples as columns. Row 

clustering was set at 500 Ensemble runs and P<=0.05 with median center and sum of squares=1. 

Column clustering was set at 150 Ensemble runs and P<=0.075 with unit variance adjustment. 

Results were filtered for confidence values > 40, converted to gct format, and visualized in 

GENE-E software (http://www.broadinstitute.org/cancer/software/ GENE-E/index.html). For 

unsupervised clustering analysis (Supplemental Fig S4B), genes demonstrating low variance 

based on FPKMs (cutoff=30,000) were removed. FPKM data was scaled and standardized across 

the remaining 421 genes and hierarchical clustering was performed using Spearman’s correlation 

and clusters were joined with complete linkage. Computation of silhouette indices yielded six 

gene clusters.  

For neo-antigen analysis (Supplemental Figure S5), we predicted the number of neo-antigens 

generated based on somatic mutations. BWA’s HLA caller (bwa-0.7.11) is first used to generate 

six digit HLA calls for the HLA-A, B, and C genes.  Mutated protein sequences were generated 

from somatic non-synonymous mutations, frameshifts, codon insertions, and codon deletions 

called by at least two of the three somatic variant callers (MuTect, Seurat, Strelka).  The IEDB 

MHC class I binding prediction tool (version 1-2.13) was used to predict binding of mutated 

peptides to each individual’s MHC types. NetMHCpan(Nielsen and Andreatta 2016) was used as 

the prediction method, with peptide lengths of nine and ten. Neo-antigens with an IC50 < 500 are 

retained. Analysis of HLA expression was also performed using seq2HLA 2.2(Boegel et al. 

2012). 



Experimental validations 

PCR and Sanger sequencing were used to validate BRAF, NRAS, and TERT point mutations, as 

well as hotspot TERT promoter mutations, on samples with available tumor DNA. Validation of 

PAK1 and TERT CNV gains were performed using TaqMan Copy Number Assays with real-time 

PCR using TaqMan MGB (minor groove binder) probe chemistry (ThermoFisher Scientific). 

Reference genes were selected from copy neutral regions of respective samples.   

 

Cell line quantitative PCR (qPCR) 

Cell lines were plated in T25 flasks. 24h after plating cells, dimethyl sulfoxide (DMSO) vehicle, 

or Telomerase Inhibitor IX (EMD Millipore, Billerica, MA), was diluted in culture medium, then 

added to cells. Cells were harvested after 72 h of drug treatment, and RNA was extracted using 

the RNeasy kit (Qiagen, Germantown, MD). Reverse transcription was performed with 

Quantitect Reverse Transcription kit (Qiagen, Germantown, MD).  qPCR was performed using 

the Kapa Fast qPCR master mix (Kapa Biosystems, Wilmington, MA) and TaqMan probes 

designed to target TERT and GAPDH (ThermoFisher, Waltham, MA). 
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